《指数函数图像及其性质》教学设计
指数函数的图像和性质教案设计
指数函数的图像和性质教案设计第一章:指数函数的引入1.1 生活中的实例引入通过生活中的实例,如细胞分裂、放射性衰变等,引入指数函数的概念。
引导学生观察实例中的规律,引发对指数函数的好奇心。
1.2 指数函数的定义给出指数函数的数学定义:形如f(x) = a^x 的函数,其中a 是正常数。
解释指数函数与幂函数的关系。
1.3 指数函数的图像利用数学软件或图形计算器,绘制几个简单的指数函数图像。
引导学生观察图像的形状和特点,如随着x 的增大,函数值增大或减小等。
第二章:指数函数的性质2.1 指数函数的单调性探讨指数函数的单调性,即随着x 的增大,函数值是增大还是减小。
引导学生通过观察图像或数学推理来得出结论。
2.2 指数函数的渐近行为分析指数函数在x 趋向于正无穷和负无穷时的渐近行为。
引导学生理解指数函数的快速增长和减趋行为。
2.3 指数函数的零点和极限探讨指数函数的零点,即函数值为零的x 值。
引导学生理解指数函数的极限概念,如x 趋向于某个值时函数的极限。
第三章:指数函数的应用3.1 人口增长模型利用指数函数模型描述人口增长,介绍人口增长的基本规律。
引导学生通过指数函数来分析和预测人口变化。
3.2 放射性衰变模型利用指数函数模型描述放射性物质的衰变过程,介绍放射性衰变的基本规律。
引导学生通过指数函数来分析和预测放射性物质的变化。
3.3 投资增长模型利用指数函数模型描述投资的复利增长,介绍投资增长的基本规律。
引导学生通过指数函数来分析和预测投资的变化。
第四章:指数函数的图像和性质的综合应用4.1 指数函数图像的变换探讨指数函数图像的平移、缩放等变换规律。
引导学生通过变换规律来理解和绘制更复杂的指数函数图像。
4.2 指数函数性质的综合应用结合前面的学习,解决一些综合性的问题,如求指数函数的零点、极值等。
引导学生运用指数函数的性质来解决实际问题。
第五章:复习和拓展5.1 复习指数函数的图像和性质通过复习题和小测验,巩固学生对指数函数图像和性质的理解。
指数函数的图像与性质教案
§2.1.2指数函数及其性质(一)教学目标1、知识与技能:掌握指数函数的概念;会作指数函数的图象;归纳出指数函数的几个基本性质.2、过程与方法:通过由指数函数的图象归纳其性质的学习过程,培养学生探究、归纳分析问题的能力.3、情感、态度、价值观:通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法;培养学生主动学习、合作交流的意识.教学重点和难点1、重点:指数函数的定义、图象和性质.2、难点:指数函数的定义理解;指数函数性质的归纳.教学方法 探究式教学教学手段 借助多媒体辅助教学,演示指数函数的图象教学流程设计教学过程设计情景引入问题1: 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x次后,得到的细胞个数 y 与 x 的函数关系是什么?问题2: 一尺之棰,日取其半,万世不竭.(出自《庄子 天下篇》)已知一把尺子第一次截去它的一半,第二次截去剩余部分的一半,第三次截去第二次剩余部分的一半,依次下去,问截的次数x 与剩余尺子长度y 之间的函数关系如何?(假设原来长度为1个单位)问题3: 与 这类函数的解析式有何共同特征?学生思考回答,得出结论,引出指数函数知识点一:指数函数的定义一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 问题4:指数函数定义中为什么规定a >0且a≠1呢?如果不这样规定会出现什么情况呢? 学生活动:分组讨论,各组交流成果,加深对定义的认识例1.下列函数中,哪些是指数函数?知识点二:指数函数的图象、性质类比以前讨论函数性质时的内容和方法,我们该如何研究指数函数,研究什么内容?研究方法:画出函数图,结合图象研究函数性质.研究内容:定义域、值域、单调性、奇偶性及其它.探究:用描点法画函数x y 2=与x y )21(=的图象 学生自主探究,描点画出图象学生讨论:两个函数图象有何联系与区别?(学生活动)类比以上函数的图象,总结指数函数性质.学生自主探究完成下面指数函数性质表格:a>1 0<a<1 图象性质 (1)定义域:R (2)值 域:(0,+∞) (3)过点(0,1),即x=0时,y=1(4)在R 上是增函数 (4)在R 上是减函数12x y ⎛⎫= ⎪⎝⎭2x y =x y 4=4x y =x y 4-=14+=x y o o探究: x y 2=, x y 3= , x y )21(= , xy ⎪⎭⎫ ⎝⎛=31四个函数图象特征,图象与其底数有什么规律?学生探究:通过三组图象,探究指数函数图象与底的关系,教师适当启发指导. 知识点三:指数函数性质应用例2 比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-; (3)3.07.1,1.39.0.由学生分析解题思路,教师总结.拓展迁移:已知下列不等式 , 比较 m,n 的大小 :1. 2. 3. 学生演板,然后师生共评,反馈校正.小结归纳,拓展深化(1)通过本节课的学习,你学到了哪些知识 ?(2)你又掌握了哪些研究数学的学习方法?学生总结,教师补充点评.布置作业,提高升华(1)必做题 :课本P59,A 组5、7(2)选做题: 课本P60,B 组4板书设计n m 22<n m 2.02.0>)10(≠>>a a a a n m 且教学反思:本节课充分发挥自制课件的优势,将自己的想法、新课改的理念和“知识与技能、过程与方法、情感、态度、价值观”三维目标充分融入自制课件中,使本节课的内容更加充实。
指数函数图像与性质教学设计精选10篇
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
指数函数的图像与性质教学设计
指数函数的图像与性质教学设计本课程的教学方法主要是通过图像来归纳指数函数的性质。
采用启发式教学法,引导学生通过观察、比较、归纳等方法,从感性认识逐步提高到理性认识,形成完整的概念。
同时,注重数形结合,利用图像来帮助学生理解和掌握知识,提高学生的研究兴趣和研究效果。
在教学过程中,教师还应注重与学生的互动,鼓励学生积极参与课堂讨论和思考,培养学生独立思考和解决问题的能力。
一、教学方式我们将采用直接讲授与启发探究相结合的教学方式。
二、教学手段我们将借助多媒体展示学生的做图结果,并演示指数函数的图像。
三、教学基本思路1.创设情境,揭示课题:我们将以建立一个关于指数函数的数学模型为情境,引入指数函数概念。
2.探究新知:我们将研究指数函数的图像,并归纳总结指数函数的性质。
3.巩固深化,发展思维。
4.归纳整理,提高认识。
5.巩固练与作业。
四、教学过程1.形如y=ax的函数:让学生自己讨论得出指数函数的一般形式,其中指数函数x的范围以及对a的限定不强加给学生,由学生自己进一步研究。
2.指数函数的定义:由学生自己进行讨论得出。
3.指数函数的图像与性质:让学生自己动手做图,互相讨论总结这类函数性质。
五、教学设计说明本节课的设计意图是通过两个较简单的建立函数对应关系的实际问题引出指数函数的一般模型,即指数函数的解析式。
然后从“形”的角度研究其图像,从中发现规律总结出指数函数的性质。
六、教学后记与反思在教学过程中,我们发现学生们对于指数函数的一般形式和定义还有些模糊,需要加强讲解。
同时,学生们对于指数函数的图像和性质理解较好,表现出了较强的思维能力和探究精神。
我们会在后续的教学中更加注重基础知识的讲解,以便更好地引导学生深入研究。
指数函数图像及其性质-教学设计
《指数函数的图像与性质》教学设计一、学生知识状况分析在学习本节课之前,学生对于指数函数已经有了一个基本的概念,对于指数函数y=2x和y=(12)x的图像也有了一个基本的认识,为归纳出指数函数的图像有了初步的逻辑推理能力,为今天的学习奠定了一个良好的基础。
二、教学任务分析及素养要求在以前的指数函数学习中,主要是针对函数的基本概念和指数函数y=2x和y=(12)x的图像简单的了解,对于指数函数图像的分类,具体的性质,在学生的头脑中还没有形成一个系统的认知体系,所以本节课将根据指数函数y=2x,y=3x,y=(12)x,y=(13)x的图像,来让同学们通过简单的指数函数图像入手,通过对比研究的手法,来对指数函数的性质归纳出一个比较系统的认知和推理思路。
为此,本微课的教学目标是:1.能根据指数函数的基本概念和函数图像绘图的三步骤,熟练掌握,指数函数的绘图方法,提升直观想象素养。
2.能对指数函数的概念有根深层次的理解,通过学生画图、讨论、推理等环节,给学生渗透话归思想和分类思想,以此引导学生通过对比研究的手法,通过四个不同底数的指数函数,推理出函数的各个性质并进行归纳总结,提升学生的数学建模素养。
二、教学重难点教学重点:指数函数的图像与性质教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。
三、教学方法:自主探究式四、教学手段:多媒体微课教学五、教学过程:(一)创设情境1、复习和归纳:(1)指数函数的定义;(2)指数函数y =2x 和y =(12)x 的图像与性质。
2、导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质,所以我们今天学习指数函数的图像与性质。
(二)自主探究1. 想一想:用列表、描点、连线的作图步骤,画出指数函数y =2x ,y =3x ,y =(12)x ,y =(13)x 的图像。
并观察这四个不同底数a 的函数图像的特点和性质,归纳出y =a x (0<a<1)与y =a x (a>1)的图像。
《指数函数图像及其性质》教学设计
二、教学重难点
教学重点:指数函数的图像与性质
教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质.
三、教学方法:自主探究式
四、教学手段:多媒体教学
五、教学过程:
(一)创设情境 1、复习:
(1)指数函数的定义;
(2)指数函数解析式的特征。
2、导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质,所以
我们今天学习指数函数的图像与性质。
(二)自主探究
1.画一画:用列表、描点、连线的作图步骤,画出指数函数 y 2x 、 y 1 x 的 2
图像
x
-2
-1
0
1
2
y 2x
y 1 x 2
2.说一说:通过图像,分析
y
2x
、
y
1
x
的性质;
2
函数
y 2x
y 1 x 2
定义域
值域
单调性
特殊点
类型二 解指数不等式
例 2.(1)求使不等式 4x 32 成立的x 的集合;
4
(2)已知a5 a 2 ,求数 a 的- 取值范围.
(四)当堂检测
1.课本第 73 页 练习 1 1.
2.解下列不等式:
(1)3x1 1 ; 81
(2)4x 2x1 3 0.
(五)课堂小结 (1) 通过本节课的学习,你学到了哪些知识? (2) 你学会了哪些数学思想方法? (六)布置作业 必做题:课本 77 页,A 组.4,5,6 选做题:课本 77 页,B 组 1,6.
y 的分布情况 当 x 0 时,
当 x 0 时,
当 x 0 时,
指数函数及其性质教学设计(共8篇)
指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。
我将以此为根底对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。
通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。
三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。
指数函数的图像与性质教案
指数函数的图像与性质教案教案标题:指数函数的图像与性质教案教案概述:本教案旨在帮助学生理解指数函数的图像与性质。
通过引导学生观察和分析指数函数的特点,以及通过实例和练习,使学生能够熟练绘制指数函数的图像,并掌握指数函数的基本性质。
教案目标:1. 理解指数函数的定义和基本性质;2. 能够绘制指数函数的图像;3. 掌握指数函数的增减性、奇偶性、对称性等性质;4. 能够应用指数函数的性质解决实际问题。
教学重点:1. 指数函数的图像绘制;2. 指数函数的增减性、奇偶性、对称性等性质。
教学准备:1. 教师准备:白板、彩色粉笔、投影仪、计算器;2. 学生准备:纸和铅笔。
教学过程:Step 1: 引入指数函数的概念 (5分钟)教师通过提问和示例引入指数函数的概念,解释指数函数的定义和基本形式。
Step 2: 指数函数的图像绘制 (15分钟)教师通过投影仪或白板示范绘制几个不同指数函数的图像,解释图像的特点和规律。
学生跟随教师的指导,绘制指数函数的图像。
Step 3: 指数函数的增减性与奇偶性 (10分钟)教师解释指数函数的增减性和奇偶性的定义,并通过绘制图像和实例说明。
学生进行练习,判断给定指数函数的增减性和奇偶性。
Step 4: 指数函数的对称性 (10分钟)教师解释指数函数的对称性的定义,并通过绘制图像和实例说明。
学生进行练习,判断给定指数函数的对称性。
Step 5: 指数函数的性质应用 (15分钟)教师提供一些实际问题,引导学生应用指数函数的性质解决问题。
学生进行小组讨论,分享解决思路和结果。
Step 6: 总结与拓展 (5分钟)教师与学生一起总结指数函数的图像与性质,并展示一些拓展问题,鼓励学生进一步思考和探索。
教学延伸:1. 学生可以使用计算器或在线图形绘制工具练习绘制更多的指数函数图像,并观察其特点。
2. 学生可以尝试推导指数函数的其他性质,如渐近线等。
教学评估:1. 教师观察学生在课堂上的参与度和理解程度;2. 学生完成的练习和问题解答。
《指数函数的图象和性质》示范公开课教学设计【高中数学人教版】
《指数函数的图象和性质》教学设计◆教学目标1.能借助描点法、信息技术画出具体指数函数的图象,探索并了解指数函数的单调性与特殊点.2.结合指数函数图象与性质的研究,进一步体会研究具体函数的一般思路和方法,提升直观想象核心素养.◆教学重难点◆教学重点:指数函数的图象和性质.教学难点:根据图象,抽象概括出指数函数的性质,以及对指数函数性质的理解.◆课前准备PPT课件,计算器,GGB课件.◆教学过程(一)整体感知,明确任务引导语:对于具体的函数,我们一般按照“背景—概念—图象和性质—应用”的路径进行研究.前面一节我们从具有现实背景的问题中,学习得到了指数函数的概念,接下来就要研究它的图象和性质,并灵活应用.根据我们在第三章研究幂函数的经验思考:如何研究一个函数的性质?研究一个函数的性质主要是研究哪些方面?师生活动:教师引导学生类比研究幂函数的学习,提出研究指数函数的图象和性质的方法和内容.预设的答案:研究指数函数的图象和性质,首先要作出函数的图象,其次再根据图象概括函数的性质,最后还可以由性质进一步分析函数的图象.按照函数研究的一般过程,需要研究指数函数的定义域、值域、单调性、奇偶性,以及其特有的一些性质.设计意图:通过回顾以往研究幂函数图象和性质的方法和内容,提出研究指数函数的图象和性质的方法和内容,明确本节课研究的重点,并引出问题1.(二)新知探究1.研究指数函数的图象和性质问题1:首先画出指数函数的图象,我们先从简单的函数y=2x开始.请同学们利用计算器完成x,y的对应值表1,并用描点法画出函数y=2x的图象.师生活动:学生独立完成后展示交流,全班师生形成共识即可.预设的答案:完成的表1,和画出的函数y=2x的图象(图1)如下.表1x y-2 0.25-1.5 0.35-1 0.5-0.5 0.710 10.5 1.411 21.52.832 4设计意图:从一个具体的简单的指数函数开始进行研究,巩固描点法,为后续的研究作好铺垫.问题2:为了得到指数函数y=a x(a>0,且a≠1)的性质,我们还需要画出更多的具体指数函数的图象进行观察.用同样的方法,在同一直角坐标系内画出函数1()2xy=的图象,并与函数y=2x的图象进行比较,它们有什么关系?能否利用函数y=2x的图象,画出函数1 () 2xy=的图象?师生活动:学生先用描点法画出函数1()2xy=的图象,通过观察作出猜想.然后教师引导学生从指数的运算性质考虑分析.预设的答案:因为1()22x xy-==,点(x,y)与点(-x,y)关于y轴对称,所以函数y=2x的图象上任意一点P(x,y)关于y轴的对称点P1(-x,y)都在函数1()2xy=的图象上,反之亦然.由此可知,底数互为倒数的两个指数函数的图象关于y轴对称.根据这种对称性,就可以利用图1一个函数的图象,画出另一个函数的图象,比如利用函数y=2x的图象,画出1()2xy=的图象.如图2所示.设计意图:通过探究,学生体会到可以用已知函数图象和对称性来作新函数的图象,并从中学习用联系的观点看问题,以及通过逻辑推理获得数学结论的思维方式.另外,这样探究还便于将指数函数y=a x分为0<a<1和a>1两类,从而分别对两类图象的共同特点进行归纳.问题3:选取底数a(a>0,且a≠1)的若干个不同的值,例如11 3,4,,34a a a a====,在同一直角坐标系内画出相应的指数函数的图象,观察这些图象的位置、公共点和变化趋势,它们有哪些共性?根据你所概括出的结论,自己设计一个表格,写出指数函数y=a x(a>0,且a≠1)的定义域、值域、单调性、奇偶性,等等.师生活动:在已经画出y=2x和1()2xy=图象的基础上,学生利用计算器可以画出这些函数的图象.教师也可以展示GGB课件“4.2指数函数第二课时-不同底数的指数函数图象”,并演示动画效果,得到a取任意值时函数y=a x的大量图象.学生根据这些图象直观地归纳出它们的共同特点,教师予以补充完善,并引导学生进行规范:要将指数函数y=a x分为0<a<1和a>1两类进行讨论.预设的答案:选取底数a的若干值,例如113,4,,34a a a a====,利用信息技术画出图象,如图3.发现指数函数y=a x的图象按底数a的取值,可分为0<a<1和a>1两种类型.因此指数函数的性质也可以分0<a<1和a>1两种情况进行研究,设计的表格如表2.图2表20<a<1 a>1图象定义域R值域(0,+∞)性质(1)过定点(0,1),即x=0时,y=1 (2)减函数(2)增函数(3)非奇非偶函数,即无奇偶性设计意图:利用GGB动画演示能便捷地做出大量图象,易于归纳,底数a的取值自然地变化,所作函数的图象也自然地产生了,而非事先规定的.在此过程中,有意识地向学生渗透数形结合的思想方法,引导学生“以形助数”,先观察图象得到图象的特征,然后再将图象特征转化为函数性质,达到提升学生直观想象核心素养的目的.2.指数函数的应用例3比较下列各题中两个值的大小:(1)1.72.5,1.73;(2)0.8−√2,0.8−√3;(3)1.70.3,0.93.1.师生活动:学生独立完成后展示交流.师生总结求解要点:每一组中的两个值都可以看作某个指数函数的函数值,从而利用指数函数的单调性进行比较.对于(1)(2),两个值可以看作同一个指数函数的两个函数值,直接利用其单调性进行比较.对于(3)1.70.3和0.93.1不能看作同一个指数函数的两个函数值.可以利用函数y=1.7x和y=0.9x的单调性,以及“x=0时,y=1”这条性质把它们联系起来.预设的答案:解:(1)1.72.5和1.73可看作函数y=1.7x当x分别取2.5和3时所对应的两个函数值.因为底数1.7>1,所以指数函数y=1.7x是增函数.因为2.5<3,所以1.72.5<1.73.(2)同(1)理,因为0<0.8<1,所以指数函数y=0.8x是减函数.因为-√2>-√3,所以0.8−√2<0.8−√3.图3(3)由指数函数的特性知1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.设计意图:利用指数函数的单调性比较两个数的大小,根据问题的特点构造适当的指数函数.学生能够进一步熟悉指数函数的性质,并形成用函数观点解决问题的意识.例4如图4,某城市人口呈指数增长.(1)根据图象,估计该城市人口每翻一番所需的时间(倍增期);(2)该城市人口从80万人开始,经过20年会增长到多少万人?师生活动:首先由教师引导学生对问题进行分析:(1)因为该城市人口呈指数增长,而同一指数函数的倍增期是相同的,所以可以从图象中选取适当的点计算倍增期;(2)要计算20年后的人口数,关键是要找到20年与倍增期的数量关系.然后由学生独立完成后展示交流.预设的答案:解:(1)观察图4,发现该城市人口经过20图4年约为10万,经过40年约为20万,即由10万人口增加到20万人口所用的时间约为20年,所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为20年,所以每经过20年,人口将翻一番.因此,从20万人开始,经过20年,该城市人口大约会增长到160万人.设计意图:利用指数函数的图象分析和解决问题,建立函数图象与概念、性质的联系,进一步促使学生形成用函数观点解决问题的意识.(三)归纳小结,布置作业问题4:本节课研究指数函数的图象和性质的方法是什么?从哪几方面概括了指数函数的性质?分别是什么?师生活动:先让学生进行思考并做适当交流,再让学生发言,教师予以补充完善.预设的答案:本节课选取了大量不同的底数a,在同一直角坐标系中画出相应的指数函数图象,通过观察,并结合函数的解析式,分析得到指数函数的图象特点及函数性质.从定义域、值域、定点、单调性和奇偶性,概括了指数函数的性质.具体性质略.设计意图:研究一个函数的图象和性质,是研究函数的基本过程“背景—概念—图象和性质—应用”中的“图象和性质”环节,通过不断强化这一研究过程的方法,使学生逐步掌握研究一个数学对象的基本方法.同时强调根据图象概括函数的性质时,应该关注哪几方面.。
指数函数图像及性质教案设计理念
指数函数图像及性质教案设计理念教案设计理念:指数函数图像及性质1. 教学目标:- 理解指数函数的定义和性质;- 掌握指数函数图像的特点和变化规律;- 能够应用指数函数解决实际问题;- 培养学生的数学思维能力和问题解决能力。
2. 教学重点:- 指数函数的定义和性质;- 指数函数图像的特点和变化规律。
3. 教学难点:- 如何准确描述指数函数的图像特点和变化规律。
4. 教学准备:- 教材:包含指数函数的相关知识点和例题;- 教具:投影仪、计算器等。
5. 教学过程:5.1 导入(5分钟)- 引导学生回顾前几节课学习的内容,包括指数的定义和运算规律。
5.2 概念解释与引入(10分钟)- 通过投影仪展示指数函数的定义和性质,包括指数的底数、指数的整数和分数、指数函数的定义域和值域等。
5.3 图像特点的探索(15分钟)- 引导学生观察和分析指数函数的图像特点,包括图像的开口方向、对称轴、渐近线等。
- 通过具体的例题和计算器的辅助,让学生发现指数函数图像的变化规律。
5.4 图像绘制与分析(20分钟)- 让学生利用计算器或手工绘制几个指数函数的图像,并观察图像的特点。
- 引导学生分析图像的变化规律,如底数的大小、指数的正负、指数的变化等对图像的影响。
5.5 实际问题的应用(15分钟)- 引导学生应用指数函数解决实际问题,如人口增长、物质衰变等。
- 鼓励学生利用图像和函数的性质解决问题,培养他们的问题解决能力和数学思维能力。
5.6 总结与拓展(5分钟)- 总结指数函数图像的特点和变化规律,强化学生对知识的理解和记忆。
- 提出一些拓展问题,激发学生的思考和兴趣。
6. 教学延伸:- 布置相关的课后作业,巩固学生对指数函数图像及性质的理解;- 鼓励学生自主学习,通过互联网等资源进一步拓展和应用指数函数的知识。
7. 教学评价:- 利用课堂练习、小组讨论或个人作业等方式,检查学生对指数函数图像及性质的掌握情况;- 针对学生的困惑和错误,进行及时的纠正和指导;- 对学生的表现进行评价和反馈,鼓励他们继续努力。
指数函数的图像和性质教案设计
指数函数的图像和性质教案设计一、教学目标1. 让学生理解指数函数的概念,掌握指数函数的图像和性质。
2. 培养学生运用指数函数解决实际问题的能力。
3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 指数函数的定义与性质2. 指数函数的图像特点3. 指数函数的实际应用4. 指数函数的图像和性质的综合运用三、教学重点与难点1. 教学重点:指数函数的定义、图像特点和性质。
2. 教学难点:指数函数图像和性质的运用。
四、教学方法1. 采用问题驱动法,引导学生探索指数函数的图像和性质。
2. 利用多媒体课件,直观展示指数函数的图像,帮助学生理解。
3. 结合实际例子,让学生体验指数函数在实际生活中的应用。
4. 开展小组讨论,培养学生的合作能力和解决问题的能力。
五、教学过程1. 引入:通过回顾幂函数的知识,引导学生思考指数函数的定义和特点。
2. 讲解:讲解指数函数的定义,引导学生掌握指数函数的基本性质。
3. 展示:利用多媒体课件,展示指数函数的图像,引导学生观察和分析图像特点。
4. 实践:让学生绘制指数函数的图像,观察和分析图像的性质。
5. 应用:结合实际例子,让学生运用指数函数解决实际问题。
6. 总结:对本节课的内容进行总结,强调指数函数的图像和性质。
7. 作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问,了解学生对指数函数概念和性质的理解程度。
2. 练习题:布置针对性的练习题,检验学生对指数函数图像和性质的掌握情况。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、拓展与延伸1. 引导学生思考:指数函数在实际生活中的应用场景有哪些?2. 探讨:如何利用指数函数解决实际问题?3. 布置研究性学习任务:让学生研究指数函数在其他领域的应用。
八、教学反思1. 教师总结本节课的教学效果,反思教学过程中的优点和不足。
2. 学生反馈学习感受,提出改进建议。
3. 针对教学不足,制定改进措施,为下一节课的教学做好准备。
指数函数的图象和性质教案
4.2.2 指数函数的图象和性质4号一、【教学目标】1.采用“疑、探、导、练”教学法,根据观察指数函数底数对指数函数图象的影响,并通过图象归纳指数函数的性质;2.通过画指数函数图象、归纳指数函数性质与运用过程,培养学生的观察能力及数形结合、特殊--一般、分类讨论的数学思想。
3.让学生感受数学问题探索的乐趣,体验成功的喜悦,发展学生逻辑推理、直观想象的核心素养。
二、【教学重、难点】教学重点:理解指数函数的图象及性质。
教学难点:指数函数性质的归纳与运用。
三、【教学方法】我校学生数学基础比较薄弱,学生对数学普遍不感兴趣。
本节课探究性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。
因此本节课通过结合计算机软件工具,让学生更直观形象地理解指数函数的图象和性质,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
四. 【教学过程设计】二、合作探究,探索新知6、将这四个函数图象放在同一个坐标系中图象关于和xxayay)1(== y轴对称7、归纳指数函数的性质:通过前面对图象特征的充分认识,引导学生一起将这些图象特征转化成数学语言,即得到指数函数的性质。
xy a=a>1 0<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1非奇非偶函数非奇非偶函数在R上是增函数在R上是减函数教师:现在我把刚刚画的四个函数放在同一个坐标系,你有什么发现?教师:引导学生去观察底数互为倒数的两个指数函数图象关于Y轴对称。
教师:观察上面函数图象,你能归纳出指数函数y=a x(a>0,且a≠1)的图象特征和性质吗?教师引导学生观察图象,填写表格,讨论交流,概括总结出指数函数的基本性质。
通过让学生动眼观察、动脑思考,并引导他们对所发现的知识进行归纳、分类,目的在于让学生成为数学课堂的主人,在这一过程中不仅让学生的主体意识得以充分的体现,也让学生经历知识的产生和发展过程,感受数学问题探索的乐趣,体验成功的喜悦,体会数形结合及分类讨论的数学思想,从而有效的达到对知识的理解,进一步发展学生的数学抽象、直观想象的数学核心素养。
指数函数的图像和性质教学设计
指数函数的图像和性质教学设计
一、目的
㈠教学目标
1.指数函数
2.指数函数的图象、性质
㈡学习目标
1.理解指数函数的概念
2.掌握指数函数的图象、性质
㈢情感目标
1.认识事物之间的普遍联系与相互转化
2.让学生学会用联系的观点看问题
二、教学和学习活动记录
一复习回顾(5分钟)
复习指数函数的概念和要注意的知识点,唤醒学生的记忆,为后面的教学做铺垫。
二数学实验(10分钟)
利用网络教学平台让学生自己观察当底数在变化的过程中,函数图象的变化情况,达到对指数函数图象的感性认识。
三总结填表(5分钟)
通过的前面数学实验让学生完成一个表格填写,完整的建立指数函数图象的知识匡架。
四例题讲解(10分钟)
通过前面知识匡架的建立,联系高考考点进行试题分析,达到培养能力的目的。
五在线测试(5分钟)
利用网络教学平台的这一功能让每一个学生都能得到最及时的指导,特别是对那些平时不爱说话的学生帮助是非常大的。
六小结、在线交流(5分钟)
通过小结使学生回顾本节课的知识点,而后进入聊天室相互交流学习体验。
七作业
课后完成。
指数函数的图像与性质教案
指数函数的图像与性质教案一、教学目标1. 理解指数函数的定义和基本性质。
2. 能够绘制和分析指数函数的图像。
3. 掌握指数函数在实际问题中的应用。
二、教学内容1. 指数函数的定义与表达式指数函数是一种特殊类型的函数,形式为f(x) = a^x,其中a 是底数,x 是指数。
指数函数的定义域是所有实数,值域是正实数。
2. 指数函数的图像特点(1) 当a > 1 时,指数函数的图像上升。
(2) 当0 < a < 1 时,指数函数的图像下降。
(3) 指数函数的图像经过点(0, 1)。
3. 指数函数的性质(1) 单调性:当a > 1 时,指数函数单调递增;当0 < a < 1 时,指数函数单调递减。
(2) 指数函数的值域为正实数。
(3) 指数函数的图像具有无限多条切线,且切线斜率恒为a。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析和解决实际问题,深入理解指数函数的图像与性质。
2. 利用数学软件或图形计算器绘制指数函数的图像,帮助学生直观地感受指数函数的特点。
3. 设计具有挑战性的练习题,激发学生的思考和探索能力,巩固所学知识。
四、教学评估1. 通过课堂讲解、练习题和小组讨论,评估学生对指数函数定义、图像和性质的理解程度。
2. 布置课后作业,要求学生绘制指数函数的图像,并运用指数函数解决实际问题,以评估学生的应用能力。
3. 在课程结束后,进行一次小测验,检验学生对指数函数的整体掌握情况。
五、教学资源1. 教学PPT或教案文档,包含指数函数的定义、图像和性质的相关知识点。
2. 数学软件或图形计算器,用于绘制指数函数的图像。
3. 练习题和案例分析题,供学生巩固所学知识和应用实践。
六、教学步骤1. 引入指数函数的概念,引导学生思考指数函数在实际生活中的应用场景。
2. 讲解指数函数的定义与表达式,引导学生理解指数函数的基本形式。
3. 利用数学软件或图形计算器,绘制不同底数的指数函数图像,引导学生观察和分析指数函数的图像特点。
指数函数的图像和性质教案设计
指数函数的图像和性质教案设计第一章:指数函数的定义与性质1.1 指数函数的定义引导学生回顾函数的概念,引入指数函数的定义。
通过实际例子,让学生理解指数函数的形式和特点。
1.2 指数函数的性质分析指数函数的单调性,奇偶性,周期性等基本性质。
通过图表和实际例子,让学生直观地理解指数函数的性质。
第二章:指数函数的图像2.1 指数函数图像的特点引导学生绘制简单的指数函数图像,观察其特点。
分析指数函数图像的渐近线和拐点等特殊点。
2.2 指数函数图像的应用通过实际例子,让学生了解指数函数图像在实际问题中的应用,如人口增长、放射性衰变等。
第三章:指数函数的导数3.1 指数函数的导数公式引导学生回顾导数的基本概念,引入指数函数的导数公式。
通过例题和练习,让学生掌握指数函数的导数计算方法。
3.2 指数函数的单调性分析指数函数的单调性,引导学生理解导数与单调性的关系。
通过实际例子,让学生了解如何利用导数判断指数函数的单调性。
第四章:指数函数的极限4.1 指数函数的极限定义引导学生回顾极限的概念,引入指数函数的极限定义。
通过实际例子,让学生理解指数函数在趋近于无穷大或无穷小时的极限值。
4.2 指数函数的极限性质分析指数函数的极限性质,如单调性和连续性。
通过练习题,让学生掌握指数函数极限的计算方法。
第五章:指数函数的应用5.1 指数函数在实际问题中的应用通过实际例子,让学生了解指数函数在实际问题中的应用,如人口增长、放射性衰变等。
引导学生运用指数函数解决实际问题,培养学生的应用能力。
5.2 指数函数在其他学科中的应用引导学生了解指数函数在其他学科中的应用,如物理学中的放射性衰变、生物学中的种群增长等。
培养学生的跨学科思维和综合运用能力。
第六章:指数函数与对数函数的关系6.1 对数函数的定义引导学生回顾对数函数的概念,引入对数函数的定义。
通过实际例子,让学生理解对数函数的形式和特点。
6.2 指数函数与对数函数的关系分析指数函数与对数函数的互为反函数关系。
指数函数的图象和性质教学设计 高一上学期数学人教A版(2019)必修第一册
4.2.2 指数函数的图象和性质----教学设计教学流程设计一、 创设情境与问题(1)构建研究方法学科数学课题4.2.2 指数函数的图象和性质课型新授课核心素养目标教学目标:1、掌握指数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结指数函数的性质;3、在指数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯. 数学学科素养:1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质. 教学背景分析指数函数作为初等基本函数的第三个类型,在高中教育中有很重要的地位,在高考中也是必考常考的的内容,在以往的教学中涉及的的内容都是很传统的概念开始的,在新教材新课改中更加注重图像的生成,对应图像探究性质。
教学 重点 指数函数的图象和性质;教学 难点 对底数的分类,如何由图象、解析式归纳指数函数的性质.教学 方法以学生为主体,采用诱思探究式教学,精讲多练。
师:我们定义了一个新的函数,接下来,我们研究什么呢?我们一般要研究哪些性质呢?怎样研究这些性质呢?设计意图学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.由于学生缺乏对研究函数一般方法的认识,教师应引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.教师可以紧扣研究的内容和方法,通过问题串的方式对学生进行启发.师:我们定义了一个新的函数,接下来,我们研究什么呢?生:接下来研究指数函数的图象和性质.师:一般地,我们研究函数的哪些性质呢?生:变量取值范围(定义域、值域)、单调性、奇偶性.师:怎样研究这些性质呢?生:先画出指数函数的图象,观察图象,分析函数性质.生:先研究几个具体的指数函数,再研究一般情况.由于学生更习惯于形象思维,提出了通过函数的图象研究函数性质的方法.在尊重学生实际情况的前提下,教师引导学生讨论,确定了研究的内容与方法,并归纳出研究函数性质的基本步骤:①选取数据,② 画出图象,③观察特征,④归纳性质.(教师在学生列表描点作图的过程中,提醒学生关注研究的目标.体会从具体到抽象,从特殊到一般的思维方法.)二、自主探究,归纳性质在前面确定研究方法的前提下,用描点法作出两个特殊函数12,()2x x y y==阅读课本116-117页,思考并完成以下问题1. 结合指数函数的图象,可归纳出指数函数具有哪些性质?2. 指数函数的图象过哪个定点?如何求指数型函数的定义域和值域问题?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
高中数学_指数函数的图象和性质教学设计学情分析教材分析课后反思
《指数函数的图象和性质》教学设计一、学习目标1.能画出具体指数函数的图象;2.观察指数函数图象,归纳出指数函数的性质,培养解决问题的能力3.通过观察图象、归纳总结指数函数性质的活动,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要。
二、数学学科素养1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.三、教学重难点教学重点:指数函数的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.四、教法与学法教学策略:小组合作讨论策略;讲练有效结合策略;自主探究式学习策略教学手段:多媒体化课件;几何画板3、借助几何画板画出xx x x x x y y y y y y )()(41,31,)21(,4,3,2====== 的图象,通过图象不同的变化趋势, 可以将底数分为哪两类? 底数分为a>1和0<a<14、观察图中的函数图象的位置,公共点,变化趋势,总结共同特征,小组分工分别讨论a>1和0<a<1的图象,汇报小组讨论结果,师生一起画出指数函数图象:)10(<<=a a y x )1(>=a a y x4、请同学们对照x a y =的图象,得出性质归纳:指数函数图象和性质图象,独立思考后回答。
观察图象,做出分类类比、探究,独立思考后由小组讨论,由小组派代表起来发言,说出发现的结果或规律。
由图象总结性质数两种不同的变化趋势,对指数函数分类研究做铺垫。
充分利用信息技术作图,学生对图象认识更加准确直观。
自然的将指数函数分为a>1和0<a<1两类。
让学生经历观察图象、发现规律的过程,目的是让学生通过对函数图象的观察与比较,归纳出指数函数中a 对图象的影响,同时培养学生数形结合地观察、思考5、课件出示:指数函数图象的性质6、完善学案上指数函数的图象与性质 10<<a1 a图象定义域 值域性质学生一起回答问题的意识与能力。
指数函数的图像与性质教学设计名师公开课获奖教案百校联赛一等奖教案
指数函数的图像与性质教学设计一、教学目标:1. 理解指数函数的定义与性质;2. 掌握指数函数的图像特征与变化规律;3. 能够应用指数函数解决实际问题。
二、教学重点与难点:1. 指数函数的定义与性质的初步掌握;2. 指数函数的图像特征与变化规律的理解及应用。
三、教学过程安排:1. 导入(5分钟):引入指数函数的概念,与学生进行讨论,在白板上记录学生的想法与疑问,激发学生的学习兴趣。
2. 知识讲解(15分钟):a. 讲解指数函数的定义和符号表示,以及指数和底数的关系;b. 介绍指数函数的性质,包括增减性、奇偶性、单调性等;c. 解释指数函数的图像特征和变化规律,如基本图像、平移、伸缩等。
3. 图像展示(15分钟):a. 将不同形式的指数函数图像展示给学生观察,并让学生猜测函数表达式;b. 利用计算机或投影仪展示指数函数图像,引导学生分析图像特征与变化规律。
4. 实践操作(20分钟):a. 给学生发放练习册,让学生完成一些基本的图像绘制与性质分析题目;b. 教师巡回指导学生进行实践操作,回答学生的疑问。
5. 案例分析(15分钟):a. 选择一些实际问题,引导学生分析并建立相应的指数函数模型;b. 鼓励学生自己解答问题,并与同学讨论优化解决方案。
6. 总结归纳(10分钟):a. 审视学生的练习成果,与学生一起总结指数函数的图像与性质的重点;b. 提醒学生需要复习和巩固的知识点。
四、教学辅助手段:1. 白板、彩色粉笔;2. 计算机或投影仪;3. 学生练习册、教师解析册。
五、教学评价方法:1. 学生的课堂表现,包括课堂积极性、回答问题的准确性与深度;2. 学生完成的练习册与作业。
六、教学延伸活动:1. 自主学习拓展:鼓励学生通过互联网等途径,查找更多有关指数函数的资料,拓宽对指数函数的理解。
2. 探究性学习:组织学生开展小组讨论和实验,研究指数函数在自然界和社会中的应用,培养学生的实际问题解决能力。
通过本节课的学习,学生将对指数函数的定义和性质有一定的理解和掌握,并能够运用指数函数解决实际问题。
指数函数的图象及其性质教学设计
《指数函数的图象及其性质》教学设计一、教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A 版)第二章第一节第二课(2.1.2)《指数函数及其性质》。
指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
二、学生学习况情分析指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。
教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。
本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。
三、教学目标1、理解指数函数的概念,能画出具体指数函数的图象;2、在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;3、在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;4、同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。
四、教学重点与难点教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
五、教学过程:(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。
师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《指数函数的图像与性质》教学设计
一、教学目标
1.知识与技能
掌握指数函数的图像、性质及其简单应用. 2.过程与方法
通过学生自主探究,让学生总结指数函数的图像与性质. 3.情感、态度、价值观
通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问、善于探索的思维品质.
二、教学重难点
教学重点:指数函数的图像与性质
教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质.
三、教学方法:自主探究式 四、教学手段:多媒体教学 五、教学过程:
(一)创设情境 1、复习:
(1)指数函数的定义; (2)指数函数解析式的特征。
2、导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质,所以我们今天学习指数函数的图像与性质。
(二)自主探究
1.画一画:用列表、描点、连线的作图步骤,画出指数函数x
y 2=、x
y ⎪⎭
⎫
⎝⎛=21的
2.说一说:通过图像,分析x y 2=、x
y ⎪⎭
⎫
⎝⎛=21的性质;
3.比一比:x y 2=与y ⎪⎭⎫
⎝⎛=21的图像有哪些相同点,哪些不同点?
4.想一想:在平面直角坐标系中画出函数3x
y =、13x
y ⎛⎫
= ⎪⎝⎭
的图像,试分析性质。
5.议一议:通过以上四个函数的图像和性质,归纳指数函数x
a y =(
1,0≠>a a 且)的图像和性质如下:
(三)典例精讲
类型一 两个数比较大小
类型二 解指数不等式
例2.1 32 x x >()求使不等式4成立的的集合;
4
5
a a > (2)已知求数的取值范围.
0.80.7-0.10.10.70.8 330.750.750.80.7.例1.比较下列各题中两个数的大小:
(1)
和;(2) 和;(3) 与
(四)当堂检测
1.课本第73页 练习1 1.
2.解下列不等式:
11
(1)3;81
x -> 1(2)4230.x x +-->
(五)课堂小结
(1) 通过本节课的学习,你学到了哪些知识? (2) 你学会了哪些数学思想方法? (六)布置作业
必做题:课本77页,A 组.4,5,6 选做题:课本77页,B 组1,6.
六、教学反思
达标训练
1.2)2
1
(-=x y +2的定义域是_____________,值域是______________, 在定义域上,该函数单调递_________.
2.若函数31+=+-x a y 的图象恒过定点 .
3.指数函数)(x f y =的图象经过点(4,2-),求)(x f 的解析式和)3(-f 的值.
4.比较下列各组值的大小; (1)3
.02
2
,3.0; (2)5
25
25
29
.1,8.3,1
.4-
.
5.函数x
a y =在]1,0[上的最大值与最小值的和为3,求a
值.
6.1
()(1),1x x
a f x a a -=>+已知函数 () f x (1)判断函数的奇偶性; () f x ℜ(2)证明:函数在上是增函数。