VIBRO_1_DIRECT_simulations-ACTRAN振动声学直接频响分析理论

合集下载

ACTRAN AERO-Acoustics_Theory_complete-ACTRAN气动声学理论完整版

ACTRAN AERO-Acoustics_Theory_complete-ACTRAN气动声学理论完整版
• 使用CFD进行非定常流场计算 • 从CFD结果中提取等效声源,使用声学求解器进行声传播计算 • 该方法包括: • 声类比方法:Lighthill,Mohring声类比 • 积分方法:Curle,Lighthill,Green…
半经验模型:不依赖于非定常的流体计算。
6
Copyright Free Field Technologies
20
Copyright Free Field Technologies
主控方程
两个定义, 没有假设:
A0是声源区之外静止流体的声速 a = - 0 其中0大气密度 0 是个常数:
得到(L1):
(L1)
如果观察点不在声源区,也没有均匀流动,那么, a = 声场密度
11
Copyright Free Field Technologies
混合方法
积分方法:
Lighthill, Curle, FW-H, Farassat, ... 都基于NS方程的方法 在声场内求解关于声学的显式方程以及计算声源对胜场内任何一点的贡献率 需要Green function
局限
声源项的不准确性(声源的统计) 对声学特性的预测相当困难 数值计算的成本不容忽视(大量的涡=大量的计算)
13
Copyright Free Field Technologies
Analogy concept
声类比理论
Copyright Free Field Technologies
压力 粘性应力 (2)
经过变换,方程(2)可以写成如下的形式:
常数 Lighthill应力张量
Lighthill应力张量T如下:
(T)
19

10-Actran在换能器及声学分析中的应用

10-Actran在换能器及声学分析中的应用

0m
海水 分层 状态 分四层介质声场分布 100m
低声速
高声速
高声速
低声速
空间声传播分析
• 应用模块
– actran Acoustic
• 分析模型
– 声波在介质中传播受障碍物影响 – 几何结构——3D实体模型
• 分析目的
– 接收点受障碍物影响其声接收指向性与障碍物关系
模型解释
上下障碍物 水声换能器分为标量-矢量两种 标量换能器仅对声压差敏感; 矢量换能器对接收点附近介质的振速敏 感,因此具有8字形指向性 矢量水听器附近的障碍物对矢量水听 器的8字形指向接收性有何影响? 模型分析了点声源、平面波声源以中间接收点 为中心,从0°到180°半空间范围内不同方向 对接收点进行声辐射 分析接收点上下两端平均的振速变化 模型障碍物与接受点均采用在实体球中扣除的 3D实体模型
• 在本模型中主要考察半片换能器在自由状态、底 边约束、侧边约束状态下的影响规律,通过 Actran仿真分析,通过对比不同约束状态下的换 能器固有频率相对关系,可以获得对换能器固有 频率的提高具有关键作用的约束!
压电陶瓷换能器声辐射分析
• 应用模块
– actran Vibro-Acoustic
• 分析模型
Hypermesh中网格划分
导出 Nastran格式的 *.BDF网格文件 赋予材料参数及边界 条件 提交分析
压电陶瓷材料参数需要在 DAT文件中单独修改
云图显示
PLT曲线
后处理云图声辐射
• 不同频率下换能器的声辐射状态
– 可以获得最佳指向性及对应的频点
5000Hz
7000Hz
9000Hz
11000Hz
半片结构中,上下位移约束 与左右位移约束,哪种约束

噪声分析软件Actran航空发动机声学问题解决方案

噪声分析软件Actran航空发动机声学问题解决方案
y 4.4 无限元技术.......................................................................................................................16
5.1.1 发动机的基本情况................................................................................................21 5.1.2 优化声衬的工况参考点........................................................................................22 5.1.3 ACTRAN 模型 .....................................................................................................22 5.1.4 阻抗优化方法........................................................................................................25 5.1.5 插入损失与优化的阻抗结果................................................................................27 5.1.6 ACTRAN 在声衬设计方面的应用.......................................................................30 5.2 排气噪声应用案例...........................................................................................................30 5.2.1 模型参数................................................................................................................32 5.2.2 计算结果................................................................................................................35 六、ACTRAN 应用前景 ...............................................................................................................40

actran振动噪声技术点

actran振动噪声技术点

actran振动噪声技术点
actran振动噪声技术点可以包括以下几个方面:
1. 振动分析模型:使用有限元分析(FEA)等方法构建精确的振动分析模型,以模拟结构的振动响应和传播路径。

2. 材料特性模型:确定材料的声学特性,包括密度、弹性模量、泊松比等参数,以评估材料对振动和噪声的响应。

3. 噪声源建模:根据实际情况建立噪音源的几何模型、振动激励和频谱特性,例如发动机、电机或机械设备等。

4. 噪声辐射模型:通过辐射传输损失的计算,分析振动能量如何从源头传播至周围环境,并预测接收器的声压级。

5. 振动和噪声优化:通过在模型中引入改进设计、材料或减振措施,寻求减少或消除振动和噪声问题。

6. 噪声控制措施:通过模拟噪声控制措施的效果,如降噪材料、隔音罩或振动减振器等,评估其对振动和噪声的影响。

7. 后处理和结果分析:使用各种图表和分析工具,对模拟结果进行评估和解释,为进一步改进设计提供参考。

这些技术点通常能够帮助工程师预测和优化结构的振动和噪声性能,从而改善产品的质量和用户体验。

领先的法国汽车供应商信赖 Actran 声学软件

领先的法国汽车供应商信赖 Actran 声学软件

领先的法国汽车供应商信赖Actran 声学软件MSC Software 的子公司Free Field Technologies(FFT)日前宣布,Plastic Omnium 公司已经部署了Actran软件的声学与振动声学模块,用于仿真在汽车中广泛所采用的塑料面板及其他零部件的声衰减特性。

在汽车工业中,Plastic Omnium 是以创新著称的车身模块和燃油系统领先供应商。

在设计过程初期,Actran 软件的使用对仿真轻量化的汽车零部件的声学特性至关重要,并且可以确保符合OEM所规定的声学传递损失要求。

Plastic Omnium 的汽车分公司将全球领先的车身零部件及模块厂商Plastic Omnium Auto Exterior 与全球领先的燃油系统供应商Inergy 的汽车系统专业知识整合到一起。

该公司总部位于法国Levallois,其开发的创新解决方案可满足减轻重量、降低排放、回收利用性以及行人保护方面日益增长的需求。

Plastic Omnium 的研发项目经理Philippe Gilotte,Actran软件主要使用者表示:“我们的车身零部件和模块可以帮助汽车厂商制作更清、更洁净并且更耐冲击的车辆。

”该公司的工程师们所面临的挑战是:证明用塑料零部件替代钣金件不会对车身的声学隔声特性造成不利影响。

OEM 厂商倾向于把具体要求的测试和验证责任转移给供应商。

Philippe Gilotte 指出:“我们需要仿真面板的声音隔声特性,在不需要大量创建物理样机的前提下,更深入地了解其物理特性。

Actran软件的声学和振动声学模块提供了一整套完整的工具,可以快速进行此类分析,能让我们在过程初期优化并验证设计模型。

”FFT 全球营销主管Alain Genard 表示:“汽车厂商倾向于越来越多地用塑料零部件来替代钣金件,以减轻车辆的重量,同时减少污染物排放。

对于开发这些零部件的供应商来说,这是个重要的机遇。

声学仿真软件Actran新功能展示-BCA

声学仿真软件Actran新功能展示-BCA

声学仿真软件Actran新功能展示12, 09, 2018•FFT公司成立于1998年,2011年并入MSC软件公司•公司总部:比利时布鲁塞尔;•公司分部:北京,图卢兹,东京,底特律•公司业务:•Actran声学软件开发•工程咨询项目,软件技术支持,培训及方法论开发•声学CAE科研Free Field TechnologiesActran Across Industries Transport & Vehicles Aeronautics Automotive Railway Ship Building Aerospace Heavy Machinery Consumer Goods Factory Equipment Industrial Machinery Power toolsDomestic appliance Audio Consumer Electronics Hearing Aids Machinery for FactoryActran软件功能模块Actran基础声学模块Actran振动声学模块Actran气动声学模块Actran TM模块Actran for Trimmed bodyDMPActran SNGR模块ActranVIActran DGM模块目录⏹振动辐射噪声新功能⏹扬声器模拟新功能⏹虚拟统计能量法新功能⏹旋转机械气动噪声新方法⏹SNGR方法及其应用⏹DGM新功能3. Post Processing and Analysis: Actran 2. Acoustic radiation: Actran in Frequency or Time Domain1. Structural Analysis: MSC Nastran, Adams/Flex, Marc, Actran, etc.MapsStructure surfacevibrationFRF Waterfall ElementscontributionAcoustic directivity Time domain pressure Sound fileAnimation•辐射噪声仿真流程预览•声学网格生成•专业、易用的声辐射网格生成功能•方便结构工程师从零基础学习声辐射建模•更多丰富的网格生成和更改功能(1)Actran 振动辐射噪声新功能:更高的计算效率•频率自适应网格的自动生成•频率网格自适应(H-Adaptivity )•可选用声学无限元或APML 方法•建模时无需准备声学网格,大大降低模型建立难度•可通过API 进行脚本化操作,进行自动化计算流程或优化计算流程708Hz ~ 850Hz 2539Hz ~ 3047Hz……Frequency (Hz)时间节省63% 自适应网格计算时间Actran API。

噪声软件Actran在列车声学设计中的应用_唐车

噪声软件Actran在列车声学设计中的应用_唐车

3
Copyright hnologies
ACTRAN软件背景
FFT和ACTRAN创立的背景
两位教授开发的Sysnoise被LMS收购后,1998年选择离开! 11家大公司于1999~2001年组成了ACTRAN联盟,资助两位教授开发ACTRAN,并 成为第一批客户 • 雷诺、宝马、标致、菲亚特、通用汽车等 整车企业 • 立达(Rieter)、哈金森(Hutchinson)汽车配件公司 • 空客 航空 • 壳牌石油、Glaverbel能源、材料 • 德国劳埃德船级社船舶
高性能求解器与并行处理
扬声器 侧窗声传递 壳体振动辐射噪声
11
Copyright Hi-keyTechnologies
ACTRAN AeroAcoustics
流致噪声仿真工具 特性:
支持大多数的CFD软件,并经过大量实验验证; Lightill 声类比、Möhring 声类比; 在有限元网格上可以定义边界条件:
• 任何边界条件都可使用 !!! • 这是与其他处理方法(如Curle, FWH or BEM)相比,最大的优势!
可以与VibroAcoustics联合计算,进行振动/流动声学一体化分析
客户:
Daimler, BMW, VW, Delphi, Visteon, John Deere, Brothers, PSA...
ACTRAN Vibro-Acoustics
ACTRAN Aero-Acoustics
ACTRAN TM
ACTRAN Acoustics ACTRAN VI 9
Copyright Hi-keyTechnologies
ACTRAN Acoustics
声学仿真工具 典型应用

WS_VIBRO_1b_Ski_Cabin_Modal_Extraction

WS_VIBRO_1b_Ski_Cabin_Modal_Extraction

Frequency Range
12
Copyright Free Field Technologies
Specify p y the Frequency q y Range g of Interest
The analysis parameters are specified in the properties of the analysis As the largest element of this linear mesh is 9 cm, the smallest bending wavelength accurately modeled is : 6 * 0.09 = 0.54 m (based on 6 elements per wavelength criterion) The bending wavelength of a simply supported steel plate (5 mm thick) at 150 Hz is 0.56m
Their dimensions (0D to 3D) Their interpolation orders
9
Copyright Free Field Technologies
Create an Element Set for the Support pp Point
Create a 0D element set for the displacement p boundary y condition
13
Copyright Free Field Technologies
Create the Cabin Component p
The Thin Shell component assigns the steel material to the Cab_Body domain (corresponding to the structure)

VIBRO_4_Acoustic_Transparency-ACTRAN隔声量分析理论

VIBRO_4_Acoustic_Transparency-ACTRAN隔声量分析理论

Acoustic Transparancy Computations with ACTRANACTRAN Training – VIBROCopyright Free Field TechnologiesIntroductionPre-requisites - before going through this presentation, the reader should have read and understood the following presentations:Theory ACTRAN Acoustics basic; Theory VIBRO DIRECT Simulation;These slides present the different concepts and modeling tools for computing Transmission Loss (TL) indexes in ACTRAN.2Copyright Free Field TechnologiesContentAcoustic TransparencyModeling Acoustic Transparency with ACTRANDiffuse sound fieldRayleigh surface3Copyright Free Field TechnologiesAcoustic TransparencyAcoustic transparency generally defined a group of standard tests performed to assess the ability of a component to attenuate soundThe standard tests of acoustic transparency generally involved 2 rooms acoustically connected by the system to be testedThe typical indicator used in Acoustic Transparency is the Transmission Loss index (TL)4Copyright Free Field TechnologiesWhat is the transmission loss index?Transmission loss:Symbols used in the literature: TL, STL or R expressed in dB Intrinsic property of system (does not depend on the coupled rooms of the set-up)TL = 10 ⋅ log10(1 τ )[ dB ]withτ (ω ) = Wtransmitted / WincidentThe transmission loss is the logarithmic representation of the ratio of powers: what is the part of the incident power that will be transmitted through the studied structure.5Copyright Free Field TechnologiesTypical measurement set-up: associated chambersAnechoic and reverberant rooms can be associated: side by side (classic transmission loss measurements) or on top of each other (building impact noise). Most used set-up: two side-by-side reverberant rooms 6Copyright Free Field TechnologiesTypical measurement set-up: associated reverberant chambersASTM E90 STL = SPL(source room) – SPL(receiving room) +10 log S – 10 log A(receiving room surface) [dB] S = area of test specimen (common to both rooms) A = sound absorption of receiving room with test specimen in place (metric Sabins) STL = R = TL = sound transmission loss index The sound pressure level (SPL) is measured in each rooms using a rotating microphone (pressure average). The sound absorption can be derived from reverberation time measurement7Copyright Free Field TechnologiesSimplified experimental set-upsTwo small chambers test set-up8Copyright Free Field TechnologiesSimplified experimental set-upsSmall cabin test set-up9Copyright Free Field TechnologiesContentAcoustic TransparencyModeling Acoustic Transparency with ACTRANDiffuse sound fieldRayleigh surfaces10Copyright Free Field TechnologiesReal ProblemExperimental Set up to be modeled:Anechoic Receiving Room Measurement ofIncident PowerMeasurement ofRadiated PowerReverberant Room withDiffuse Sound FieldSystem to be characterizedACTRAN Modeling Strategy (1)The Diffuse Sound Field (DSF) excitation available in ACTRAN can be used to simulated the incident sound field loading the systemThe reverberant room is not modeled. The DSF boundary condition is applied on the loaded surfaceThe incident power over the surface is automatically computedThe Rayleigh Surface component or the Infinite Fluid Component can be used to model the radiation in free fieldNo or limited modeling of the receiving roomThe power radiated by the system is automatically outputThe PLTViewer viewer has a TL operator to quickly plot the TL index from the PLT file computedACTRAN offers two different ways to model free field radiation of baffled structures :A combination of a Finite Fluidand an Infinite Fluid components The definition of aRayleigh Surface componentFinite Fluid DomainInterest of Rayleigh Surface:Reduction of the meshing effortReduced number of degrees of freedomDisadvantages of Rayleigh Surface :Limited to plane or nearly plane baffled structuresLimits of the ModelingThe acoustic field of a reverberant chamber is no longer diffuse under a cut-off frequency that depends on the room size and shapeComparison between test and simulation below the cut-off frequency should be done with careThe fixation of the system is ideal in the simulation while it may not be perfect in the realityThis may explain discrepancies between the test and simulation resultsContentAcoustic TransparencyModeling Acoustic Transparency with ACTRAN Diffuse sound fieldRayleigh surfacesThe set of a Diffuse Sound Field boundary condition is done in 2 stepsDefine the parameter of DSFSpecify the surface of application through an Incident Surface post-processing componentThe Diffuse Sound Field Boundary Condition(1)TypeInput Power Spectral Density (PSD)Properties of the reverberant roomNumber of samples simulatedThe Diffuse Sound Field Boundary ConditionDiffuse field :“Sound field in which the time average of the mean-square sound pressure is everywhere the same and the flow of acoustic energy in all directions is equally probable.”(INCE)Diffuse fields are produced experimentally by activating strong acoustic sources in a reverberant chamber, the multiple reflections along the boundary wallsleading to a “diffuse” field.Association of an Incident Surface to the DSF excitationAdd a new Incident Surface post-processing component Drag’nDrop the surface mesh of applicationDrag’nDrop the Incident Surface to the DSF excitationThe Diffuse Sound Field Boundary Condition(2)The Diffuse Sound Field –Element of Theory(1)The Diffuse Sound Field is considered as a weakly stationary random processThe DSF is characterized by the cross-correlation function betweeneach pair of loaded nodes The input of a Random excitation is given in term of Power Spectral ()rk r k f ⋅⋅=sin Density (PSD)(2)The strategy to compute the response of a system under a DSF is to: Perform a Cholesky decomposition of the DSF matrixCompute the response of the system to a large number of samplesCompute the average response to the samplesOutput PSD= Σ(Output sample)²It is advise to set at least 30 samplesThe PSD response is automatically computed when a PSD_FILENAME is provided(3)For further information about the Random excitations and their full theory, please refer to the VIBRO_RANDOM_Simulation.pdfpresentationContentAcoustic TransparencyModeling Acoustic Transparency with ACTRAN Diffuse sound fieldRayleigh surfacesRayleigh Surfaces DefinitionThe acoustic field related to a baffled plane (or nearly plane) structure can be modeled using the Rayleigh boundary integral representation :∫ρω=S n 2)y (dS )y ,x (G )y (u )x (p Rigid plane Rayleigh surface Field pointsField point can be defined to retrieve de pressure in the far field Rigid plane Vibrating plateThe Rayleigh Surface Component (2)Syntax in the ACTRAN input file: Definition in ACTRAN/VIBEGIN RAYLEIGH_SURFACE surface_idMATERIAL material_idnumber of faceList of facesEND RAYLEIGH_SURFACE surface_idDomainGoing FurtherThe concepts that have been presented are put in practice in the workshop Workshop_VIBRO_4_Windshield.pdf。

Actran 软件模块及功能简介

Actran 软件模块及功能简介
客户:
Daimler, BMW, VW, Delphi, Visteon, John Deere, Brothers, PSA...
风扇噪声
空调管道
与实验结果比较
11
Copyright Free Field Technologies
ACTRAN TM
唯一模拟航空发动机以及其他涡轮机械噪声的工具 特性:
声振耦合仿真工具(结构动力学求解器+声学求解器)
丰富的有限单元与材料库:
▪ 声学有限元与无限元 ▪ 梁单元、弹簧单元、刚体单元、壳单元与实体单元 ▪ 复合材料单元、薄壳单元,允许考虑预应力作用 (*) ▪ 多孔与多孔弹性单元(Biot、Lumped、Rigid、Delany-Bazley、Miki等五种多孔模型) ▪ Nastran to Actran转换器 ▪ 压电材料单元,支持换能器、声纳与噪声主动控制模拟 (*)
分插值方法…
典型应用
▪ 管道中声传播 ▪ 振动结构辐射噪声 ▪ 障碍物衍射
高性能求解器,并行技术
Exhaust MБайду номын сангаасffler
Diffraction w/ flow
Powertrain Radiation
9
Copyright Free Field Technologies
ACTRAN VibroAcoustics
FFT– ACTRAN
ACTRAN 13模块及功能介绍
张吉健 海基嘉盛科技有限公司
Copyright Free Field Technologies
Free Field Technologies
1998,由Dr. Jean-Pierre Coyette、Dr. Jean-Louis Migeot创立 1999-2001,雷诺, 标志, 菲亚特, 通用汽车, 空中客车, 壳牌石油, 德国Lloyd

ACTRAN航空噪声模拟案例_简介

ACTRAN航空噪声模拟案例_简介
ACTRAN for NASTRAN
ACTRAN DGM
ACTRAN Vibro-Acoustics
ACTRAN Aero-Acoustics
ACTRAN TM
ACTRAN Acoustics ACTRAN VI 6
Copyright Free Field Technologies
Some Aerospace Customers
服务: 培训, 技术交流, 工程咨询, 特别开发 科研:FFT参加众多科研项目,从风机噪声、机身壁板声学设计、环控系
统噪声、航空发动机噪声到高性能计算以及产品的声学设计等。
5
Copyright Free Field Technologies
The ACTRAN software suite
ACTRAN feature
支持详细e 玻璃棉
10
Copyright Free Field Technologies
ACTRAN典型应用2-环控系统声学设计
研究声波在环控系统管道内的传播 影响管道声学性能的多种因素
横截面形状 固定装置 管壁材料、厚度
FFT-海基盛元
ACTRAN在航空工业的应用
李奇 博士
Copyright Free Field Technologies
内容
飞机噪声源
ACTRAN 产品介绍
ACTRAN在航空工业的应用案例
2
Copyright Free Field Technologies
飞机主要的噪声源
机舱内噪声 客舱总体噪声水平
ACTRAN 产品介绍
ACTRAN在航空工业的应用案例
4
Copyright Free Field Technologies

VIBRO_2_MODAL_simulations-ACTRAN 模态频响分析理论

VIBRO_2_MODAL_simulations-ACTRAN 模态频响分析理论
• • Lower case op2, .bdf or .dat
Copyright Free Field Technologies
6
Fluid / Structure Coupling
When a cavity and a structure are involved, they can be coupled Cavity and structure meshes are always considered as incompatible The fluid/structure coupling is set through the COUPLING data block: STRUCTURE and CAVITY keyword must be present The surface over which the coupling occurs can be specified in two ways:
2
Copyright Free Field Technologies
Introduction
The modal frequency response is a computation procedure which is used to compute the response of a (acoustic or vibro-acoustic system) to a specific excitation using modal coordinates. This sequence performs a modal superposition at the specified frequencies . It requires a modal basis for the structure (in vacuo) and the cavity (rigid wall) to be available. The modal bases can be either computed with:

03-ACTRAN气动声学模块介绍

03-ACTRAN气动声学模块介绍
DFT qn (tn ) qn .w(tn )
其中w(t)是窗函数
25
Copyright Free Field Technologies
窗函数
原始信号q(t)
26
Copyright Free Field Technologies
窗函数
Actran中的窗函数
27
Copyright Free Field Technologies
CA 节点 (稀疏)‫‏‬
信息丢失
积分插值法:
CFD 节点 (致密)‫‏‬ 从CFD节点到CA网格的积分插值
CA 节点 (稀疏)‫‏‬
所有信息都被利用,避免信息丢失! ◄
24
Copyright Free Field Technologies
窗函数
频谱能量泄漏
执行DFT,需要截断有限信号片段考虑部分的信号
ACTRAN DGM
ACTRAN VibroAcoustics
ACTRAN AeroAcoustics
ACTRAN TM
ACTRAN Acoustics ACTRAN VI 4
Copyright Free Field Technologies
ACTRAN Aero-Acoustics
包含所有针对流致噪声仿真分 析的高级属性
限制
源项不够精确 数值成本不可忽略(大量涡模态=大量计算)◄
11
Copyright Free Field Technologies
简要回顾CFD技术
DNS:直接数值模拟
解决所有尺度 DNS是不实际的
LES: 大涡模拟 解决大尺度结构,包含大多数能量 建模小尺度对大尺度结构的影响

actran的仿真步骤

actran的仿真步骤

actran的仿真步骤Actran是一款广泛应用于声学仿真领域的软件工具。

它通过数值模拟和声学分析,可以帮助工程师和研究人员预测声学系统的性能和行为。

在本文中,我将详细介绍如何使用Actran进行仿真,从准备模型数据到设置模拟参数,再到分析结果。

第一步:模型准备在开始仿真之前,我们需要准备一个详细的模型。

这个模型可以是实际系统的CAD设计文件,也可以是从其他软件导出的几何模型。

Actran支持多种格式的几何文件,包括STL、IGES和STEP等。

一旦准备好几何模型,我们就可以进一步定义模型的材料属性和边界条件。

这些信息对于仿真结果的准确性和可靠性至关重要。

第二步:网格划分在模型准备阶段完成后,我们需要将模型划分为离散的网格。

这些网格将用于数值计算和仿真计算。

Actran提供了多种网格划分算法,例如,等间距网格、自适应网格和非结构网格。

选择合适的网格划分算法是保证仿真结果准确性的关键。

第三步:引入声源和接收器在完成网格划分之后,我们需要在模型中引入声源和接收器。

声源是产生声波的源头,可以是点源、线源或面源。

接收器则是用于测量声场的位置。

在Actran中,我们可以自定义声源和接收器的位置和属性,并且还可以定义多个声源和接收器,以模拟复杂的声学系统。

第四步:设置仿真参数在模型准备阶段完成后,我们需要设置仿真参数。

这些参数包括模拟的频率范围、时间范围、声场中的介质属性等。

通过调整这些参数,我们可以获得所需的模拟精度和计算效率。

此外,Actran还提供了多种高级参数设置,例如,声学辐射模式、声学材料的吸声特性等。

合理设置这些参数可以提高仿真结果的精度和可靠性。

第五步:运行仿真计算设置好仿真参数后,我们可以开始运行仿真计算了。

Actran使用声场分析方法和数值计算方法来求解声学方程。

它通过将声学系统划分为大量的小单元,然后在这些单元之间建立数学方程组,并使用迭代方法逐步求解这些方程组。

这样的迭代过程直到达到预设的收敛准则。

ACTRAN空调研讨会-ACTRAN振动声学模块

ACTRAN空调研讨会-ACTRAN振动声学模块

11
Copyright Free Field Technologies
ACTRAN支持的单元类型
如何模拟体?
6面体网格拓扑结构(8节点与20节点)
金字塔网格拓扑结构(5节点与13节点)
12
Copyright Free Field Technologies
ACTRAN支持的单元类型
单元类型表
ACTRAN Vibro-Acoustics
功能概览
单元类型
材料库
典型结构
激励&边界
问题类型
27
Copyright Free Field Technologies
激励与边界
点声源、平面波、线声源 点载荷、分布压力载荷 位移、振动速度、振动加速度 旋转自由度
28
Copyright Free Field Technologies
39
Copyright Free Field Technologies
ACTRAN 模拟方法
ACTRAN提供两种方法模拟结构隔声性能(无限大障板结构向 自由场辐射声波)
声学有限元与无限元 瑞利面
声学有限元
瑞利面
声学无限元
40
Copyright Free Field Technologies
1 TL1 10 Log 10 Log 20分贝 1 0.01 TL2 10 Log
37
1
1
2
1 10 Log 30分贝 0.001
Copyright Free Field Technologies
隔声性能测试方法
混响室与消声室并列或上下布置
两个混响室并列布置
38

LMS Virtual.Lab模块介绍

LMS Virtual.Lab模块介绍

产品名称: LMS b模块介绍产品简介LMS b Motion多体动力学LMS b Motion多体动力学能够让设计师和工程师真实地仿真整车设计中驾驶的平顺性及操纵的稳定性,新型挖掘机的运转,或者机械开关的可靠性等。

LMS b Motion多体动力学作为先进的MBS解决方案,结合了具有自动化程序的集成仿真环境和广泛的应用领域,包括动力总成动力学、悬架动力学、履带动力学等。

此外,仿真结果还可以用于后续的与耐久性或者噪声振动分析相关的研究,例如高精度求解器预测的覆盖整个频率范围的动态内部载荷。

•LMS b Standard Motion 标准动力学软件LMS b Standard Motion是一个对机械系统真实运动和载荷进行仿真的完整集成解决方案。

它能使工程师在进行昂贵的实物样机试验前快速地分析和优化机械设计的真实性能,并能保证机构具有预期功能。

LMS b Standard Motion使用户能够建立和模拟多刚体机械系统,改进它们的动力学性能,预测部件和系统的载荷,以便用于结构分析、振动噪声模拟、疲劳寿命预测和其它分析。

LMS b Standard Motion在实体建模、参数化、CAD几何体、柔性体特点、控制和液压功能、求解器性能、动画显示和后处理功能等方面提供了极具前沿的领先技术。

它独创地把所有需要的功能集成到一个用户界面友好的桌面环境,不需要其它求解器,并消除了费时的数据转换。

采用LMS b Standard Motion,用户可以利用一个基于CATIA V5的完全集成的CAD引擎,快速地创建和改进他们的机械系统的虚拟样机模型。

实体建模器可以得到一个完整的参数化模型。

机械单元包括弹簧、摩擦力、接触力和广泛的运动副和约束功能。

稳定和高性能的求解器对即使是最复杂的动力学问题都能保证精确和高效的处理。

数据结果中包括位移、速度、加速度和模型所有部件的相互作用力。

专门的动画显示和后处理特点可以帮助工程师轻松地识别并有效地解决某个工程问题的根本原因。

噪声分析软件Actran在列车声学设计中的应用_唐车

噪声分析软件Actran在列车声学设计中的应用_唐车
风扇噪声 空调管道 与实验结果比较
12
Copyright Hi-keyTechnologies
ACTRAN for NASTRAN
从白车身到添加内饰材料整车模型的声学仿真工具 应用于分阶段的研发进程 满足计算精确性要求的同时,极大地提高求解速度 与 Nastran 完全兼容,支持超单元应用 客户: Ford, Nissan, Rieter, ...
ACTRAN在列车声学设计中的应用
ACTRAN软件介绍 列车的噪声问题 ACTRAN在列车声学设计中的应用
15
Copyright Hi-keyTechnologies
列车噪声问题概述
轨道交通噪声对周围居民生产生活的影响,日趋严重。降低列车噪声已 成为当前交通运输工程中的紧迫任务之一。 列车运行噪声主要包括,轮轨噪声,机车动力装置噪声,列车振动噪声 ,等等。随着列车运行速度的不断提高,气动/湍流噪声成为新型高速 列车另一重要噪声源。 传统的列车发动机噪声A计权关系LA=30lgN+10lgP-31.4(dBA),对于新 型高速列车不再适用,其中N为发动机转速,P为发动机马力。
非定常流场分布
压力,速度,密度,等…
ACTRAN - iCFD
根据CFD计算结果通过Lighthill 或 Mohring 声类比提取湍流噪声源 通过傅里叶变换将时域结果变换 到频域
ACTRAN - VI
计算数据后处理,声场云图及频谱显示
ACTRAN - Aero-acoustics
传播iCFD计算出的流动声源 计算声场分布以及指定位置的声学 变量
气动噪声问题概述
原始结构几何模型与噪声问题描述 ACTRAN Aero-acoustics湍流噪声分析流程与原理 CFD非定常流动模拟 CFD网格划分与Fluent建模 CFD模拟结果 CAA湍流噪声分析 ACTRAN Aero-acoustics模型 CAA网格划分与ACTRAN建模 ACTRAN-iCFD提取噪声源(Lighthill/Mohring)和导入流场(Mohring) ACTRAN Aero-acoustics频域分析结果

ACTRAN在电声领域的应用

ACTRAN在电声领域的应用

案例5-耳机模型
ACTRAN可以模拟耳机结构与辐射声空间
粘-弹性单元定义振动膜 内外部近场声场采用有限元计算 远场声场采用无限元计算
采用1/2对称模型
节约CPU计算时间 激励对称+几何结构对称
几何结构
扬声器网格单元
30
Copyright Free Field Technologies
采用1/2对称模型
节约CPU计算时间 激励对称+几何结构对称
音响尺寸:高约40cm
几何结构 结构的网格 振动-声学网格
18
Copyright Free Field Technologies
案例1-低音扬声器计算结果
使用资源
在标准的Linux PC 机 上使用4GB 内存计算 了2 小时,计算频率最 高达到10kHz FRF 传递方程: 能量/激励
ACTRAN软件
专业的声学仿真工具( Actran/Acoustics ): 振动声学 (Actran/Vibro Acoustics, Actran for Nastran) 流动声学 (Actran/Aero Acoustics , Actran/TM, Actran/DGM,) 前后处理器 (Actran/VI)
剖面图 + 等值线图
多个云图+ 变形图
16
Copyright Free Field Technologies
案例1:低音扬声器
Copyright Free Field Technologies
案例1-低音扬声器模型
关键要素
扬声器采用粘-弹性壳单元 内外部近场声场采用有限元计算、远场声场采用无限元计算 粘热效应的计算采用有限元

ACTRAN产品手册

ACTRAN产品手册
限元法的四倍。
非均质流动对声传播的影响
飞机空调系统及机身气动噪声模拟
空调系统的噪声是客舱噪声的主要来源之一,这既包含空调系统的关键 部件如风机、压缩机的气动噪声,也包含离乘客最近的空气分配系统噪声, ACTRAN Aero-Acoustics可以根据CFD计算的结果获取近体噪声源,得到空调系 统的近场和远场噪声。
与其它CAE工具的耦合与集成
ACTRAN基于一个众所周知、经过充分验证 的数值技术——有限元,与其它有限元程序保持了 内在的一致性。因而容易与其它主要的CAE工具集 成和耦合。
ACTRAN具有与NASTRAN、ABAQUS、 ANSYS等有限元程序的接口,可以导入这些程序 的振动激励和模态模型。ACTRAN可以直接导入 NASTRAN的分析模型,识别材料、单元、载荷与 边界条件。
西南办事处
地址:成都市人民南路4段27号商鼎国际大厦2-1-1909室 电话:028 - 85293811 传真:028 - 85293811 邮编:610041
Http: // Http: //www.ef E-mail: info@
对于机身的气动噪声,例如增升装置、起落架等,ACTRAN同样可以精确模拟。
航天设备声疲劳分析,获得在扩散声场 作用下的应力分布
声致振动和声疲劳分析
声致振动是指航天发射过程所产生的巨大噪声引起仪器舱内的仪器振动, 进而降低仪器的精度,甚至使其失效;声疲劳指噪声所引起的交变载荷将引起 蒙皮等薄板件的疲劳破坏。ACTRAN既可以模拟声环境,同时可以模拟结构所 承受的声载荷以及结构声疲劳现象。
风噪声模拟
ACTRAN Aero-Acoustics能够精确地模拟汽车 的风噪声。汽车噪声是风噪、轮胎噪声、发动机 噪声相互作用的结果,ACTRAN允许在一个统一 的模型里综合考虑振动和气动噪声,使这一问题 迎刃而解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vibro-Acoustic SimulationsACTRAN Training – VIBROCopyright Free Field TechnologiesIntroductionPre-requisites - before going through this presentation, the reader should have read and understood the following presentations:1_BASICS_General_Program_Organization.pdf; Workshop_BASICS_0_Edit_an_ACTRAN_input_file.pdf.These slides present the basics materials, components and boundary conditions involved in a structural simulation in physical coordinates.2Copyright Free Field TechnologiesContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and MaterialThe discrete Component and MaterialThe Boundary ConditionsMeshing Criteria3Copyright Free Field TechnologiesStructural MaterialsThe solid materials are used for describing both viscous and non viscous solids with and without different structural properties along the different axisThree different types solid materials are available:Isotropic solid material Transverse isotropic solid material Orthotropic materialComposite materials can also be defined to model the different layers of a solid material using a homogenization option – See dedicated presentation4Copyright Free Field TechnologiesThe Isotropic Solid Material (1)Isotropic materials are materials whose mechanical properties are uniform along all directionsThe properties that define an Isotropic solid material can be given using 2 set of parameters:Young modulus (E) Poisson ratio (ν) Solid density or First (λ) Lamé’s coefficient and Second (µ or G, the shear modulus) Lamé’s coefficient Solid densityAll parameters are mandatory5Copyright Free Field TechnologiesThe Isotropic Solid Material (2)Syntax in the ACTRAN input file:BEGIN MATERIAL Id ISOTROPIC_SOLID YOUNG_MODULUS value POISSON_RATIO value SOLID_DENSITY value END MATERIAL IdOrDefinition in ACTRAN/VIBEGIN MATERIAL Id ISOTROPIC_SOLID LAME1 value LAME2 value SOLID_DENSITY value END MATERIAL Id6Copyright Free Field TechnologiesThe Transverse Isotropic Solid Material (1)Transverse isotropic materials are materials whose mechanical properties are symmetric about an axis that is normal to a plane of isotropy.Unidirectional fiber composite lamina; Honeycomb components, …The properties that define a transverse isotropic solid material are:5 mechanical properties En, νn, Et, νt and G; Solid density Axis of isotropy, oriented along the fibers3 2 1 7Copyright Free Field TechnologiesThe Transverse Isotropic Solid Material (2)Their mechanical properties can be divided in different parts:Young modulus (En) and Poisson ratio (νn) when sujected to normal (along the isotropy axis) load (also named normal_E and normal_ν) Young modulus (Et) and Poisson ratio (νt) when sujected to transverse (along the isotropy plane) load (also named inplane_E and inplane_ν) Shear modulus (G) characterizing inplane shear deformations due to shear loads The isotropy axis defining the direction of the fiber in the local coordinate system8Copyright Free Field TechnologiesThe Transverse Isotropic Solid Material (3)Syntax in the ACTRAN input file: Definition in ACTRAN/VIBEGIN MATERIAL Id TRANSVERSE_ISOTROPIC_SOLID NORMAL_E_MODULUS value INPLANE_E_MODULUS value NORMAL_POISSON_RATIO value INPLANE_POISSON_RATIO value NORMAL_S_MODULUS value ISOTROPIC_AXIS value SOLID_DENSITY value END MATERIAL Id9Copyright Free Field TechnologiesThe Orthotropic Solid Material (1)Orthotropic materials are materials whose mechanical properties are different in all directions:Honeycomb components; Wood,…The properties that define an orthotropic solid material are:9 Mechanical properties E1, E2, E3, ν12, ν13, ν23, G12, G13, G23; Solid density10Copyright Free Field TechnologiesE i corresponds to the Young modulus inthe direction i expressed in the local coordinate systemG ij corresponds to the shear modulus indirection i for which the shear load relies on the plane whose normal is in direction x 2x 3x 1x 2x 3SNN/E 1-ν12 N/E 1-ν12 N/E 1j in the local coordinate system (G ij =G ji ) νij is the Poisson ratio that corresponds toa contraction in direction j when an extension is applied in direction IThe local coordinate system is defined bythe element and the component that refers to an orthotropic materialx 1S/G 13S/G 13SS/G 23S/G 23x 1x 2x 3Syntax in the ACTRAN input file: Definition in ACTRAN/VI BEGIN MATERIAL IdORTHOTROPIC_SOLIDYOUNG_1 valueYOUNG_2 valueYOUNG_3 valuePOISSON_12 valuePOISSON_13 valuePOISSON_23 valueSHEAR_12 valueSHEAR_13 valueSHEAR_23 valueSOLID_DENSITY valueEND MATERIAL IdDamping ModelAll properties in ACTRAN are defined using complex numbersDamping can be introduced using a complex Young modulus:withE’ the Young modulus, image of the stiffness"'jE E E +=E” the Loss modulus, representing internal lossesThe loss modulus is linked to the internal loss factor η(also called tg(δ)) by:()ηj E jE E E +⋅=+=1'"'ContentThe structural MaterialsThe visco-elastic and shell ComponentsThe equivalent beam Component and Material The discrete Component and MaterialThe Boundary ConditionsMeshing CriteriaThe Solid component is the standardSupported topologies component for modeling visco-elastic solid parts.Points to a valid Isotropic solid materialUnknowns: solid displacement in each direction –3 dofs per node (no rotation)Syntax in the ACTRAN input file:Definition in ACTRAN/VIBEGIN COMPONENT IdSOLIDMATERIAL material_id [POWER_EVALUATION 1][INCOMPRESSIBLE 1]END COMPONENT IdPOWER_EVALUATION 1 activatesthe computation of the dissipated power in the component (optional) INCOMPRESSIBLE 1 allows to modelvisco-elastic parts with a Poisson ratio close to 0.5 (optional -check the ACTRAN Users’ Manual for more information)Choose “Solid” as typeDomainThe solid shell component is used to modelSupported topologies transverse solid element, with a thicknessdirectionOne dimension of the structure should be smallcompared to the 2 others (roughly 1/15)Thickness (and thus compression effects) areaccounted for using solid shellsIts formulation converges faster for thin structuresthan a solid componentCan point to all solid materials (isotropic,transverse isotropic, orthotropic, composite)Unknowns: solid displacement in each direction –3 dofs per node (no rotation)Syntax in the ACTRAN input file:POWER_EVALUATION 1 activates theDefinition in ACTRAN/VIBEGIN COMPONENT IdSHELL [AUTO_ORIENT]MATERIAL material_id [POWER_EVALUATION 1][REFERENCE_DIRECTION 1 0 0]END COMPONENT Idcomputation of the dissipated power in the component (optional) REFERENCE_DIRECTION allows toorient the local material coordinate system for non isotropic solid materials (default 1,0,0) AUTO_ORIENT keyword allows toautomatically reorient the transverse direction of the elementsChoose “Solid Shell” as typeDomainShell elements’ orientation is an important parameter (transverse direction)The transverse direction is dependent of the order of the nodes in the element description (input file, MESH > ELEMENT) :BEGIN ELEMENT ...212 12 112 13 14 15 27 28 29 30...END ELEMENTLower nodes Upper Nodes1213141527282930Meshes obtained by normal extrusion or normal sweeping lead to a correct numbering (lower nodes then upper nodes)Automatic detection is possible using the keyword AUTO_ORIENT .This remark is valid for all transverse elements: Solid Shell, ViscothermalAUTO_ORIENT should automatically detect the transverse direction of theshell elementDimensions close to be the same…hazardous AUTO_ORIENTThe Thin Shell Component (1)The thin shell component is used to model transverse thin elementOne dimension of the structure should be small compared to the 2 others (roughly 1/15) Thickness specification is mandatory Formulation is similar to the NASTRAN CQUADR and TRIAR Supported topologies31 243Can point to all solid materials (isotropic, transverse isotropic, orthotropic, composite)1 2Unknowns: solid displacement and rotation in each direction – 6dofs per nodeRemark: only linear elements are supported21Copyright Free Field TechnologiesThe Thin Shell Component (2)Syntax in the ACTRAN input file:BEGIN COMPONENT Id DSHELL MATERIAL material_id THICKNESS thickness [OFFSET offset] [POWER_EVALUATION 1] [LUMPED_MASS 0,1,2] [REFERENCE_DIRECTION 1 0 0] END COMPONENT IdDefinition in ACTRAN/VITHICKNESS value is mandatory, while the OFFSET can be optional POWER_EVALUATION 1 activates the computation of the dissipated power in the component (optional) REFERENCE_DIRECTION allows orienting the local material coordinate system for non isotropic solid materials (default 1,0,0)22Copyright Free Field TechnologiesDomainChoose “Thin Shell” as typeLumped Mass FormulationThe lumped mass formulation is a simplified formulation:Mass matrix only contains diagonal translational components (no rotational components) This formulation should decrease the computation time, but should converge slower than the standard formulation (this is not always true)The Lumped Mass formulation is NOT selected by default (different from NASTRAN)23Copyright Free Field TechnologiesSolid Shell Elements: Application(Glaverbel/Splintex)Glass layersPVB layer PVB24Copyright Free Field TechnologiesContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and MaterialThe discrete Component and MaterialThe Boundary ConditionsMeshing Criteria25Copyright Free Field TechnologiesThe Beam Material (1)Beam_inertia materials are used to define equivalent stiffeners mechanical properties using inertia indicators Inertia indicators can usually be retrieved in external tools or from analytical solutionsThe following properties are needed:The solid density and area of the beam cross-section The elongation modulus represent the stiffness in the z’-axis The inertia XX corresponds to the inertia with respect to the rotation around the y’ axis (=I1 in Nastran) The inertia YY corresponds to the inertia with respect to the rotation around the x’ axis (=I2 in Nastran) The inertia XY corresponds to the product inertia The inertia Z corresponds to the torsionnal inertia The cg offset values represent the position of the center of gravity (neutral axis) within the local coordinate system (default = 0) The shear offset values represent the position of the shear center within the local coordinate system (default = 0) The shear factor values represent shear stiffness factors K in K*A*G. They adjust in this way the effective transverse shear cross-section area (default = 1)Offsets and inertia are oriented within the local coordinate system of the beam element26Copyright Free Field TechnologiesThe Beam Material (2)Syntax in the ACTRAN input file:BEGIN MATERIAL material_id BEAM_INERTIA ELONGATION_MODULUS value SHEAR_MODULUS value SOLID_DENSITY value AREA value INERTIA_XX value INERTIA_XY value INERTIA_YY value CG_OFFSET_X value CG_OFFSET_Y value SHEAR_FACTOR_X value SHEAR_FACTOR_Y value SHEAR_OFFSET_X value SHEAR_OFFSET_Y value INERTIA_Z value END MATERIAL material_idDefinition in ACTRAN/VI27Copyright Free Field TechnologiesThe Beam Component (1)The Beam component is used to model equivalent stiffeners on thin elementsFormulation is similar to the NASTRAN CBEAM The component allows orienting spatially a specific beam type Supported topologiesVrefCan only point to a beam_inertia materialX’Z’Unknowns: solid displacement and rotation in each direction – 6dofs per nodeRemark: only linear elements are supportedY’28Copyright Free Field TechnologiesThe Beam Component (2)Syntax in the ACTRAN input file:BEGIN COMPONENT Id BEAM MATERIAL id [REFERENCE_DIRECTION cx cy cz] [POINT_REF 1] [POWER_EVALUATION 1] END COMPONENT IdDefinition in ACTRAN/VIcx, cy and cz are defining a reference vector which defines the local x axis Point ref to one allows to define the local system by specifying the coordinates of a point (in vref) The local element coordinate system (x’,y’,z’) is defined as follows:axis z’ is defined by the two nodes on which the beam is constructed; axes x’ and y’ are defining a plane normal to axis z’ axes x’ is defined by the projection of the reference vector on this plane; axis y’ is computed in such a way that (x’,y’,z’) form a direct orthonormal system By default, without definition of vref, the normal to the shell element is taken as the x’ axisDomain29Copyright Free Field TechnologiesContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and MaterialThe discrete Component and MaterialThe Boundary ConditionsMeshing Criteria30Copyright Free Field TechnologiesSpring material is the standard material for specifying stiffnesses and masses associated to node-to-ground springs, node-to-node springs or lumped masses (described by a discrete component)A free combination of stiffnesses and masses can be specified:Either in absolute coordinates (along X, Y and Z);Or in local coordinates (transverse and normal directionSyntax in the ACTRAN input file: Definition in ACTRAN/VI BEGIN MATERIAL material_idSPRINGeither[NORMAL_STIFFNESS stiff_n][TRANSVERSE_STIFFNESS stiff_t]or[X_STIFFNESS stiff_x][Y_STIFFNESS stiff_y][Z_STIFFNESS stiff_z]end eithereither[NORMAL_MASS mass_n][TRANSVERSE_MASS mass_t]or[X_MASS mass_x][Y_MASS mass_y][Z_MASS mass_z]end eitherEND MATERIAL material_idThe Discrete component is used to model node-to-ground or node-to-node springs. Additionally,they may also be used to model lumped massesThe behavior depend on the element type (1D or 0D) and the material properties Supported topologies **ttNode-to-ground (point)Syntax in the ACTRAN input file:cx , cy and cz are defining theDefinition in ACTRAN/VIBEGIN COMPONENT IdDISCRETEREFERENCE_DIRECTION cx cy cz [POWER_EVALUATION 1]END COMPONENT Idnormal direction if not straightforward (on an edge) POWER_EVALUATION 1activatesthe computation of the dissipated power in the component (optional)DomainContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and Material The discrete Component and MaterialThe Boundary ConditionsMeshing CriteriaBoundary ConditionsDeterministic boundary conditions :Displacement based boundary-conditionsRotational based boundary conditionsPoint, distributed and mechanical pressure loadStochastic boundary conditions (see dedicated presentation): Diffuse sound fieldTurbulent boundary layerDelta correlated (Rain on the roof)Deterministic Boundary ConditionsDisplacement :BEGIN DISPLACEMENTNumber of fixed nodesNode number, displacement component values or FREE END DISPLACEMENTRotation :BEGIN ROTATIONNumber of fixed nodesNode number, rotation component values or FREEEND ROTATION Point load :BEGIN POINT_LOADNumber of loaded nodesNode number, load component valuesEND POINT_LOADPoint moment :BEGIN POINT_MOMENTNumber of loaded nodesNode number, load component valuesEND POINT_MOMENTDistributed load :BEGIN DISTRIBUTED_LOADNumber of loaded facesFace definition, distributed load component valuesEND DISTRIBUTED_LOADPressure load :BEGIN DISTRIBUTED_PRESSURENumber of loaded facesFace definition, distributed pressure valuesEND DISTRIBUTED_PRESSUREStructural Boundary ConditionsSolid elements:Degrees of freedom ACTRAN = displacement in 3 directions (3 dofs/node) Default: free displacementThin elements:Additionally 3 rotational dofs (Default: free rotation)Ideal cases:clampedsimply supportedSolid shellThin shellConstrained displacement Constrained rotationContentThe structural MaterialsThe visco-elastic and shell ComponentThe equivalent beam Component and Material The discrete Component and MaterialThe Boundary ConditionsMeshing CriteriaFluid / Structure CouplingThe structural and acoustic components can be coupled to perform vibro-acoustic simulations. Three configurations are possible.Weak coupling where no retro-action of the fluid on the structure is taken into account Acoustic and structures model are 2 decoupled problems. Theacoustic model is excited from the structural results. The BC_MESH feature is used (see dedicated presentation).Strong coupling. The retro-action of the fluid is taken into account and the acoustic and structure components are in the same model. The acoustic and structure components can have compatible or incompatible meshes.In case of compatible meshes (the nodes at the interface are shared) the coupling is automatically detected by ACTRAN and taken into accountIn case of incompatible meshes the coupling must be specified by the user through an INTERFACE data block (see dedicated presentation).Output QuantitiesThe main quantities that can be output on structural components are: Local quantities (at field points or storage node)•The solid rotation (vector) codes srx,sry,srz•The solid displacement (vector) codes sux,suy,suzGlobal quantities (on domains) :•Length (scalar) code lgt•Mean Square Solid Velocity (scalar) code mv•Mean Square Solid Normal Velocity (scalar) code mnv•Mass (scalar) code mass•Squared Solid Normal Velocity (scalar) code snv•Squared Solid Velocity (scalar) code sv•Volume (scalar) code vol•Surface (scalar) code srfMeshing CriteriaAcoustic: Determine the acoustic wavelength as the ratio of the sound speed by the frequency Apply the following rule: use a minimum of • 6 linear elements per wavelength • 4 quadratic elements per wavelength The higher the frequency, the smaller the wavelength, the smaller the max min 44f c h ==λGoing FurtherThe concepts that have been presented are put in practice in the workshop Workshop_VIBRO_1a_Direct_Freq_Res.pdfThe different vibro-acoustic couplings methods are introduced in VIBRO_2_Fluid_Structure_Coupling.pdf。

相关文档
最新文档