高一数学平面向量练习题
2023-2024学年高一下数学《平面向量及立体几何初步》测试卷及答案解析
2023-2024学年高一数学《平面向量及立体几何初步》一.选择题(共12小题)
1.(2022春•鼓楼区校级期中)已知向量,,若∥,则实数m =()
A.1B.﹣1C .D
.﹣
2.(2022春•鼓楼区校级期中)已知向量,是单位向量,若|2﹣|=,
则
与的夹角为()
A .
B .
C .
D .
3.(2022春•鼓楼区校级期中)P是△ABC
所在平面内一点,若,则S△ABP:S
△ABC
=()
A.1:4B.1:3C.2:3D.2:1 4.(2022•福州模拟)已知向量,为单位向量,且⊥,则•(4﹣3)=()A.﹣3B.3C.﹣5D.5 5.(2022春•马尾区校级月考)已知△ABC的内角A,B,C对边分别为a,b,c,若2c sin C =(a+b)(sin B﹣sin A),则当角C取得最大值时,B=()
A .
B .
C .
D .
6.(2022春•福州期中)在四边形ABCD
中,若=,且|﹣|=|
+|,则该四边
形一定是()
A.正方形B.菱形C.矩形D.等腰梯形7.(2022•鼓楼区校级三模)已知AB,CD分别是圆柱上、下底面圆的直径,且AB⊥CD.O1,O分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A﹣BCD的体积为18,则该圆柱的侧面积为()
A.9πB.12πC.16πD.18π8.(2022•福州模拟)在底面半径为1的圆柱OO1中,过旋转轴OO1作圆柱的轴截面ABCD,其中母线AB=2,E是BC的中点,F是AB的中点,则()
A.AE=CF,AC与EF是共面直线
第1页(共25页)。
(word完整版)高一数学数学必修4平面向量复习题
1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为(D )2A.1B.2C. 2A. 2B. 2 2C. 1D.12r r rr r r r r r uu r r r 2解析Q a,b,c 是单位向量a c ?bc ago (a b)gs crr r _ r r r1 |ab|gc| 1 <2cos ab,c 1.2.2.已知向量a 2,1 ,ab 10,|ab| 5J2,则 |b|(C )A. .5B. .10C.5D. 25r r 宀 r 宀 r r r 宀“ r2 2 2 2解析 Q50 |a b| |a | 2a gD |b| 5 20 | b ||b| 5 故选 C.3.平面向量a 与b 的夹角为600, a (2,0) , b 1则a 2b ( B )A.、3B. 2 3C. 4D.2解析 由已知 |a|= 2,|a + 2b|2= a 2 + 4a b + 4b 2= 4+ 4X2X1 Xcos60° + 4= 12A a 2b2^3LUIUuiuuuu uiPC) = 2AP PM=2 AP PM cosO 2 -5.已知a 3,2 , b1,0,向量a b 与a2b 垂直,则实数的值为()1 A.—1 B.-1 C.—D.17766uuruur uuu UUJ uujruuu6.设 D 、E 、 F 分别是△ ABC 的三边 BC 、CA 、AB 上的点,且DC2BD,CE2EA, AF 2FB,UJLT 则ADUUU uuu uuu BE CF 与 BC(A)A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A )4444A.B.c.D.9339uu 由APUuu UJ uuuu 解析 2PM 知,p 为 ABC 的重心,根据向量的加法 ,PB P C2PM则 uur 4.在 ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足学PALunn uur uuu uuu2PM ,则 PA (PB PC)等于uuruuu uiuuu uuu AP (PB1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为( D )27.已知a , b 是平面内两个互相垂直的单位向量,右向量 c 满足(ac) (b c)0,则 c 的最大值是(C )3 4uuu uuu uuur8.已知O 是厶ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC 0,那么( A )则—的取值范围是mA .、3B . 2.3C .6 D . 2、616.在平行四边形 ABCD 中, uuu AE 1 uuu unr-AB, AF1 UULT一AD , CE 与BF 相交于G 点.的最小值为(B ) A. uuir unr AO ODunr uuir B. AO 2ODuuir uuirC. AO 3ODuur unr D. 2AO OD 9•设a5 ^2(4,3) , a 在b 上的投影为 ,b 在x 轴上的投影为2,且 | b |< 14,则 b 为(B ) (2,4)2,C .D . (2,) 10.设a, b 是非零向量,若函数f(x)(xa b) (a xb )的图象是一条直线, 则必有( A )11.设两个向量a ( 2,a//2cos C . |a|)和b|b|D . |a| |b|mm,—2 sin ,其中,m, 为实数.若a 2b ,A . [-6, 1]B. [4,]C. (-6, 1] D . [-1 , 6]12.已知向量a(1, n),(1, n ),若2a b 与b 垂直,则|a(C13•如图,已知正六边形 RP 2P 3P 4P 5P 6 ,F 列向量的数量积中最大的是(A. RP2 ,R F 3B. P 1P 2, P 1P4C. P 1P 2 , P 1 P 5D.P 1P 2 ,P 1P614.已知向量a 尢,|e |= 1,对任意t € R , 恒有|a - t e | 冷一e |,贝y ( B )A. a 丄 eB. e 丄(a - e )C.a 丄(a - e )D.(a + e )丄(a - e )15.已知向量 unr unr n uurOA , OB 的夹角为一,|OA| 4 ,3luu r|OB| 1,若点 M 在直线 OB 上,贝U |&A OM |uuu r uur r uuur AB a, AD b,则AG342 r 1 r 2 rA. a bB. a7 7 7 17.设向量a与b的夹角为A」10 B. 3b 73.10 10C.(2,1),C.1 r r 4 rb D. a7 72b (4,5),则cosD.18.已知向量a , b的夹角为3,且|a||b| 1 ,19.20.21.22.23.24.中,25.7等于D 则向量a与向量a 2b的夹角等于(5A .6已知向量A. [0, .2]已知单位向量A . 2.3在厶ABC 已知向量已知向量中,arOib-r-|b|其中b均为非零向量, 则| p |的取值范围是(B )B.[0,1]C.(0,2]D.[0,2]a,b的夹角为一,那么a2bAR 2RB,CP 2PR,若AP mAB nAC,贝U mC.a和b的夹角为120 ,B. 7|a| 2,且(2aOAA. [0,4]b) a,则|b |(0,2),OB (2,0),BCB .[冷C 2 cos ,2 sinC. [4,3T]),贝UOA与OC夹角的取值范围是(上海)直角坐标系xOy中,i, j分别是与x, y轴正方向同向的单位向量. 在直角三角形ABC若AB 2i A. 1 j, AC 3i k j,则k的可能值个数是(B. 2若四边形ABCD满足AB CDc.「uuu0 , (AB3uiur uuirAD) ACD. 4则该四边形一定是BA.直角梯形B.菱形C.矩形D.正方形ir r ir 26.已知向量m,n的夹角为一,且|m |6uuir D为BC边的中点,贝U | AD |(乜,订| 2 ,在△ABC中,uuuABir r uuur ir r2m 2n,AC 2m 6n,112427. A . 2 uuu|OA|已知A.3 B . uuu,|OB| .3 ,OA?O B =0 , AOCD . 8uuur 30o ,设OC uuu uuu mOA nOB (m, nR),则D. 28.如图, 其中45°直角三角板的斜边与 所对的直角边重合.若 x , y 等于B x 3, y 1B. 345°直角三角板和 30°直角三角板拼在一起, 直角三角板的 30°角 uuur y DA , uu u DB 30° uuu r DC 则A. C. x 2, y . 3 二、填空题 1. 若向量 a , b 满足 2. 3. 4. 5. 6. 7.8. 答案 .7 设向量 答案 1 3,y 3 3,y 1 3 1,b 2且a 与b 的夹角为—, 3 a (1,2), (2,3),若向量 a b 与向量c (4, 7)共线,则已知向量a 与b 的夹角为120°,且a b 4,那么 b (2a b)的值为答案 0 已知平面向量a (2,4) , b ( 1,2).答案 8,2b 的夹角为120 ,答案设向量 答案若向量 答案若向量 答案uuuAB60若 c a (a 则5a bb)b , 则|C|uu ur 2, ACuuu uur3, AB AC | J 19,则r r aba 与b 的夹角为60 , 1,则 a? a bCABa,b 满足2,(a b) a ,则向量a 与b 的夹角等于uuu UULT LUU LUT UJU9. O 为平面上定点,A, B, C 是平面上不共线的三若 (OB OC ) •OB OC 2OA)=0,贝U ABC 的形状是 __________________________ .等腰三角形答案 -2510.不共线的向量m^ , m 2的模都为2,若a3m i2m 2 , b 2mi 3m 2 ,则两向量a b 与a b 的夹角为 _________________ 90 ° 11 •定义一种运算 S a b ,在框图所表达的算法中揭示了这种运算“”的含义•那么,按照运算 “”的含义,计算 tan 15o tan300 tan300 tan 15o _________ 1 ___r r12、 已知向量 a (cos15o ,sin150), b ( sin 150, cos1S),贝y a b 的值为 ________ . 答案113、 已知 Rt △ ABC 的斜边BC=5 ,则 AB BC BC CA CA AB 的值等于y 轴平行的单位向量,若直角三角形ABC 中,uur r AB ir uuur r rj , AC 2i mj ,则实数 m=答案 —2或0三、解答题rr r r r r1、已知ia 4,|b| 3,(2a — 3b) (2a b) 61 ,r rr r(1 )求 a b 的值;求a 与b 的夹(3)求b 的值;r r r r 心解:(1)由(2a —3b) (2a b) 61 得4a r r 「2「2又由 k 4,|b| 3得 a 16, 9代入上式得64 4a b 2761 a br rr3b14.在直角坐标系xOy 中,i[j 分别是与x 轴,艸(13|fr!=4・得卜2・{妨=』_虛讪一&r5 52’uuuruur uur(2, 4),在向量OC 上是否存在点P ,使得PA PB ,若存在,求出点P 的坐标,若不存在,请说明理由。
高一数学平面向量专项练习题
高一数学平面向量专项练习题1.已知平面向量a ,b 的夹角为23π,2a =,1b =,则a b ⋅=( )A .1B .1-CD .2.在Rt △ABC 中,∠C =90°,AC =4,则AB AC ⋅uu u r uu u r等于( )A .-16B .-8C .8D .16 3.已知,a b 是不共线的向量,且5,28,3()AB a b BC a b CD a b =+=-+=-,则( ). A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线 D .A ,C ,D 三点共线4.已知圆心为O ,半径为1的圆上有不同的三个点,,A B C ,其中0OA OB ⋅=,存在实数,λμ满足0OC OA uOB λ++=,则实数,λμ的关系为A .221λμ+=B .111λμ+= C .1λμ= D .1λμ+=5.已知向量(1,2),(1,3)a b =-=,则||a b -=( )A B .2 C D 6.若1a b ==r r ,(2)a b a +⊥,则向量a 与b 的夹角为( )A .30B .60C .120D .1507.在△ABC 中,若AB 2BC -2=AB AC ⋅,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形8.在ABC ∆中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM AB AC λμ=+,则λμ+等于( )A .12B .23C .16D .139.若()2,4,a b a b a ==+⊥,则a 与b 的夹角为( )A .23πB .3πC .43πD .π10.已知非零向量a ,b 的夹角是60°,a b =,a ⊥(λa -b ),则λ=A .12B .1C .32D .211.如图,在ABC 中,AD AB ⊥,3BC BD =,||1AD =,则AC AD ⋅=( )A .B .2C .3D 12.已知12,e e 是两个单位向量,且夹角为3π,则12e te +与12te e +数量积的最小值为( )A .32-B .6-C .12D .313.已知向量a,b r r 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .014.在ABC 中,点D 是线段BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+uuu r uu u r uuu r ,则λμ+=A .2B .2-C .12D .12- 15.在边长为2的正ABC ∆中,设2BC BD =,3CA CE =,则AD BE ⋅=( ) A .-2 B .-1 C .23- D .83- 16.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( )A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦17.两个非零向量,a b 满足||||2||a b a b a +=-=,则向量b 与a b -夹角为( ) A .56π B .6π C .23π D .3π 18.AB 是半径为1的圆O 的直径,P 是圆O 上一点,Q 为平面内一点,且1233BQ BP AB =-,1AQ AB ⋅=,则BQ BP ⋅的值为( ) A .12 B .1 CD .5219.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心)A .重心外心垂心B .重心外心内心C .外心重心垂心D .外心重心内心20.已知1e ,2e 是不平行的向量,设12a e ke =+,12b ke e =+,则a 与b 共线的充要条件是实数k 等于________.21.已知平面向量a ,b 的夹角为3π,且1a =,12b ⎛= ⎝⎭r ,则(2)a b b +⋅=________. 22.已知正方形ABCD 的边长为4,2AE AB =,则AC DE ⋅=__________. 23.已知平面向量,a b 满足3a =,2b =,3a b ⋅=-,则2a b += . 24.已知||1a =,()a b a +⊥,则⋅=a b _________.25.在等腰梯形ABCD 中,2DC AB =,E 为BC 的中点,F 为DE 的中点,记DA a =,DC b =,若用,a b 表示DF ,则DF =________.26.在ABC ∆中,4AC =,3BC =,30ACB ∠=︒,点E 为边AC 的中点,2133AD AB AC =+u u u r u u u r u u u r ,则CA CB ⋅=______;CD BE ⋅=______.27.在ABC ∆中,D 为AB 的中点,点O 满足2CO OD =,OA OB ⊥,若10AB =,则AC BC ⋅=___________。
高一数学平面向量的概念试题答案及解析
高一数学平面向量的概念试题答案及解析1.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()A.向东南航行km B.向东南航行2kmC.向东北航行km D.向东北航行2km【答案】A【解析】根据题意由于向量表示“向东航行1km”,向量表示“向南航行1km”,那么可知向量表示向东南航行km ,故选A.【考点】向量的物理意义点评:主要是考查了向量的物理意义的运用,属于基础题。
2.在平行四边形ABCD中, + +等于()A.B.C.D.【答案】A【解析】结合图形,+ += + += ,故选A。
【考点】本题主要考查平面向量的线性运算。
点评:简单题,在平行四边形中,由平行四边形法则。
注意相等向量及相反向量。
3.已知点,向量,且,则点的坐标为。
【答案】【解析】设点的坐标为(x,y),则由得,(x-2,y-4)=2(3,4),所以x-2=6,y-4=8,所以x=8,y=12,即点的坐标为。
【考点】本题主要考查平面向量的概念及其坐标运算。
点评:简单题,注意若A(a,b),B(c,d),则。
4.作用于原点的两个力F1 ="(1,1)" ,F2 ="(2,3)" ,为使得它们平衡,需加力F3=【答案】(-3,-4)【解析】F3=-(F1+F2)=-(3,4)=(-3,-4).5.下列判断正确的是 ( )A.若向量与是共线向量,则A,B,C,D四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。
【答案】D【解析】解:因为A.若向量与是共线向量,则A,B,C,D四点共线;可能构成四边形。
B.单位向量都相等;方向不一样。
C.共线的向量,若起点不同,则终点一定不同;不一定。
D.模为0的向量的方向是不确定的,成立6.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若和都是单位向量,则.D.两个相等向量的模相等.【答案】D【解析】根据向量相等的定义易知两个相等向量的模相等,故选D相等向量只需要模相同,方向相同,所以(1)错;模相等的平行向量有可能方向相反,所以(2)错;都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;相等向量是模相同,方向相同的向量,所以(4)对.解:对于(1),相等向量只需要模相同,方向相同,所以(1)错;对于(2)模相等的平行向量有可能方向相反,所以(2)错;对于(3),都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;对于(4),相等向量是模相同,方向相同的向量,所以(4)对.故选C7.给出下列命题:①向量与是共线向量,则A、B、C、D四点必在一直线上;②两个单位向量是相等向量;③若, ,则;④若一个向量的模为0,则该向量的方向不确定;⑤若,则。
高一数学《平面向量》期末练习题有答案
高一数学《平面向量》期末练习题有答案 - 副本平面向量一、选择题:本大题共10小题,每小题5分,共50分。
1、下列向量组中能作为表示它们所在平面内所有向量的基底的是()....2、若ABCD是正方形,E是CD的中点,且,,则BE= ( )A.2a B.2a C.2b D.2b、若向量a与b不共线,,且,则向量a与c的夹角是()A.π2 B.π6 C.π3 D.04、设i,j是互相垂直的单位向量,向量,,则实数m为()A.-2 B.2 C.2 D.不存在5、在四边形ABCD中,,,,则四形ABCD的形状是()A.长方形 B.平行四边形C.菱形D.梯形6、下列说法正确的个数为()(1);(2);(3)(4);(5)设a,b,c为同一平面内三个向量,且c为非零向量,a,b不共线,则与c垂直。
A.2 B. 3 C. 4 D. 5,,7、在边长为1的等边三角形ABC中,设,则的值为()A.32B.32C.0 D.38、向量a=(-1,1),且a与a+2b方向相同,则的范围是()A.(1,+∞) B.(-1,1)C.(-1,+∞)D.(-∞,1) 9、在△OAB中,OA=(2cosα,2sinα),OB=(5cosβ,5sinβ),若-5,则S△OAB= () A.3 B.32C.53 D.53210、若非零向量a、则() b满足,A.二、填空题:本大题共4小题,每小题5分,共20分。
11、若向量,则与a平行的单位向量为________________ ,与a垂直的单位向量为______________________。
12、已知,,则在上的投影等于___________ 。
BC13、已知三点, E,F为线段的三等分点,则=_____.14.设向量a与b的夹角为θ,定义a与b的“向量积”:是一个向量,它的模若3),则三、解答题:本大题共6小题,共80分。
15.(本小题满分12分)OB=设向量OA=(3,1),(-1,2),向量,BC∥OA,又OD+OA=OC,求OD。
高一数学平面向量试题答案及解析
高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。
高中数学必修二 6 1 平面向量的概念(精练)(含答案)
6.1 平面向量的概念(精练)【题组一向量与数量的区别】1.(2021·江苏·泰兴市第三高级中学高一月考)给出下列量:①角度;①温度;①海拔;①弹力;①风速;①加速度.其中是向量的有( )A.2个B.2个C.4个D.5个【答案】B【解析】根据题意,在①角度、①温度、①海拔、①弹力、①风速、①加速度中,是向量的有①弹力、①风速、①加速度,有3个,故选:B.2.(2021·浙江·高一课时练习)下列各量中是向量的是( )A.时间B.速度C.面积D.长度【答案】B【解析】既有大小,又有方向的量叫做向量;时间、面积、长度只有大小没有方向,因此不是向量.而速度既有大小,又有方向,因此速度是向量.故选:B.3.(2021·全国·高一课时练习)给出下列物理量:①密度;①路程;①速度;①质量;①功;①位移.下列说法正确的是A.①①①是数量,①①①是向量B.①①①是数量,①①①是向量C.①①是数量,①①①①是向量D.①①①①是数量,①①是向量【答案】D【解析】由物理知识可知,密度,路程,质量,功只有大小,没有方向,因此是数量而速度,位移既有大小又有方向,因此是向量.故选:D4.(2021·上海·高一课时练习)下列各量中,哪些是向量(即矢量),哪些是数量(即标量)?(1)密度(2)体积(3)电阻(4)推进力(5)长度(6)加速度向量:__________;数量:____________.(填写相应编号).【答案】(4)(6) (1)(2)(3)(5)【解析】密度、体积、电阻、长度都是只有大小没有方向的量,是数量;推进力、加速度是既有大小又有方向的量,是向量.故答案为:(4)(6);(1)(2)(3)(5).【题组二 向量的几何表示】1.(2021·全国·高一课时练习)一位模型赛车手遥控一辆赛车沿正东方向行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(1)按1①100比例作图说明当α=45°时,操作几次时赛车的位移为零;(2)按此法操作使赛车能回到出发点,α应满足什么条件?【答案】见解析.【解析】(1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零.按(1)的方式作图,则所作图形是内角为180α︒-的正多边形,由多边形的内角和定理可得(180)(2)180n n α︒-=-⋅︒, 解得360nα︒=,且3,*n n N ≥∈.故α应满足的条件为360nα︒=,且3,*n n N≥∈.2.(2021·全国·高一课时练习)如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且5AC=.(1)画出所有的向量AC;(2)求BC的最大值与最小值.【答案】(1)见解析;(2)【解析】(1)画出所有的向量AC,如图所示:(2)由(1)所画的图知,①当点C位于点C1或C2时,|BC|①当点C位于点C5或C6时,|BC|所以|BC|3(2021·全国·高一课时练习)在如图的方格纸(每个小方格的边长为1)上,已知向量a.(1)试以B为起点画一个向量b,使=b a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)根据相等向量的定义,所作向量b应与a同向,且长度相等,如下图所示.(2)由平面几何知识可作满足条件的向量c,所有这样的向量c的终点的轨迹是以点C为圆心,2为半径的圆,如下图所示.4.(2021·江苏·高一课时练习)在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为起点画一个向量b,使b a=;c=,并说出向量c的终点的轨迹是什么?(2)在图中画一个以A为起点的向量c,使5【答案】(1)作图见解析;(2)向量c的终点的轨迹是以A.【解析】(1)由题意,B为起点画一个向量b,使b a=,如图所示.c=,则向量c的终点表示以A(2)因为5【题组三向量相关概念的辨析】1.(2021·湖南·武广实验高级中学高一期末)下列四个命题正确的是( )A.两个单位向量一定相等B.若a与b不共线,则a与b都是非零向量C.共线的单位向量必相等D.两个相等的向量起点、方向、长度必须都相同【答案】B【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选:B.2.(2021·全国·高一课时练习)下列关于向量的描述正确的是A .若向量a ,b 都是单位向量,则a b =B .若向量a ,b 都是单位向量,则1a b ⋅=C .任何非零向量都有唯一的与之共线的单位向量D .平面内起点相同的所有单位向量的终点共圆【答案】D【解析】对于选项A :向量包括长度和方向,单位向量的长度相同均为1,方向不定,故向量a 和b 不一定相同,故选项A 错误;对于选项B :因为cos cos a b a b θθ⋅=⋅⋅=,由[]cos 1,1θ∈-知,1a b ⋅=不一定成立,故选项B 错误; 对于选项C :任意一个非零向量有两个与之共线的单位向量,故选项C 错误;对于选项D :因为所有单位向量的模为1,且共起点,所以所有单位向量的终点在半径为1的圆周上,故选项D 正确;故选:D.3.(2021·广西·田东中学)下列命题中,正确的个数是( ) ①单位向量都相等;①模相等的两个平行向量是相等向量;①若a →,b →满足a b →→>且a →与b →同向,则a b →→>; ①若两个向量相等,则它们的起点和终点分别重合;①若a →①,b b →→①c →,则b →①c →.A .0个B .1个C .2个D .3个 【答案】A【解析】对于①,单位向量的模长相等,但方向不一定相同,故①错误;对于①,模相等的两个平行向量是相等向量或相反向量,故①错误;对于①,向量是有方向的量,不能比较大小,故①错误;对于①,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故①错误;对于①,0b →→=时,若a b b c →→→→∥,∥,则a →与c →不一定平行.综上,以上正确的命题个数是0.故选:A.4.(2021·全国·高一课时练习)下列说法中,正确的个数是( )①时间、摩擦力、重力都是向量;①向量的模是一个正实数;①相等向量一定是平行向量;①向量a→与b→不共线,则a→与b→都是非零向量( )A.1B.2C.3D.4【答案】B【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;①零向量的模为零,故①错;①相等向量的方向相同,模相等,所以一定是平行向量,故①正确;①零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即①正确.故选:B.5.(2021·全国·高一课时练习)下列命题中正确的个数是①向量就是有向线段①零向量是没有方向的向量①零向量的方向是任意的①任何向量的模都是正实数A.0B.1C.2D.3【答案】B【解析】有向线段只是向量的一种表示形式,但不能把两者等同起来,故①错;零向量有方向,其方向是任意的,故①错,①正确;零向量的模等于0,故①错.故选:B.6.(2021·江苏·高一)下列各说法:①有向线段就是向量,向量就是有向线段;①向量的大小与方向有关;①任意两个零向量方向相同;①模相等的两个平行向量是相等向量.其中正确的有A.0个B.1个C.2个D.3个【答案】A【解析】有向线段是向量的几何表示,二者并不相同,故①错误;①向量不能比较大小,故①错误;①由零向量方向的任意性知①错误;①向量相等是向量模相等,且方向相同,故①错误.故选:A.7.(2021·全国·高一课时练习)下列说法中,正确的是( )①长度为0的向量都是零向量;①零向量的方向都是相同的;①单位向量都是同方向;①任意向量与零向量都共线.A.①①B.①①C.①①D.①①【答案】D【解析】①长度为0的向量都是零向量,正确;①零向量的方向任意,故错误;①单位向量只是模长都为1的向量,方向不一定相同,故错误;①任意向量与零向量都共线,正确;故选:D8.(2021·全国·高一课时练习)下列命题中正确的个数有( )①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;①单位向量都相等;①任一向量与它的相反向量不相等;①共线的向量,若起点不同,则终点一定不同.A.0B.1C.2D.3【答案】AAB CD,或A,B,C,D在同条直线上,故①错误;【解析】对于①,若向向量AB与CD是共线向量,则//对于①,因为单位向量的模相等,但是它们的方向不一定相同,所以单位向量不一定相等,故①错误;对于①,相等向量的定义是方向相同模相等的向量为相等向量,而零向量的相反向量是零向量,因为零向量的方向是不确定的,可以是任意方向,所以相等,故①错误;对于①,比如共线的向量AC与BC(A,B,C在一条直线上)起点不同,则终点相同,故①错误.故选:A.【题组四相等向量与平行向量】1.(2021·全国·高一课时练习)下图中与向量a相等的向量是( )A.b,c,e,f B.c,f C.f D.c【答案】D【解析】由相等向量的定义可知:两个向量的长度要相等,方向要相同,结合图形可知c满足条件,故选:D2.(2021·全国·高一课时练习)如图,点O是正六边形ABCDEF的中心,图中与CA共线的向量有( )A.1个B.2个C.3个D.4个【答案】C【解析】由图可知,根据正六边形的性质,与CA共线的有AC,DF,FD,共3个,故选:C.3.(2021·全国·高一课时练习)如图,四边形ABCD和ABDE都是边长为1的菱形,已知下列说法:①AE AB AD CD CB DE,,,,,都是单位向量;①AB①DE DE,①DC①与AB相等的向量有3个;①与AE共线的向量有3个;①与向量DC大小相等、方向相反的向量为DE CD BA,,.其中正确的是____.(填序号)【答案】①①①①【解析】①由两菱形的边长都为1,故①正确;①正确;①与AB 相等的向量是ED DC ,,故①错误;①与AE 共线的向量是EA BD DB ,,,故①正确;①正确.故答案为:①①①①4.(2021·上海·高一课时练习)如图,在长方体1111ABCD A B C D -中,3AB =,2AD =,11AA =,以长方体的八个顶点中两点为起点和终点的向量中.(1)单位向量共有______个;(2)______;(3)与AB 相等的向量有______;(4)1AA 的相反向量有______.【答案】8 1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB 11A B 、DC 、11DC 1A A 、1B B 、1C C 、1D D【解析】(1)由图可知,11111AA BB CC DD ====,所以单位向量有428⨯=个;(2)由图可知,1111A D AD BC BC ====1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;(3)由图可知,1111AB DC A B D C ===,所以与AB 相等的向量有:11A B 、DC 、11DC ;(4)由图可知,11111AA BB CC DD ====,所以1AA 的相反向量有:1A A 、1B B 、1C C 、1D D ; 故答案为:8;1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;11A B 、DC 、11DC ;1A A 、1B B 、1C C 、1D D .5.(2021·全国·高一课时练习)O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图所示的向量中:(1)分别找出与AO ,BO 相等的向量;(2)找出与AO 共线的向量;(3)找出与AO 模相等的向量;(4)向量AO 与CO 是否相等?【答案】(1)AO BF =,BO AE =;(2)BF ,CO ,DE ;(3)CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)不相等.【解析】因为O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形, 所以OA AE OD DE OC CF BF BO =======,AB CD BC AD ===;(1)由题中图形可得:AO BF =,BO AE =;(2)由图形可得,与AO 共线的向量有:BF ,CO ,DE ;(3)与AO 模相等的向量有:CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)向量AO 与CO 不相等,因为它们的方向不相同.6.(2021·全国·高一课时练习)如图所示,O 是正六边形ABCDEF 的中心,且OA =a ,OB =b ,OC =c .(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c .相等的向量.【答案】(1)OD ,BC ,AO ,FE .(2)EF ,BC ,OD ,FE ,CB ,DO ,AO ,DA ,AD .(3)与a 相等的向量有EF ,DO ,CB ;与b 相等的向量有DC ,EO ,FA ;与c 相等的向量有FO ,ED ,AB .【解析】(1)因为正六边形中各线段长度都相等,且方向相反的有:OD,BC,AO,FE.(2)由共线向量定理得:EF,BC,OD,FE,CB,DO,AO,DA,AD.与a共线.(3)由相等向量的定义得:与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.。
高一数学(必修二)平面向量的概念及其应用练习题及答案
高一数学(必修二)平面向量的概念及其应用练习题及答案一、单选题1.下列说法错误的是( ) A .向量CD 与向量DC 长度相等 B .单位向量都相等C .0的长度为0,且方向是任意的D .任一非零向量都可以平行移动2.设e 是单位向量,3AB e =,3CD e =-,3AD =,则四边形ABCD 是( ) A .梯形B .菱形C .矩形D .正方形3.已知向量,a b 满足2π1,2,,3a b a b ===,则()a ab ⋅+=( ) A .2-B .1-C .0D .24.已知向量a ,b 满足1a b ==,23a b +=,则向量a ,b 的夹角为( )A .30B .60C .120D .1505.如图,D 是AB 上靠近B 的四等分点,E 是AC 上靠近A 的四等分点,F 是DE 的中点,设AB a =,AC b =,则AF =( )A .344a b - B .344a b + C .388a b + D .388a b - 6.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥()a b +”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知45A =︒,2a =,2b =B 的大小为( ) A .30︒ B .60︒ C .30︒或150︒D .60︒或120︒8.已知平面四边形ABCD 满足13AD BC =,平面内点E 满足52BE CE =,CD 与AE 交于点M ,若BM x AB y AD =+,则yx等于( ) A .52B .52-C .43D .43-二、多选题9.下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线10.在ABC 中,已知π32A C ==,3CD DB =,则( ) A .+AB AC BC = B .2AC AD = C .13+44AD AB AC =D .AD BC ⊥11.已知向量()()()1,3,2,,a b y a b a ==+⊥,则( ) A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,212.在ABC 中,内角,,A B C 的对边分别为,,a b c ,下列说法中正确的是( ) A .“ABC 为锐角三角形”是“sin cos A B >”的充分不必要条件 B .若sin 2sin 2A B =,则ABC 为等腰三角形 C .命题“若A B >,则sin sin A B >”是真命题D .若8a =,10c =,π3B =,则符合条件的ABC 有两个三、填空题13.P 在线段12PP 的反向延长线上(不包括端点),且12PP PP λ=,则实数λ的取值范围是___________.14.已知四边形ABCD 是边长为2的正方形,若3BC DE =,且F 为BC 的中点,则EA EF ⋅=______. 15.已知||1a =,()1,3b =,()b a a +⊥,则向量a 与向量b 的夹角为______.16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin A =2c sin B ,cos B =14,b =3,则△ABC 的面积为________.四、解答题17.设1e ,2e 是两个不共线的向量,如果1232AB e e =-,124BC e e =+,1289CD e e =-. (1)求证:A ,B ,D 三点共线;(2)试确定λ的值,使122e e λ+和12e e λ+共线; (3)若12e e λ+与12e e λ+不共线,试求λ的取值范围.18.化简:(1)()()532423a b b a -+-; (2)()()()111232342a b a b a b -----;(3)()()x y a x y a +--.19.已知4a =,2b =,且a 与b 夹角为120°,求: (1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ-与3a b λ-平行,求实数λ的值.20.如图,在菱形ABCD 中,1,22CF CD CE EB ==.(1)若EF xAB y AD =+,求23x y +的值; (2)若6,60AB BAD ∠==,求AC EF ⋅.21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭.(1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.22.已知:a 、b 是同一平面内的两个向量,其中()1,2a =. (1)若5||2b =且a b +与b 垂直,求a 与b 的夹角θ ; (2)若()1,1b =且a 与a b λ+的夹角为锐角,求实数λ的取值范围.参考答案1.B 2.B 3.C 4.C 5.C 6.A 7.A 8.B 9.ABC 10.ABD 11.BD 12.AC 13.()1,0- 14.409 15.2π31691517.(1)证明:因为()121212124891284324BD BC CD e e e e e e e e AB=+=++-=-=-=,所以AB 与BD 共线.因为AB 与BD 有公共点B , 所以A ,B ,D 三点共线.(2)因为122e e λ+与12e e λ+共线, 所以存在实数μ,使()12122e e e e λλμ=++. 因为1e ,2e 不共线,所以2,1,λμλμ=⎧⎨=⎩所以22λ=±. (3)假设12e e λ+与12e e λ+共线,则存在实数m ,使()1212e e m e e λλ+=+.因为1e ,2e 不共线,所以1,,m m λλ=⎧⎨=⎩所以1λ=±.因为12e e λ+与12e e λ+不共线, 所以1λ≠±.18.(1)()()()()532423*********a b b a a a b b a b -+-=-+-+=-. (2)()()()111131211232342342322a b a b a b a a a b b b ⎛⎫⎛⎫-----=--+-++ ⎪ ⎪⎝⎭⎝⎭ 111123a b =-+.(3)()()()()2x y a x y a xa xa ya ya ya +--=-++=. 19.(1)解:因为()2224246844164a b a a b b -⋅+=-=++=,所以2221a b -=(2)因为()2222168412a b a a b b +=+⋅+=-+=,所以23a b +=,又()216412a b a a a b ⋅=+=-+⋅=, 所以()123cos ,43a ab a a b a a b⋅+<+>===⨯+ 所以a 与a b +的夹角为6π.(3)因为向量2a b λ-与3a b λ-平行, 所以()233a b k a b k a kb λλλ-=-=-, 因为向量a 与b 不共线,所以23k kλλ=⎧⎨=⎩,解得6λ=±20.(1)因为1122CF CD AB ==-,2CE EB =所以2233EC BC AD ==,所以21213232EF EC CF BC CD AD AB =+=+=-, 所以12,23x y =-=, 故231x y +=.(2)AC AB AD =+,()221211223263AC EF AB AD AB AD AB AB AD AD ⎛⎫∴⋅=+⋅-+=-+⋅+ ⎪⎝⎭,ABCD 为菱形,||||6,60AD AB BAD ∠∴===,所以66cos6018AB AD ⋅=⨯⨯=,2211261869263AC EF ∴⋅=-⨯+⨯+⨯=.21.(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=- ⎪⎝⎭,因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=,解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得22312a c b +==,由余弦定理,得2222cos a b c bc A =+-⋅,即22312323c c c -=+-, 整理,得22390c c --=,由0c >得3c =, 所以11133sin 33222ABC S bc A ==⨯=△ 22.(1)解:由()a b b +⊥得()0a b b +⋅=,即2+0a b b ⋅= ,所以254a b b ⋅=-=-,得514cos 2552a b a bθ-⋅===-⋅⨯,又[]0,πθ∈,所以2π3θ=; (2)解:因为()1,2a =,()1,1b =,所以()()()1,21,11,2a b λλλλ+=+=++ 所以()0a a b λ⋅+>,则512403λλλ+++>⇒>-, 由//a a b λ+得0λ=,由与a 与a b λ+的夹角为锐角,所以5,0(0,)3λ⎛⎫∈-+∞ ⎪⎝⎭。
高一数学平面向量计算题
高一数学必修四-平面向量计算题2.1 平面向量的实际背景及基本概念1.下列各量中不是向量的是 【 】A .浮力B .风速C .位移D .密度2.下列说法中错误..的是【 】A .零向量是没有方向的B .零向量的长度为0C .零向量与任一向量平行D .零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是【 】A .一条线段B .一段圆弧C .圆上一群孤立点D .一个单位圆4.下列命题:①方向不同的两个向量不可能是共线向量;②长度相等、方向相同的向量是相等向量;③平行且模相等的两个向量是相等向量;④若a ≠b ,则|a |≠|b |. 其中正确命题的个数是 【 】A .1B .2C .3D .45.下列命题中,正确的是【 】A . 若a b =,则a b =B . 若a b =,则//a bC . 若a b >,则a b >D . 若1a =,则1a =6.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则【 】A . AB 与AC 共线 B . DE 与CB 共线C . 与相等D . 与相等7.已知非零向量a ∥b ,若非零向量c ∥a ,则c 与b 必定 .8.已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 . 9.已知|AB |=1,| AC |=2,若∠BAC =60°,则|BC |= . 10.在四边形ABCD 中, =,且||=||,则四边形ABCD是 .2.2.1 向量的加法运算及其几何意义1.设00,a b 分别是与,a b 向的单位向量,则下列结论中正确的是【 】A .00a b =B .001a b ⋅= C .00||||2a b += D .00||2a b += 2.在平行四边形中ABCD ,,AB AD ==a b ,则用a 、b 表示AC 的是【 】A .a +aB .b +bC .0D .a +b3.若a +b +c =0,则a 、b 、c 【 】A .一定可以构成一个三角形;B .一定不可能构成一个三角形;C .都是非零向量时能构成一个三角形;D .都是非零向量时也可能无法构成一个三角形4.一船从某河的一岸驶向另一岸船速为1v ,水速为2v ,已知船可垂直到达对岸则 【 】A <B >C ≤D ≥5.若非零向量,a b 满足+=a b b ,则【 】A.2>2+a a b B.22<+a a b C.2>+2b a b D.22<+b a b6.一艘船从A 点出发以m/h 的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为4km/h ,求水流的速度7.一艘船距对岸,以/h 的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km ,求河水的流速8.一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船的实际航行的速度的大小为4km/h ,方向与水流间的夹角是60 ,求1v 和v9.一艘船以5km/h 的速度在行驶,同时河水的流速为2km/h ,则船的实际航行速度大小最大是km/h ,最小是km/h2.2.2 向量的减法运算及其几何意义1.在△ABC 中, =a , =b ,则等于【 】A .a +bB .-a +(-b )C .a -bD .b -a 2.下列等式:①a +0=a ②b +a =a +b ③-(-a )=a ④a +(-a )=0 ⑤a +(-b )=a -b 正确的个数是 【 】A .2B .3C .4D .5 3.下列等式中一定能成立的是【 】A . AB +AC =BC B . AB -AC =BC C .AB +AC =CBD .-=4.化简-++的结果等于【 】A .B .C .D .5.如图,在四边形ABCD 中,根据图示填空:a +b = ,b +c = ,c -d = ,a +b +c -d = .6.一艘船从A 点出发以23km/h 的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h ,则河水的流速的大小为 .7.若a 、b 共线且|a +b |<|a -b |成立,则a 与b 的关系为 .8.在正六边形ABCDEF 中, =m , =n ,则= .9.已知a 、b 是非零向量,则|a -b |=|a |+|b |时,应满足条件 .10.在五边形ABCDE 中,设=a , =b , =c , =d ,用a 、b 、c 、d 表示.2.2.3 向量数乘运算及其几何意义1.下列命题中正确的是【 】A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.下列命题正确的是【 】A .单位向量都相等B .若与是共线向量,与是共线向量,则与是共线向量C .||||b a b a -=+,则0a b ⋅=D .若0a 与0b 是单位向量,则001a b ⋅=3. 已知向量,01≠e R ∈λ,+=1e a λb e ,2=21e 若向量a 与b 共线,则下列 关系一定成立是【 】A . 0=λB . 02=eC .1e ∥2eD .1e ∥2e 或0=λ4.对于向量,,a b c 和实数λ ,下列命题中真命题是 【 】A .若0 =⋅b a ,则0a =或0b =B .若0a λ=,则0λ=或0a =C .若22a b =,则a b =或a b =- D .若 c a b a ⋅=⋅,则b c =5.下列命题中,正确的命题是【 】A .a b a +≥且.a b b +≥B .a b a +≥或.a b b +≥C .若,a b c >>则c b b a +>+D .若a 与 b 不平行,则a b a b +>+6.已知ABCD 是平行四边形,O 为平面上任意一点,设,,,OA a OB b OC c OD d ====,则有【 】A .0 =+++d c b aB .0 =-+-d c b aC .0 =--+d c b aD .0 =+--d c b a7.向量a 与 b 都不是零向量,则下列说法中不正确的是【 】A .向量a 与 b 同向,则向量a + b 与a 的方向相同B .向量a 与 b 同向,则向量a + b 与b 的方向相同C .向量a 与 b 反向,且,b a >则向量a + b 与a 同向D .向量a 与 b 反向,且,b a <则向量a + b 与a 同向8.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有【 】A .a ∥b 且a 、b 方向相同B .a =bC .a =-bD .以上都不对9.在四边形ABCD 中,--等于【 】 A . B . C . D .2.3.1 平面向量基本定理1.若ABCD 是正方形,E 是DC 边的中点,且,AB a AD b ==,则BE 等于【 】A .12b a +B .12b a -C .12a b +D . 12a b - 2. 若O 为平行四边形ABCD 的中心, = 4e 1, = 6e 2,则3e 2-2e 1等于 【 】A .AOB .BOC .COD .3. 已知ABC ∆的三个顶点,,A B C 及平面内一点P ,满足0PA PB PC ++=,若实数λ满AB AC AP λ+=,则λ的值为【 】A .2B .32C .3D .64. 在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =【 】 A .2133+b c B .5233-c b C .2133-b c D .1233+b c5. 如右图在平行四边形ABCD 中,=,=,NC AN 3=, M 为BC 的中点,则= 【 】A .a b 2141- B .2141- C .)(41- D .)(41- 6.如右图,在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点, D E 与A F 相交于点H , 设AH b BC a AB 则,,==等于_____.7.已知D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为______ 8.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或AF AE AC μλ+=,其中λ,μR ,则λ+μ= _________. 9.在 ABCD 中,设对角线=a ,BD =b 试用a ,b 表示AB ,10.设1e , 2e 是两个不共线向量,已知=21e +k 2e , CB =1e +32e , CD =21e -2e , 若三点A , B , D 共线,求k 的值C B E C ADH F2.3.2—2.3.3 平面向量的正交分解和坐标表示及运算1. 若(2,4)AB =,(1,3)AC =, 则BC = 【 】A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)2.下列各组向量中,不能作为平面内所有的向量的基底的一组是【 】A.)5,0(),2,1(=-=b a B.)1,2(),2,1(==b aC.)4,3(),1,2(=-= D.)2,4(),1,2(-=-=3.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b 【 】 A.(21)--,B.(21)-, C.(10)-, D.(12)-, 4.若向量()3,2-=x a 与向量()2,1+=y b 相等,则 【 】A .x =1,y =3B .x =3,y =1C .x =1,y = -5D .x =5,y = -15.点B 的坐标为(1,2),的坐标为(m ,n ),则点A 的坐标为 【 】A .()n m --2,1B .()2,1--n mC .()n m ++2,1D .()m n ++2,16.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD = 【 】A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)7.已知向量)3,1(=,)0,2(-=,则+=_____________________.8.已知向量()1,2-=a ,()3,1-=b ,则b a 32-的坐标是 .9.已知点O 是平行四边形ABCD 的对角线交点,AD =(2,5),AB =(-2,3),则CD 坐标为 ,DO 坐标为 ,CO 的坐标为 .10.已知OA =(x 1,y 1),OB =(x 2,y 2),线段AB 的中点为C ,则OC 的坐标为 .2.3.4 平面向量共线的坐标表示1. 已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=【 】A .(5,10)--B .(4,8)--C .(3,6)--D .(2,4)--2.已知向量()3,x a = ,()1,3-=b , 且a 与b 共线,则x 等于【 】A . 1-B . 9C .9-D .13.已知()5,2-=a ,︱b ︱=︱a 2︱,若b 与a 反向,则b 等于【 】A .(-4,10)B .(4,-10)C .(-1 , 25)D . (1, 25-) 4. 平行四边形ABCD 的三个顶点为A (-2,1)、B (-1,3)、C (3,4),则点D 的坐标是【 】A .(2,1)B .(2,2)C . (1,2)D .(2,3) 5.与向量()5,12=d 不.平行的向量是【 】 A .()5,12-- B .⎪⎭⎫ ⎝⎛135,1312 C .()5,12- D .()10,24 6.已知a ,b 是不共线的向量,AB =λa +b ,AC =a +μb (λ,μ∈R), 那么A ,B ,C 三点时λ,μ满足的条件是 【 】A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=17.与向量)4,3(--=同方向的单位向量是_______.8.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .9.已知A (-1,-2),B (4,8),C (5,x ),如果A ,B ,C 三点共线,则x 的值为 .10.已知向量()2,3=a ,()1,1-=b ,向量m 与b a 23-平行,︱m ︱=4137求向量m 的坐标.2.4.1平面向量的数量积的物理背景及其含义 1下列叙述不正确的是【 】A 向量的数量积满足交换律B 向量的数量积满足分配律C 向量的数量积满足结合律D a ·b 是一个实数 2已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于【 】 A 72 B -72 C 36 D 3. 已知向量a =1,b =2,b a ⋅=1,则向量a 与b 的夹角大小为【 】A .4πB .3π C .32π D .65π 4已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是 【 】A 60°B 30°C 135°D 45°5.若平面四边形ABCD 满足0,()0,AB CD AB AD AC →→→→→→=∙=+-则该四边形一定是 【 】A .正方形B .矩形C .菱形D .直角梯形6.若向量a →=(cos sin )αα,,b →=(cos sin )ββ,,则a →与b →一定满足 【 】A .a →与b →的夹角等于αβ-B .a b →⊥→C .a b →→//D .()()a b a b →+→⊥→-→7.下列式子中(其中的a 、b 、c 为平面向量),正确的是【 】A .=-B .a (b ·c )= (a ·b )cC .()()(,)a a λμλμλμ=∈RD .00=⋅AB 8设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ=9已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .10已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______ 11已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角12设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m的夹角2.4.2平面向量数量积的坐标表示、模、夹角1. 已知向量(56)=-,a ,(65)=,b ,则a 与b 【 】 A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向2.若a =(-4,3),b =(5,6),则3|a |2-4b a ⋅=【 】A .23B .57C .63D .833.已知a (1,2),b (2,3),c (-2,5),则△a b c 为【 】A .直角三角形B .锐角三角形C .钝角三角形D .不等边三角形4.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于【 】A .)54,53(或)53,54(B .)54,53(或)54,53(--C .)54,53(-或)53,54(-D .)54,53(-或)54,53(- 5.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为【 】A .13B .513C .565D .656.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .7.已知a =(1,2),b (1,1),c =b -k a ,若c ⊥a ,则c = .8.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .9.已知a (3,2),b (-1,-1),若点P (x ,-21)在线段a b 的中垂线上,则x = . 10.已知a (1,0),b (3,1),c (2,0),且a =BC ,b =CA ,则a 与b 的夹角为 .11.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .。
高一数学平面向量试题答案及解析
高一数学平面向量试题答案及解析1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是;【答案】【解析】略2.已知平面向量,且∥,则()A.-3B.-9C.9D.1【答案】B【解析】由两向量平行坐标间的关系可知【考点】向量平行的性质3.(12分)已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.【答案】(1)(2).【解析】(1)本题考察的是求函数解析式,本题中根据平面向量的数量积,再结合辅助角公式进行化简,又的周期为,可以求出从而求出的解析式.(2)本题考察的是求参数的取值范围问题,本题中根据所给的定义域求出的值域,再根据不等式恒成立问题即可求出参数的取值范围.试题解析:(1)∵的周期为∴(2),则【考点】(1)辅助角公式(2)三角函数的值域4.在边长为的正三角形中,设,,若,则的值为A.B.C.D.【答案】D【解析】由已知可得:D为BC中点,,又因为在边长为的正三角形中,所以,故解得,故选择D【考点】平面向量的线性运算5.若向量满足:,,,则 .【答案】【解析】【考点】向量垂直与向量的坐标运算6.设,向量,,且,∥,则______________.【答案】【解析】因为,∥,所以有即,,所以【考点】向量坐标运算7.向量a=,b=,则A.a∥bB.C.a与b的夹角为60°D.a与b的夹角为30°【答案】B【解析】根据两向量平行坐标表示公式“”可得A错误;根据两向量垂直的坐标表示公式“”可得B正确;根据B可知两向量夹角为,所以C,D错误,故选择B【考点】向量线性关系8.如图所示,D是△ABC的边AB上的中点,则向量A.B.C.D.【答案】A【解析】因为,故选择A【考点】向量的加减法运算9.设是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【解析】,,,,则动点的轨迹一定通过的垂心.故C正确.【考点】1向量的加减法;2数量积;3向量垂直.10.已知向量则x=【答案】6【解析】由题意可得,解得.【考点】向量共线.11.(2015秋•友谊县校级期末)已知△ABC和点M满足+=﹣,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】作出图象,由向量加法的平行四边形法则可知M是△ABC的重心,故,代入m+m=可解出m.解:以MB,MC为邻边作平行四边形MBEC,连结ME交BC于D,如图.则,∵+=﹣,∴M在线段AD上,且|MA|=2|MD|,∵D是BC中点,∴=2=3,∵m+m=,∴3m=,∴m=.故选C.【考点】平面向量的基本定理及其意义.12.已知点(1)求证:恒为锐角;(2)若四边形为菱形,求的值【答案】(1)证明见解析(2)2【解析】(1)只需证明且三点不在一条直线上即可;(2)利用菱形的定义可求得坐标,进而求出所求的值.试题解析:(1)∵点∴∴.若A,P,B三点在一条直线上,则,得到,此方程无解,∴∴∠APB恒为锐角.(2)∵四边形ABPQ为菱形,∴,即,化简得到解得设Q(a,b),∵,∴,∴【考点】平面向量数量积的运算13.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.14. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.15.已知,,,则=()A.﹣8B.﹣10C.10D.8【答案】B【解析】向量的数量积的运算和向量的模即可求出.解:,,,∴=+|+2=16+25+2=21,∴=﹣10,故选:B.【考点】平面向量数量积的运算.16.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A.B.2C.D.1【答案】B【解析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【考点】向量在几何中的应用.17.已知正方形的边长为2,点是边上的中点,则的值为()A.1B.2C.4D.6【答案】B【解析】以为原点,所在直线为轴建立直角坐标系,则,.【考点】向量数量积的坐标表示.18.=(2,3),=(﹣3,5),则在方向上的投影为.【答案】【解析】由已知向量的坐标求出与,代入投影公式得答案.解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.【考点】平面向量数量积的运算.19.已知向量,满足||=1,||=2,与的夹角为120°.(1) 求及+;(2)设向量+与-的夹角为θ,求cosθ的值.【答案】(1);;(2).【解析】(1)根据向量的数量积的运算公式;以及;(2)根据公式,根据数量积公式,再根据公式试题解析:解析:(1)=||||cos 120°θ=1×2×(-)=-1,所以|+|2=(+)2=2+2+2=12+22+2×(-1)=3.所以|+|=(2)同理可求得|-|=.因为(+)(-)=2-2=12-22=-3,所以cosθ===-.所以向量+与-的夹角的余弦值为-.【考点】向量数量积20.(1)在直角坐标系中,已知三点,当为何值时,向量与共线?(2)在直角坐标系中,已知为坐标原点,,,当为何值时,向量与垂直?【答案】(1);(2).【解析】首先根据向量减法的线性运算得到向量与的坐标,当与共线时坐标交叉积的差等于零,当与垂直是数量积等于零,从而列出的方程,即可求得满足条件的的值.试题解析:(1)∵,又向量与共线,∴,解得(2),当向量与垂直时,,即,解得【考点】向量的线性运算及平行与垂直的坐标表示.21.已知a,b为非零向量,且|a+b|=|a|+|b|,则一定有()A.a=b B.a∥b,且a,b方向相同C.a=-b D.a∥b,且a,b方向相反【答案】B【解析】根据向量加法的几何意义, a,b方向相同,方向相同即是共线向量.【考点】向量加法的几何意义.22.已知向量.(1)若点三点共线,求的值;(2)若为直角三角形,且为直角,求的值.【答案】(Ⅰ)-19;(Ⅱ)1.【解析】(Ⅰ)根据向量的减法运算和向量平行的充要条件即可解得;(Ⅱ)根据向量的减法运算和向量垂直的充要条件即可解得.试题解析:解:(Ⅰ)∴,.(Ⅱ),则,∴,【考点】向量的减法运算;向量平行和垂直的充要条件.23.平面内有一个和一点,线段的中点分别为的中点分别为,设.(1)试用表示向量;(2)证明线段交于一点且互相平分.【答案】(1),,;(2)证明见解析.【解析】(1)根据向量的加法、数乘的几何意义,以及向量加法的平行四边形法则,并进行向量的数乘运算便可得到,从而同理可以用分别表示出;(2)设线段、的中点分别为,用分别表示出,从而可得,即证得线段交于一点且互相平分.试题解析:(1),.(2)证明:设线段的中点为,则,设中点分别为,同理:,,∴,即其交于一点且互相平分.【考点】1、向量的三角形法则;2、向量的线性运算.【方法点睛】本题考查向量加法、数乘的几何意义,向量加法的平行四边形法则,以及向量的数乘运算,三角形中位线的性质,平行四边形的判定,平行四边形的对角线相交于一点且互相平分,考查学生逻辑推理能力,属于中档题.另一种解法:(1);同理,;(2)证明:如图,连接,则,且,,且,∴,且,∴四边形为平行四边形,∴线段交于一点且互相平分,同理,线段交于一点且互相平分,∴线段交于一点且互相平分.24.已知是两个非零向量,当的模取最小值时.①求的值;②已知与共线且同向,求证:与垂直.【答案】①;②证明见解析.【解析】(1)设出两个向量的夹角,表示出两个向量的模长,对于模长形式,通常两边平方,得到与已知条件有关的运算,整理成平方形式,当底数为零时,结果最小;(2)本题要证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,求两个向量数量积,根据上一问做出的结果,代入数量积的式子,合并同类项,得到数量积为零.得到垂直.试题解析:①令,则.当时,.②证明:与共线且同向,,,,.【考点】(1)向量的模;(2)数量积判断两个向量的垂直关系.【方法点晴】本题主要考查模长形式,通常两边平方以及证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,因为在本题中主要是数学符号的运算,所以对学生的运算能力要求较高,属于难题.启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.25.已知,在方向上的投影为,则()A.3B.C.2D.【答案】B【解析】由在方向上的投影为,则,所以,故选B.【考点】向量的数量积及向量的投影的应用.26.给出下列命题:(1)若,则;(2)向量不可以比较大小;(3)若则;(4).其中真命题的个数为()A.1B.2C.3D.4【答案】B【解析】由题意得,(1)中,例如,此时,但,所以不正确;(2)中,向量是既有大小又有方向的量,所示向量不能比较大小,所以(2)是正确的;(3)中,根据相等向量的概念,可得“若则”是正确的;(4)中,由,则是成立的,但由,则与是相等向量或相反向量,所以不正确,综上所述,正确命题的个数为个,故选B.【考点】向量的基本概念.【方法点晴】本题主要考查了平面向量的基本的概念——向量的模、相等向量、向量的概念、共线向量及相反向量的概念,其中牢记平面向量的基本概念是判断此类问题的关键,试题很容易出错,属于易错题,本题的解答中,(4)中,,容易忽视相反向量的概念,造成错解,应牢记向量是既有大小又有方向的量这一基本概念,防止出错.27.已知向量,若,则=()A.B.C.D.【答案】A【解析】,.故选A.【考点】数量积的坐标运算.28.已知向量,.(1)若四边形ABCD是平行四边形,求的值;(2)若为等腰直角三角形,且为直角,求的值.【答案】(1);(2)或.【解析】(1)根据四边形为平行四边形,利用,即可求解的值;(2)利用为等腰直角三角形,且为直角,则且,列出方程,即可求解的值.试题解析:(1),,由得x=-2,y=-5.(2),若为直角,则,∴,又,∴,再由,解得或.【考点】向量的运算及向量的垂直关系的应用.29.(1)已知,,且与的夹角为60°,求的值;(2)在矩形中,,点为的中点,点在边上,若,求的值.【答案】(1);(2).【解析】(1)利用向量模的平方等于向量的平方,即可化简,即可求解的值;(2)设,利用,求得的值,又由,,即可运算的值.试题解析:(1) =169,得;(2)矩形ABCD中,∵点F在边CD上,∴设,,本小题也可建坐标系,用平面向量坐标运算解决.【考点】向量的模的计算及向量数量积的运算.30.已知三角形△ABC中,角A,B,C的对边分别为,若,则 =()A.B.C.D.【答案】C【解析】【考点】向量的坐标运算31.已知向量与的夹角为,||=2,||=3,记,(1)若,求实数k的值。
高一数学必修4同步练习:2-3-1平面向量基本定理
2-3-1平面向量基本定理一、选择题1.如上图,设O 是▱ABCD 两对角线的交点,有下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内所有向量基底的是( )A .①②B .①③C .①④D .③④ [答案] B[解析] AD →与AB →不共线,DA →∥BC →,CA →与DC →不共线,OD →∥OB →,则①③可以作为该平面内所有向量的基底.2.如果e 1,e 2是平面α内所有向量的一组基底,那么下列命题中正确的是( )A .已知实数λ1,λ2,则向量λ1e 1+λ2e 2不一定在平面α内B .对平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对C .若有实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0D .对平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2不一定存在[答案] C[解析] 选项A 中,由平面向量基本定理知λ1e 1+λ2e 2与e 1,e 2共面,所以A 项不正确;选项B 中,实数λ1,λ2有且仅有一对,所以B 项不正确;选项D 中,实数λ1,λ2一定存在,所以D 项不正确;很明显C 项正确.3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形[答案] C[解析] ∵AD →=AB →+BC →+CD →=a +2b -4a -b -5a -3b =-8a -2b =2(-4a -b )=2BC →,即AD →=2BC →,∴AD ∥BC 且AD ≠BC ,故选C.4.e 1,e 2为基底向量,已知向量AB →=e 1-k e 2,CB →=2e 1-e 2,CD →=3e 1-3e 2,若A 、B 、D 三点共线,则k 的值是( )A .2B .-3C .-2D .3 [答案] A[解析] DB →=CB →-CD →=-e 1+2e 2,又A 、B 、D 三点共线,则DB →和AB →是共线向量,∴e 1-k e 2=λ(-e 1+2e 2),∴⎩⎪⎨⎪⎧-λ=1-k =2λ,解得k =2.5.已知OA →=a ,OB →=b ,C 为线段AB 上距A 较近的一个三等分点,D 为线段CB 上距C 较近的一个三等分点,则用a ,b 表示OD →为( )A.19(4a +5b ) B.116(9a +7b ) C.13(2a +b ) D.14(3a +b ) [答案] A[解析] 利用向量加法和减法的几何意义和平面向量基本定理求解.∵OD →=OA →+AD →,AD →=AC →+CD → =13AB →+13CB →=13AB →+29AB →=59AB →. 而AB →=b -a ,∴AD →=59b -59a ,∴OD →=OA →+AD →=a +(59b -59a )=49a +59b .6.如图所示,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.13a +23bC.12a +14bD.23a +13b [答案] D[解析] ∵AF →=AC →+CF →=a +23CD →=a +13(b -a )=23a +13b .7.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( )A.23B.43 C .-3 D .0 [答案] D[解析] ∵CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →.∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →. 又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0.8.(09·全国Ⅰ文)设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则a 与b 的夹角为( )A .150°B .120°C .60°D .30° [答案] B[解析] ∵|a |=|b |=|c |≠0,且a +b =c∴如图所示就是符合题设条件的向量,易知OACB 是菱形,△OBC 和△OAC 都是等边三角形.∴a 与b 的夹角为120°.9.如右图,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包含边界).设OP →=mOP 1→+nOP 2→,且点P 落在第Ⅲ部分,则实数m ,n 满足( )A .m >0,n >0B .m >0,n <0C .m <0,n >0D .m <0,n <0[答案] B[解析] 如图所示,利用平行四边形法则将OP →分解到OP 1→和OP 2→上,有OP →=OA →+OB →,则OA →=mOP 1→,OB →=nOP 2→,很明显OA →与OP 1→方向相同,则m >0; OB →与OP 2→方向相反,则n <0.10.(2011~2012·合肥市)如图,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为()A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 [答案] C[解析] 设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点,∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝ ⎛⎭⎪⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝ ⎛⎭⎪⎫12a -b=13a +13b ,故x =13,y =13. 二、填空题11.向量a 与b 的夹角为25°,则2a 与-32b 的夹角θ=________.[答案] 155°[解析] 作OA →=a ,OB →=b ,则∠AOB =25°,如图所示.延长OA 到C ,使OA =AC ,则OC →=2a . 延长BO 到D ,使OD =32BO ,则OD →=-32b .则θ=∠DOA ,又∠DOA +∠AOB =180°,则∠DOA =180°-25°=155°,则θ=155°.12.已知e 1、e 2是两个不共线的向量,而a =k 2e 1+(1-52k )e 2与b=2e 1+3e 2是两个共线向量,则实数k =________.[答案] -2或13[解析] 由题设知k 22=1-52k 3,∴3k 2+5k -2=0.解得k =-2或13.13.已知向量a 和向量b 不共线,且m +n =a ,m -n =b ,则m =________,n =________.(用a ,b 表示)[答案] a +b 2 a -b2[解析] 解方程组⎩⎪⎨⎪⎧m +n =a ,m -n =b ,得m =a +b 2,n =a -b214.(能力拔高题)如右图所示,OA →,OB →不共线,AP →=tAB →(t ∈R ),用OA →,OB →表示OP →=________.[答案] (1-t )OA →+tOB →[解析] ∵AP →=tAB →,∴OP →=OA →+AP →=OA →+tAB →=OA →+t (OB →-OA →)=OA →+tOB →-tOA→=(1-t )OA →+tOB →.三、解答题15.如图,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示DC →,BC →,MN →.[分析] 由于DC ∥AB ,则DC →∥a ,DC →=λa ;构造三角形和平行四边形,使a 和b 作为其边,利用向量加法、减法的运算法则来解决.[解析] 如右图所示,连接CN ,则四边形ANCD 是平行四边形. 则DC →=AN →=12AB →=12a ,BC →=NC →-NB →=AD →-12AB →=b -12a ,MN →=CN →-CM →=-AD →-12CD →=-AD →-12⎝ ⎛⎭⎪⎪⎫-12AB →=14a -b .[点评] 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.16.在△ABC 中,D ,F 分别是BC ,AC 的中点.AE →=23AD →,AB →=a ,AC →=b .求证:B ,E ,F 三点共线.[分析] 利用基底表示出BE →,BF →,然后求证BE →=λBF →,得出三点共线.[证明] 因为D 是BC 的中点,所以有AD →=12(a +b ). AE →=23AD →=13(a +b ),AF →=12AC →=12b . BE →=AE →-AB →=13(a +b )-a =13(b -2a ). BF →=AF →-AB →=12b -a =12(b -2a ). 所以BE →=23BF →,又BE →、BF →有公共点B , 所以B 、E 、F 三点共线.[点评] 巧证三点共线.17.已知|a |=|b |=2,且a 与b 的夹角为120°,求a +b 与a 的夹角,a -b 与a 的夹角.[解析] 如右图,作OA →=a ,OB →=b ,且∠AOB =120°,以OA ,OB 为邻边作▱OACB ,则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为等腰三角形,所以∠OAB =30°即a -b 与a 的夹角为30°.因为|a |=|b |,所以平行四边形OACB 为菱形,所以OC ⊥AB ,所以∠COA =60°,即a +b 与a 的夹角为60°.18.设M ,N ,P 是△ABC 三边上的点,它们使BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →,NP →,PM →表示出来.[解析] 如右图,MN →=CN →-CM →=-13AC →-23CB →=-13AC →-23(AB →-AC →)=13AC →-23AB →=13b -23a . 同理可得NP →=13a -23b , PM →=-MP →=-(MN →+NP →)=13a +13b . [点拨] 本题事实上是平面向量基本定理的应用,由于AB →,AC →不共线,所以平面内的所有向量都可以用它们作基底来表示,用若干向量表示其他向量时,常用到相等向量和向量加法的三角形法则等.。
高一数学平面向量的概念练习题(解析版)
练习11 平面向量的概念一、单选题1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个【答案】A【解析】【分析】根据向量的定义即可判断;【详解】解:速度、位移、力、加速度4个物理量是向量,它们都有大小和方向.故选:A【点睛】本题考查向量的定义的理解,属于基础题.2.下列各说法:①有向线段就是向量,向量就是有向线段;②向量的大小与方向有关;③任意两个零向量方向相同;④模相等的两个平行向量是相等向量.其中正确的有( )A.0个B.1个C.2个D.3个【答案】A【分析】根据向量的基本概念分析即可.【详解】有向线段是向量的几何表示,二者并不相同,故①错误;②向量不能比较大小,故②错误;③由零向量方向的任意性知③错误;④向量相等是向量模相等,且方向相同,故④错误.故选:A.【点睛】本题主要考查了向量中的基本概念,属于基础题型.3.如图,在O中,向量,,OB OC AO是()A.有相同起点的向量B.共线向量C.模相等的向量D.相等向量【答案】C【分析】向量是既有大小又有方向的量,通过大小和方向两个方面逐一判断即可.【详解】解:,,OB OC AO起点并不全相同,故A错误;,,OB OC AO的方向均不相同,也不相反,故BD 错误;||||||OB OC AO===圆的半径,故C正确,故选C.【点睛】本题考查向量的概念,是基础题.4.下列说法正确的是( )A.有向线段AB与BA表示同一向量B.两条有公共终点的有向线段表示的向量是平行向量C.零向量与单位向量是平行向量D.对任一向量a,aa是一个单位向量【答案】C【分析】由平面向量的定义、平行向量及单位向量的可依次对选项判断.【详解】对于选项A,向量AB与BA方向相反,不是同一向量,故选项A错误;对于选项B ,有公共终点的有向线段的方向不一定相同或相反,故B 错误;对于选项C ,零向量与任意向量都是平行向量,故C 正确;对于选项D ,当0a =时,a a 无意义,故D 错误. 故选:C 【点睛】本题考查了平面向量的定义与平行向量的应用,属于基础题.二、多选题5.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC = C .AB DC >D .BC AD ∥【答案】BD【分析】 根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.6.下列说法正确的是( )A .长度相等的向量是相等向量B .若a b =,b c =,则a c =C.共线向量是在一条直线上的向量D.向量AB与CD共线是A,B,C,D四点共线的必要不充分条件【答案】BD【分析】根据向量的相关概念判断可得.【详解】解:相等向量不仅要求长度相等,还要求方向相同,故A说法错误;B说法显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故C说法错误;A,B,C,D四点共线⇒向量AB与CD共线,反之不成立,所以向量AB与CD共线是A,B,C,D四点共线的必要不充分条件,故D说法正确.故选:BD【点睛】本题考查向量的相关概念的理解,相等向量、共线向量,属于基础题.三、填空题7.下列结论正确的序号是_______.=;①若a,b都是单位向量,则a b②物理学中作用力与反作用力是一对共线向量;③方向为南偏西60°的向量与北偏东60°的向量是共线向量;④直角坐标平面上的x轴,y轴都是向量.【答案】②③【分析】根据题意,对题目中的命题进行分析、判断正误即可.【详解】解:对于①,a,b都是单位向量,则不一定有a b=,①错误;对于②,物理学中的作用力与反作用力大小相等,方向相反,是一对共线向量,②正确;对于③,如图所示,方向为南偏西60︒的向量与北偏东60︒的向量在一条直线上,是共线向量,③正确;对于④,直角坐标平面上的x 轴、y 轴只有方向,没有大小,不是向量,④错误;综上,正确的命题序号是②③.故答案为:②③.【点睛】本题通过命题真假的判断考查了平面向量的概念与应用问题,属于基础题.8.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于__________.【答案】3π【解析】【分析】本题首先可以通过题意确定向量的终点构成的图形的形状,然后根据圆的面积公式即可得出结果.【详解】由题意可知,这些向量的终点构成的图形是一个圆环,圆环的小圆半径为1,圆环的大圆半径为2,所以圆环的面积为22213πππ⨯-⨯=,故答案为3π.【点睛】本题考查向量的定义的应用,考查圆的面积公式的使用,向量是有方向和大小的量,考查推理能力与运算能力,是简单题.四、解答题9.如图的方格由若干个边长为1的小正方形组成,方格中有定点A ,点C 为小正方形的顶点,且5AC =,画出所有的向量AC.【答案】见解析【分析】利用向量模长的几何意义,即可画出图形.【详解】AC ,∴C点落在以A为圆心,以5为半径的圆上,又∵点C为小正方形的顶点,∵||5根据该条件不难找出满足条件的点C,解析所有的向量AC,如图所示:【点睛】本题考查了向量模长的几何意义,轨迹问题,属于基础题.10.如图所示,平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集{}S A B C D O =,,,,,向量集合{|,,}T MN M N S M N =∈且,不重合,试求集合T 中元素的个数.【答案】12【分析】本题首先可根据题意明确集合T 中所包含的元素,然后根据平行四边形法则找出其中的相等向量,最后根据集合元素的互异性即可得出结果。
高一数学平面向量试题答案及解析
高一数学平面向量试题答案及解析1.一物体受到相互垂直的两个力f1、f2的作用,两力大小都为5N,则两个力的合力的大小为()A.10N B.0NC.5N D.N【答案】C【解析】根据向量加法的平行四边形法则,合力f的大小为×5=5 (N).2.河水的流速为2m/s,一艘小船想以垂直于河岸方向10m/s的速度驶向对岸,则小船在静水中的速度大小为()A.10m/s B.2m/sC.4m/s D.12m/s【答案】B【解析】设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1.∴v2=v-v1,v·v1=0,∴|v2|====2.3.在△ABC所在的平面内有一点P,满足++=,则△PBC与△ABC的面积之比是()A.B.C.D.【答案】C【解析】由++=,得+++=0,即=2,所以点P是CA边上的三等分点,如图所示.故==.4..已知向量a,e满足:a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则()A.a⊥e B.a⊥(a-e)C.e⊥(a-e)D.(a+e)⊥(a-e)【答案】C【解析】由条件可知|a-te|2≥|a-e|2对t∈R恒成立,又∵|e|=1,∴t2-2a·e·t+2a·e-1≥0对t∈R恒成立,即Δ=4(a·e)2-8a·e+4≤0恒成立.∴(a·e-1)2≤0恒成立,而(a·e-1)2≥0,∴a·e-1=0.即a·e=1=e2,∴e·(a-e)=0,即e⊥(a-e).5.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则++与 ()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】++=++++-=++---= (-)+=+=-,故选A.6.在▱ABCD中,=a,=b,=4,P为AD的中点,则=()A.a+b B.a+bC.-a-b D.-a-b【答案】C【解析】如图,=-=-=- (+)=b- (a+b)=-a-b.7.已知△ABC中,点D在BC边上,且=2,=r+s,则r+s的值是() A.B.C.-3D.0【答案】D【解析】∵=-,=-.∴=--=--.∴=-,∴=-.又=r+s,∴r=,s=-,∴r+s=0.8.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=()A.150°B.120°C.60°D.30°【答案】B【解析】∵|a|=|b|=|c|≠0,且a+b=c∴如图所示就是符合题设条件的向量,易知OACB是菱形,△OBC和△OAC都是等边三角形.∴〈a,b〉=120°.9.如右图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A.·B.·C.·D.·【答案】A【解析】设正六边形的边长是1,则·=1××cos30°=;·=1×2×cos60°=1;·=1××cos90°=0;·=1×1×cos120°=-.10. (2010·湖南理,4)在Rt△ABC中,∠C=90°,AC=4,则·等于()A.-16B.-8C.8D.16【答案】D【解析】因为∠C=90°,所以·=0,所以·=(+)·=||2+·=AC2=16.11.已知向量a、b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角为()A.B.C.D.【答案】C【解析】根据向量数量积的意义,a·b=|a|·|b|·cosθ=4cosθ=2及0≤θ≤π,可得θ=,选C.12. (09·天津文)若等边△ABC的边长为2,平面内一点M满足=+,则·=______________.【答案】-2【解析】∵=+,∴=-=-,=-=-.∴·=- 2- 2+·=-×12-×12+×12×=-2.13.已知|a|=,|b|=3,a与b夹角为45°,求使a+λb与λa+b的夹角为钝角时,λ的取值范围.【答案】<λ<且λ≠-1.【解析】由条件知,cos45°=,∴a·b=3,设a+λb与λa+b的夹角为θ,则θ为钝角,∴cosθ=<0,∴(a+λb)(λa+b)<0.λa2+λb2+(1+λ2)a·b<0,∴2λ+9λ+3(1+λ2)<0,∴3λ2+11λ+3<0,∴<λ<.若θ=180°时,a+λb与λa+b共线且方向相反,∴存在k<0,使a+λb=k(λa+b),∵a,b不共线,∴,∴k=λ=-1,∴<λ<且λ≠-1.本题易忽视θ=180°时,也有a·b<0,忘掉考虑夹角不是钝角而致误.14. (2010·烟台市诊断)已知向量a=(4,2),b=(x,3),且a∥b,则x的值是()A.6B.-6C.9D.12【答案】A【解析】∵a∥b,∴=,∴x=6.15. (2010·湖南长沙)已知O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足=+λ(+),λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.垂心C.内心D.重心【答案】D【解析】设+=,则可知四边形BACD是平行四边形,而=λ表明A、P、D三点共线.又D在BC的中线所在直线上,于是点P的轨迹一定通过△ABC的重心.16.(09·广东文)已知平面向量a=(x,1),b=(-x,x2),则向量a+b()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线【答案】C【解析】a+b=(0,1+x2),由1+x2≠0及向量的性质可知,C正确.17.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在坐标轴上,则点B的坐标为________.【答案】或【解析】由b∥a,可设b=λa=(-2λ,3λ).设B(x,y),则=(x-1,y-2)=b.由⇒.又B点在坐标轴上,则1-2λ=0或3λ+2=0,所以B或.18.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=α+β,其中α、β∈R且α+β=1,则点C的轨迹方程为()A.(x-1)2+(y-2)2=5B.3x+2y-11=0C.2x-y=0D.x+2y-5=0【答案】D【解析】解法1:设C(x,y),则=(x,y),=(3,1),=(-1,3).由=α+β得(x,y)=(3α,α)+(-β,3β)=(3α-β,α+3β).于是由(3)得β=1-α代入(1)(2)消去β得,.再消去α得x+2y=5,即x+2y-5=0.∴选D.解法2:由平面向量共线定理,当=α+β,α+β=1时,A、B、C三点共线.因此,点C的轨迹为直线AB,由两点式直线方程得=,即x+2y-5=0.∴选D.19.已知平面向量a=(1,-1),b=(-1,2),c=(3,-5),则用a,b表示向量c为() A.2a-b B.-a+2bC.a-2b D.a+2b【答案】C【解析】设c=xa+yb,∴(3,-5)=(x-y,-x+2y),∴,解之得,∴c=a-2b,故选C.20.已知=(2,-1),=(-4,1),则的坐标为________.【答案】(-6,2)【解析】=-=(-6,2).21.已知G是△ABC的重心,直线EF过点G且与边AB、AC分别交于点E、F,=α,=β,则+的值为________.【答案】3【解析】连结AG并延长交BC于D,∵G是△ABC的重心,∴== (+),设=λ,∴-=λ(-),∴=+,∴+=+,∵与不共线,∴,∴,∴+=3.22.已知△ABC中,A(7,8),B(3,5),C(4,3),M、N是AB、AC的中点,D是BC的中点,MN与AD交于点F,求.【答案】(1.75,2).【解析】因为A(7,8),B(3,5)C(4,3)所以=(-4,-3),AC=(-3,-5).又因为D是BC的中点,有= (+)=(-3.5,-4),而M、N分别为AB、AC的中点,所以F为AD的中点,故有==-=(1.75,2).[点评]注意向量表示的中点公式,M是A、B的中点,O是任一点,则=(+).23.如图所示,在▱ABCD中,已知=,=.求证:B、F、E三点共线.【答案】略【解析】设=a,=b.则=+=a+b.∵=b-a,∴==(b-a).∴=+=a+ (b-a)=a+b-a=a+b=.∴=.∴向量与向量共线,它们有公共点B.∴B、F、E三点共线.24.已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的延长线上,且=2,求点N的轨迹方程.【答案】所求的轨迹方程为x2+y2=1.【解析】设M(x0,y),N(x,y),由=2,得(1-x0,1-y)=2(x-1,y-1),所以,又∵M(x0,y)在圆C上,把x0、y代入方程(x-3)2+(y-3)2=4,整理得x2+y2=1,所以所求的轨迹方程为x2+y2=1.25.下列说法正确的是()①向量与是平行向量,则A、B、C、D四点一定不在同一直线上②向量a与b平行,且|a|=|b|≠0,则a+b=0或a-b=0③向量的长度与向量的长度相等④单位向量都相等A.①③B.②④C.①④D.②③【答案】D【解析】对于①,向量平行时,表示向量的有向线段所在直线可以是重合的,故①错.对于②,由于|a|=|b|≠0,∴a,b都是非零向量,∵a∥b,∴a与b方向相同或相反,∴a+b=0或a-b=0.对于③,向量与向量方向相反,但长度相等.对于④,单位向量不仅仅长度为1,还有方向,而向量相等需要长度相等而且方向相同.选D. 26.给出下列各命题:(1)零向量没有方向;(2)若|a|=|b|,则a=b;(3)单位向量都相等;(4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同;(6)若a=b,b=c,则a=c;(7)若a∥b,b∥c,则a∥c;(8)若四边形ABCD是平行四边形,则=,=.其中正确命题的序号是________.【答案】(5)(6)【解析】(1)该命题不正确,零向量不是没有方向,只是方向不定;(2)该命题不正确,|a|=|b|只是说明这两向量的模相等,但其方向未必相同;(3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合;(6)该命题正确.由向量相等的定义知,a与b的模相等,b与c的模相等,从而a与c的模相等;又a与b的方向相同,b与c的方向相同,从而a与c的方向也必相同,故a=c;(7)该命题不正确.因若b=0,则对两不共线的向量a与c,也有a∥0,0∥c,但a∥\ c;(8)该命题不正确.如图所示,显然有≠,≠.27.已知A、B、C是不共线的三点,向量m与向量是平行向量,与是共线向量,则m=________.【解析】∵A、B、C不共线,∴与不共线,又∵m与、都共线,∴m=0.28.如图所示,已知▱ABCD,▱AOBE,▱ACFB,▱ACGD,▱ACDH,点O是▱ABCD的对角线交点,且=a,=b,=c.(1)写出图中与a相等的向量;(2)写出图中与b相等的向量;(3)写出图中与c相等的向量.【答案】略【解析】(1)在▱OAEB中,==a;在▱ABCD中,==a,所以a==.(2)在▱ABCD中,==b;在▱AOBE中,==b,所以b==.(3)在▱ABCD中,==c;在▱ACGD中,==c,所以c==29.在水流速度大小为10km/h的河中,如果要使船实际以10km/h大小的速度与河岸成直角横渡,求船行驶速度的大小与方向.【答案】船行驶速度为20km/h,方向与水流方向成120°角【解析】如右图所示,OA表示水流方向,表示垂直于对岸横渡的方向,表示船行速度的方向,由=+易知||=||=10,又∠OBC=90°,∴||=20,∴∠BOC=30°,∴∠AOC=120°,即船行驶速度为20km/h,方向与水流方向成120°角.30..如图,在平行四边形ABCD中,下列结论中错误的是()A.=B.+=C.-=D.+=0【答案】C【解析】A显然正确.由平行四边形法则知B正确.C中-=,故C错误.D中+=+=0.。
高一数学第二章平面向量检测题及答案解析
高一数学平面向量测试题本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,只将第Ⅱ卷和答题卡一并交回。
参考公式:将点),(y x P 按向量),(b a 平移后得点),(y x P ''',则⎩⎨⎧+='+='b y y ax x第Ⅰ卷(选择题部分 共40分)注意事项:1. 答第Ⅰ卷时,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,仅一项符合要求)1.已知向量b a ,,则“R b a ∈=λλ,”成立的必要不充分条件是 ( )A .0 =+b aB .a 与b 方向相同C .b a ⊥D .a∥b2.在△ABC 中,AB =a ,AC=b ,如果|||=|a b ,那么△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形3.1(26)32+-a b b 等于 ( )A .2-a bB .-a bC .aD .b4.下列命题正确的是( )A .若ABC 、、是平面内的三点,则AB AC BC -= B .若12e e 、是两个单位向量,则12e e =。
C .若a b 、 是任意两个向量,则a b a b +≤+D .向量12(0,0),(1,2)e e ==-可以作为平面内所有向量的一组基底5.一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成120 角,且12,F F 的大小分别为1和2,则有( )A .13,F F 成90角B .13,F F 成150角C .23,F F 成90角D .23,F F 成60角6.如图,设,P Q 为ABC ∆内的两点,且2155AP AB AC =+,AQ =2AB +1AC ,则ABP ∆的面积与ABQ ∆的面积之比为 A .15B .45 C .14 D .137.设点M 是线段BC 的中点,点A 在直线BC 外,216,BCAB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( )A .8B .4C .2D .18.平面上O,A,B 三点不共线,设,OA a OB b ==,则△OAB 的面积等于( )A .222|||()|a b a b -B .222|||()|a b a b +C .2221|||()2|a b a b - D .2221|||()2|a b a b + 9.函数2)62cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于( )A .)2,6(-πB .)2,6(πC .)2,6(--πD .)2,6(π-10.定义平面向量之间的一种运算“”如下,对任意的a=(m,n),b p,q)=(,令 a b=mq-np ,下面说法错误的是( )A .若a 与b 共线,则a b=0B .ab=b aC .对任意的R λ∈,有a)b=(λλ(ab)D .2222(ab)+(ab)=|a||b|第Ⅱ卷(非选择题部分 共60分)二、填空题(本大题6小题,每题4分,共24分。
苏教版高一数学必修4第2章平面向量平面向量练习
向量练习二1、若AB =3e 1,CD =-5e 1,且|AD |=|BC |,则四边形ABCD 是( ) A.平行四边形B.菱形C.等腰梯形D.不等腰梯形【解析】 ∵AB =3e 1,CD =-5e 1,∴CD =-35AB ,∴AB 与CD 平行且方向相反,易知||>|AB |,又∵|AD |=||,∴四边形ABCD 是等腰梯形.【答案】 C2、设点 在有向线段的延长线上,分 所成的比为 ,则( A )A . B .C .D .3、若||=2sin15°,||=4cos375°、,夹角为30°,则²=(B ).A .23 B .3 C .32 D .214、若|a |=|b |=|a -b |,则b 与a +b 的夹角为 ( A )A .30°B .60°C .150°D .120°5、已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别( D )A .0,24B .24,4C .16,0D .4,06、在正六边形ABCDEF 中,O 为其中心,则=+++ED BO AB FA 2______FD7、设向量和的长度分别为4和3,夹角为600,则|+| =_____378、1e 和2e是表示平面内所有向量的一组基底,则下面的四个向量中,不能作为一组基底的是__⑵_(1)1e + 2e 和1e -2e ;(2)31e -22e 和42e -61e;(3)1e + 22e 和2e +21e ;(4)2e 和 2e +1e9、已知△ABC 的顶点A (2,3),B (8,-4),和重心G (2,-1),则点C的坐标是_(-4,-2)____10、“a 与b为共线向量”是“a 与b方向相同”的__必要不充分___条件11、已知,a b 是两个非零向量,则b a 与不共线是||||||||||||b a b a b a +<-<-的充要 _条件12、设a =(-1,2),b =(1,-1),c =(3,-2),用a ,b 作基底可将c 表示=p +q ,则实数p 、q 的值为_____ P=1,q=4___.13、已知=(1,1),=(0,-2)当k= -1 时, k -与+共线. 14、命题①若b≠0,且a²b =c²b,则a =c;②若a =b,则3a<4b;③(a ²b ) ²c =a ²(b ²c ), 对任意向量a ,b ,c 都成立;④a 2²b 2=(a ²b )2;正确命题的个数为____ (0)15、 知A 、B 、C 三点共线,且A 、B 、C 三点的纵坐标分别为2,5,10,则A 点分BC 所得的比为____(83-)16、同一直线上的三点顺次为A (-y ,6),B (-2,y ),C (x ,-6),= ,则x=__-2,y=__217、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为______(565)18、已知|a |=2,b =(-23,2),若a ∥b ,则a=________()1,3(),1,3(--) 19、已知由向量=(3,2),AC =(1,k )确定的△ABC 为直角三角形,则k= 。
高一数学平面向量的几何应用试题答案及解析
高一数学平面向量的几何应用试题答案及解析1.已知:是不共线向量,,,且,则的值为()A.B.C.D.【答案】B【解析】因为,故设,即,又是不共线向量,所以有,解得,故选择B.【考点】平面向量平行.2.设两个向量、,满足,,、的夹角为,若向量与向量的夹角为钝角,求实数的取值范围.【答案】【解析】夹角为钝角可通过数量积为负来解决,但它们之间并不等价,简洁地说,数量积为负排除反向,即可保证夹角为钝角;数量积为正排除同向,即可保证夹角为锐角.不作排除,就要犯错. 试题解析:由已知得,,.∴()() 6分欲使夹角为钝角,需.得. 8分设()() 10分∴,此时. 11分即时,向量与的夹角为.∴夹角为钝角时,的取值范围是. 13分【考点】向量数量积的应用之一:求夹角.3.平面向量与的夹角为60°,,,则().A.9B.C.3D.7【答案】B【解析】因为平面向量与的夹角为60°,,所以,则.【考点】平面向量的模长公式.4.已知,,且与的夹角为锐角,则实数的取值范围是________.【答案】且.【解析】因为,,且与的夹角为锐角,所以,即,解得且.【考点】平面向量的夹角.5.在△中,已知,向量,,且.(1)求的值;(2)若点在边上,且,,求△的面积.【答案】(1);(2).【解析】解题思路:(1)先由平面向量的垂直关系得出,再利用三角形的三角关系求角A;(2)先由(1)中的三角关系得出三边关系,再利用余弦定理求出有关边长,进而利用三角形的面积公式求三角形的面积.规律总结:解三角形问题,往往要综合正弦定理、余弦定理、三角形的面积公式以及三角恒等变形等知识,综合性较强,主要思路是利用有关定理实现边、角的合理互化.试题解析:(1)由条件可得,(方法一):由,A+B+C=π,所以,又,所以,所以,即(方法二):因为,所以因为,所以,而,因此;(2)由(1)得,由正弦定理得,设,则,在中,由余弦定理,得,解得,所以;所以 .【考点】1.三角形的三角关系、三边关系、边角关系2.正弦定理;3.余弦定理.6.已知向量,则向量和的夹角为_________ .【答案】.【解析】,因此【考点】向量的夹角.7.已知=(2,3),=(﹣1,2)当k为何值时,(Ⅰ)与垂直?(Ⅱ)与平行?平行时它们是同向还是反向?【答案】(1);(2).【解析】(1)当向量与是坐标形式给出时,若证明,则只需证明;(2)当是非坐标形式时,要把用已知的不共线的向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行证明;(3)利用向量垂直于平行的条件进行构造方程或函数是求参数或最值问题常用的方法与技巧.(4),当时,和方向相同,当时,和方向相反.试题解析:解:=(2,3)+(﹣1,2)=(2﹣1,3+2),=(5,﹣3)(1)与垂直,得()•()=10﹣5﹣9﹣6=﹣11=0,=11(2)与平行,得15+10=﹣6+3,=﹣此时=(﹣,1),=(5,﹣3),所以方向相反.【考点】(1)平面向量垂直;(2)平面向量共线.8.如图,在平面上,点,点在单位圆上,()(1)若点,求的值;(2)若,四边形的面积用表示,求的取值范围.【答案】(1)-3,(2).【解析】(1)本小题从三角函数的定义出发,当且,可得,,而,因此有;(2)因为,且均可用或表示,则可用含的式子表示,利用辅助角公式可化为一种名称的三角函数,结合角的范围即可求得此函数的范围.试题解析:(1)由于,,所以,,于是 .(2),由于,,所以,,则(),由于,所以,所以.【考点】三角函数的定义,正切的半角公式,两角和的正切公式,辅助角公式,三角函数的定义域与值域问题,转化与化归思想.9.已知,若的夹角为,则= .【答案】【解析】因为所以【考点】向量的模10.如图,平面直角坐标系中,已知向量,,且。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一平面向量测试题
一、选择题:
1.下列向量组中能作为表示它们所在平面内所有向量的基底的是 ( )
A .)0,0(=a ρ )2,1(-=b ρ
B .)2,1(-=a ρ
)4,2(-=b ρ C .)5,3(=a ρ )10,6(=b ρ D .)3,2(-=a ρ )9,6(=b ρ
2.已知向量)3,2(=→
a ,)2,1(-=→
b ,若→→+b n a m 与 →
→-b a 2共线,则
n
m
等于( ) A .21-
; B .2
1
; C .2-;
D .2;
3.已知两个非零向量2
2
),2,3(),6,3(,--=--=+则与=( )
A .-3
B .-24
C .21
D .12。
4. 在四边形ABCD 中,2+=,--=4,35--=,则四边形ABCD
的形状是( )A .长方形 B .平行四边形 C.菱形 D.梯形 5.已知向量a =(x ,y), b =( -1,2 ),且a +b =(1,3),则a 等于( ) A . 2 B . 3 C. 5 D. 10
6.已知向量a = (-3 ,2 ) , b =(x, -4) , 若a//b ,则x=( )
A 4
B 5
C 6
D 7
7.下列式子中(其中的a 、b 、c 为平面向量),正确的是
( )
A.=-
B.a (b ·c )= (a ·b )c
C.()()(,)a a λμλμλμ=∈R D .00=⋅ 8. 已知向量b a b a b a b a 与则满足,37|2|,3||,2||,=
+==的夹角为( )
A .30°
B .45°
C .60°
D .90°
9.已知向量等于则垂直与若a b a n b n a ρ
ρ
ρ
ρ
,),,1(),,1(-==( ) A .1
B .2
C .2
D .4 10.(2,1),(3,4)a b →
→
==,则向量a b →
→
在向量方向上的投影为 ( )
A
. B . 2
C .
D .10
11.,,3AB a AC b BD DC ===u u u r r u u u r r u u u r u u u r ,用,a b r r 表示AD u u u r ,则AD =u u u r
A B
C
D
A .34a b +r r
B .1344a b +r r
C .1144
a b +r r
D .3144
a b +r r
12.若平面向量b 与向量a =(1,-2)的夹角是180o
, 且
b 3=则b 等于( ).
A. (3,6)-
B. (3,6)-
C. (6,3)-
D. (6,3)-
13.已知→
a =2,→
b =3,→
→
-b a =7,则向量→a 与向量→
b 的夹角是( )
A .
6
π
B .
4π C .3π
D .2
π
14.已知非零单位向量a r 、b r 满足a b a b +=-r r r r
,则a r 与b a -r r 的夹角是( )
A .
3π
4
B .π
3
C .
π
4
D .π6
15.已知)1,6(),2,3(-==,而)()(λλ-⊥+,则λ等于( )
A .1或2
B .2或-1
2
C . 2
D .以上都不对
16.已知向量(2,2),(5,)a b k =-=r r ,若a b +r r
不超过5,则k 的取值范围是( )
A .[-4,6] B. [-6,4] C. [-6,2] D. [-2,6]
17.设a 、b 是非零向量,)()()(,x x x f R x -⋅+=∈若函数的图象是一条直线,则 必有( ) A .⊥ B .//
C .||||=
D .||||≠
18.在△ABC 中,已知D 是AB 边上一点,若λλ则则,3
1
,2+===( ) A .
3
2 B .
3
1 C .-
3
1 D .-3
2
19.21,e e 是平面内不共线两向量,已知2121213,2,e e CD e e CB e k e AB -=+=-=,若D B A ,,三点共线,则k 的值是( ) A .2 B .3-
C .2-
D .3
二、填空题:
1.已知i r 与j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r 且a r 与b r
的夹角为锐角,则实数λ的
取值范围是
2.设向量a r 与b r
的模分别为6和5,夹角为120°,则||a b +r r 等于
3 已知向量1(3,2),(5,1),2OM ON MN =-=--u u u u r u u u r u u u u
r 则等于
4 已知平面内三点(2,2),(1,3),(7,)A B C x BA AC ⊥u u u r u u u r
满足,则x 的值为
5 设12e e u r u u r 、是两个单位向量,它们的夹角是ο
60,则1212(2)(32)e e e e -⋅-+=u r u u r u r u u r
6.已知向量
(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,且A 、B 、C 三点共线, 则k = .
7.若向量)4,3(-=a ρ,则与a ρ
平行的单位向量为________________ , 与a ρ
垂直的单位向量为______________________。
三、解答题:
1 已知3280A AB -=u u u r
(,),(,),求线段AB 的中点C 的坐标
2 已知4,5,a b a b ==r r r r 与的夹角为ο
60,求3a b -r r
3.已知,1||,2||==b a ϖϖa ϖ与b ϖ的夹角为3
π
,若向量b k a ϖϖ+2与b a ϖϖ+垂直, 求k.
4.已知(1,2)a =r
,)2,3(-=,当k 为何值时,
(1)ka b +r r 与3a b -r r
垂直?
(2)ka +r 与3a -r
平行?平行时它们是同向还是反向?
5 平面向量(3,,4),(2,),(2,),a b x c y =-==r r r 已知a r ∥b r
,a c ⊥r r ,求b c r r 、
及b c r r 与夹角 6.已知).1,2(),0,1(==b a ϖϖ
① 求|3|b a ϖ
ϖ+;
②当k 为何实数时,k -a ϖb ϖ与b a ϖ
ϖ3+平行, 平行时它们是同向还是反向? 7.已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---u u u r u u u r u u u r
.
(1)若点,,A B C 能构成三角形,求,x y 满足的条件;
(2)若ABC ∆为等腰直角三角形,且B ∠为直角,求,x y 的值.。