第9章一元线性回归解读

合集下载

《一元线性回归》课件

《一元线性回归》课件
模型评价
使用评价指标对模型的性能进行评估。
《一元线性回归》PPT课 件
一元线性回归是一种用于探索变量之间关系的统计方法。本课件将介绍一元 线性回归的基本概念、模型、参数估计、模型评估以及Python实现。
一元线性回归-简介
一元线性回归是一种分析两个变量之间线性关系的方法。在这一节中,我们 将介绍一元线性回归的定义、使用场景以及它的重要性。
决定系数
4
方的平均值。
衡量模型对观测值的解释能力,取值范 围从0到1。
一元线性回归-Python实现
导入数据
使用Python的pandas库导入数据集。
划分数据集
将数据集划分为训练集和测试集。
预测结果
使用测试集数据对模型进行预测。
特征工程
选择合适的特征并对其进行处理。
训练模型
使用训练集数据训练线性Байду номын сангаас归模型。
一元线性回归-线性回归模型
1
简单线性回归模型
一个自变量和一个因变量之间的线性关
多元线性回归模型
2
系。
多个自变量和一个因变量之间的线性关
系。
3
线性回归模型的假设
包括线性关系、平均误差为零、误差具 有相同的方差、误差相互独立等。
一元线性回归-模型参数估计
1
最小二乘法
通过最小化观测值和模型预测值之间的平方误差来估计模型参数。
2
矩阵求导
使用矩阵求导的方法来计算模型参数的最优解。
3
梯度下降法
通过迭代的方式逐步优化模型参数,使得模型预测值与观测值之间的差距最小。
一元线性回归-模型评估
1
对模型误差的描述
通过各种指标来描述模型预测值和观测

9.2一元线性回归模型描述

9.2一元线性回归模型描述

其中, 称为残差,是观察数据与估计值之间的误差。
小结
1. 一元线性回归模型 2. 古典线性回归模型假设条件 3. 回归方程、回归直线 4. 样本回归方程、样本回归模型
思考练习
1.阐述相关分析与回归分析两种方法间的关系。 2.使用普通最小二乘法估计一元线性回归模型的参数时, 模模型中的随机误差项需要满足哪些条件?
假设三:同方差
对于所有X i的
取值,随机i 误差项
假设四:独立性
的方差相同。
对于一个特定X i 的 对应的 不相关。
,它所i 对应的Xi 与其他i

回归方程
➢ 描述因变量Y 的数学期望、平均值如何依赖于自X 变量 的线性 方程称为回归方程 E(Yi ) 0 1Xi
➢ 一元线性回归方程绘制的是二维坐标系中的一条直线,称为回 Y
一元线性回归模型描述
1. 一元线性回归模型 2. 古典线性回归模型假设条件 3. 回归方程、回归直线 4. 样本回归方程、样本回归模型
回归分析(Regression)
1. 依据观察数据构建回归方程,即寻找一个适当的数量关系 式来描述变量间平均的数量变化关系
2. 对回归方程的可信程度进行检验,并从影响一特定变量的 诸多变量中找出哪些变量的影响是显著的,哪些是不显著 的感谢源自谢谢,精品课件资料搜集
归直线
Y

X0是直线在 轴上的截距
– 1是直线的斜率, 称为回归系数,表示自变量每变动
一个单位时, 的平均变动值。
回归方程
➢ 利用观察数据计算出0 1 和
的ˆ0 估计ˆ1 量

到回ˆ0归 方ˆ1X程i 中,

Yˆi 作 为ˆ0 回ˆ归1X方i 程的估计,记为

第9章-方差分析与线性回归

第9章-方差分析与线性回归
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.

一元线性回归原理PPT课件

一元线性回归原理PPT课件

图1 化肥施用量与粮食产量的散点图
上述变量间关系的特点:
1. 变量间关系不能用函数关
系精确表达
y
2. 一个变量的取值不能由另 一个变量唯一确定
3. 当变量 x 取某个值时,变
量 y 的取值可能有几个
x
4. 各观测点分布在直线周围
问题
两个变量之间有着密切的关系,但它们之间密 切的程度并不能由一个变量唯一确定另一个变 量,即它们间的关系是一种非确定性的关系。 它们之间到底有什么样的关系呢?
2694148832 20 3023.916 42960.6825 95958928.85
bˆ0 y bˆ1x 42960.6825 4.217 3023.916 30208.913 bˆ1 Lxy / Lxx 95958928.85 / 22755409 4.217
bˆ0 y bˆ1x 42960.6825 4.217 3023.916 30208.913 bˆ1 Lxy / Lxx 95958928.85 / 22755409 4.217
动一个单位时, y 的平均变动值 .
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢聆听
不足之处请大家批评指导
例1中由20组数据,粮食产量与化肥施用量的关 系式
yˆ 30208.913 4.217x
是如何得到的?
解决方案
运用模型来拟合这些数据点。
y
观测值分解成两部分:
观测项 = 结构= 项 + +随机项

第九章 回归分析华中科技大学共34页

第九章 回归分析华中科技大学共34页

习题
P174
返回
谢谢!
未知参数a,b的估计
(1)取 x的n个完全不同的值 x1 , x2 , , xn作独立试验,得到样本 ( x1 ,Y1), ( x2 ,Y2 ), , ( xn ,Yn ), 于是有
Yi a bxi i , i ~ N (0, 2 ),各 i相互独立。则有 Yi ~ N (a bxi , 2 ), i 1,2, , n,Yi之间相互独立。
回归分析
一元线性回归 未知参数a,b的估计 未知参数2的估计 线性假设的显著性检验 系数b的置信区间 回归函数值的点估计和置信区间
退出 返回
一元线性回归
E(Y)和X之间的函数 (X 关)称 系为 Y关于 X的回归函数。
以下假设:
E(Y)(X)abX YE(Y) , ~N(0,2) 即YabX , ~N(0,2),称为一元线性 型回 。
(2)bˆ ~ N(b, 2 Sxx )
(3)Yˆ0

bˆx0
Y
bˆ( x0
x)
~
N(a
bx0 ,
1 n
( x0 x)2 Sxx
2)
(4)Qe 2 ~ 2(n 2)
(5)Y ,bˆ,Qe相互独立
(6)若Y0 a bx0 0与Y1,Y2, ,Yn独立,则Y0,Yˆ0,Qe相互独立
线性假设的显著性检验
(2)利用最小二乘法估计 a, b,即使得
解得
n
min [Yi (a bxi )]2 i1
n

( xi x )(Yi Y )
i1 n
( xi x)2
S xY S xx
i1
aˆ Y bˆ x
2的估计
一元回归方程各有关计 统量的一些结果:

一元线性回归模型的参数估计解读

一元线性回归模型的参数估计解读

为表达得更简洁,可以用离差形式表示OLS估计式:
( X i X )(Yi Y ) xi yi ˆ 1 __ 2 x 2 i (Xi X )
__ __
ˆ Y ˆX 0 1
__
其中xi X i X,yi Yi Y
注意:在计量经济学中,往往以小写字母表示对 均值的离差。 由于参数的估计结果是通过普通最小二乘法得到的, 故称为普通最小二乘估计量(ordinary least squares estimators)。
1969 2078 2585 2530 15674
5290000
6760000 8410000 10240000 12250000 53650000
3668500
5119400 6026200 8272000 8855000 39468400
n X iYi X i Yi 10 39468400 21500 15674 ˆ 1 2 2 10 53650000 215002 n X i ( X i )
xi ˆ 1 Y kiYi 2 i xi
1 1 ˆ ˆ 0 Y 1 X Yi kiYi X ( Xki )Yi wY i i n n
ˆ 、 ˆ 的均值(期望)等于总体 2.无偏性,即估计量 0 1 回归参数真值0与1
ˆ k Y k ( X u ) 证: ii i 0 1 i i 1
假定1:解释变量X i是确定性变量,不是随机变量
假定2:E(ui ) 0,即随机误差项的均值或期望为零
2 假定3:Var (ui ) ( 2为常数),即各个随机误差
项的方差相同
假定4:Cov(ui , u j ) 0(i j ),即不同的随机误差项 之间是互不相关的

一元线性回归分析PPT课件

一元线性回归分析PPT课件
第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页

食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页

第09章 线性回归模型的异方差问题

第09章 线性回归模型的异方差问题
2
ˆ y = a + bx

ˆ ) 2 = m in (y − y
2
ˆ 由∑ ( y − y ) = min ,有 ∑ ( y − a − bx ) = min, 分别对函数中 a、 b求偏导数,并令其为零 ,有 2∑ ( y − a − bx )(− 1) = 0 2∑ ( y − a − bx )(− x ) = 0
14
(0.0019)
安徽大学经济学院
计量经济学讲义
9.2 异方差的性质-方程回归结果图
15
安徽大学经济学院
计量经济学讲义
9.2 异方差的性质-残差与观察值(销售额)关系图
16
安徽大学经济学院
计量经济学讲义
9.2 异方差的性质
从残差图可以看出:残差的绝对值随着销售额的 增加而增加。 尽管残差ei与扰动项ui是两个不同的概念,根据ei 的变化并不能断言ui的方差也是变化的。但是,实践 u 中很难观察到ui,只能利用检验ei的变动来推断ui的 变化。 问题:如何理解残差ei与扰动项ui两个概念的差 别?
7
安徽大学经济学院
计量经济学讲义
一元线性回归分析-回归的假定条件
假定3 给定X,扰动误差项u的数学期望或均值为0, 即E(u|X)= 0。 Y
+u +u -u -u -u
+u
E(Y|X)=α+β*X
0
X
8
安徽大学经济学院
计量经济学讲义
一元线性回归分析-回归的假定条件
假定4 误差扰动项u的方差为常数,即Var(u)=σ2,称 之为同方差(homoscedasticity) 同方差的含义:每个Y值以相同的方差分布在其均值周 围,即Y偏离其均值的程度相同。 Y

课件 一元线性回归

课件 一元线性回归

y=7.743x+8.371
求回归直线方程的步骤:
⑴计算平均数 x 与 y ; ⑶计算 ;
2
⑵计算xi与yi的积,求 x
⑷将结果代入公式求 a;
i
yi
xi
⑸用 b y a x 求 b ; ⑹写出回归方程 .
教材 P 198 A 组
最佳直线的方程即为
这条直线就称作为
回归直线
以直线表示的相关关系就叫做
一元线性关系
一般地,寻求数学公式表达,我们总结出一个普遍适用的式子
回归直线方程 y a bx 其中a、b是待定系数 ˆ

b
n
xi yi nx y , xi nx
2 2
i 1

n
i ⑵在直角坐标系内作出图象.
⑶观察图象中的点有什么特点?
70 60 50 40 30 20 10 0 -5 0
热茶销售量/杯
y=bx+a
5
10
15
20
25 30 最低气温/℃
W(a,b)=(26b+a-20)2+(18b+a-24)2+(13b+a-34)2 + (10b+a-38)2+ (4b+a-50)2+(- b+a-64)2
x y 2 25
设对变量 x,y 有如下观察数据:
4 40 5 48 6 50 7 60 8 75
试写出y对x的回归直线方程
解: x(平均)=16/3 y(平均)=149/3 x(平均)*y(平均)=2384/9 x i y i(总和)=1770 x i2(总和)=194 n=6
得 b=7.743

一元线性回归分析

一元线性回归分析

9--36
判定系数与回归估计标准差的计算
根据前述计算公式计算判定系数与回归估计标准差 ,需先根据样本回归方程计算出 X 的各观测值 xi 对 应的回归估计值 yi ,计算过程比较繁琐。
借助于 EXCEL 的“回归”分析工具可轻松得到其数 值。显示在 EXCEL 的回归输出结果的第一部分
判定系数( R Square )
也称为可解释的平方和。
3. 残差平方和( SSE 、 Q )
反映除 x 以外的其他因素对 y 取值的影 响,
9--29
可决系数(判定系数 r2 或
R2 )
1. 可决系数 = 回归平方和占总离差平方和的
比例
r2
SSR SST
ቤተ መጻሕፍቲ ባይዱ
回归平方和 总离差平方和
1
残差平方和 总离差平方和
综合度量回归方程对样本观测值拟合优度, 衡量变量之间的相关程度。
称为古典线性回归模型。
9--12
2. 样本回归方程( SRF )
实际中只能通过样本信息去估计总体回归方程的参 数。


线
性回归的
yˆi ˆ

本ˆx回i


a

的形
bxi


ˆ a, ˆ b 是样本回归方程的截距和斜率
yˆ ; i 是与 xi 相对应的 Y 的条件均值的估计 ; 9--13
样本回归方程与总体回归方程之关系
i 1
n2
�n ( yi yˆi ) 2
i 1
n2
9--34
回归估计标准差的作用
1. 反映实际观察值在回归直线周围的分散状 况;反映因变量各实际值与其回归估计值之

计量经济学课件一元线性回归

计量经济学课件一元线性回归

二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS) 给出的判断标准是:二者之差的平方和
ˆ ˆ X )) 2 ˆ ) (Y ( Q (Yi Y i i 0 1 i
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
ˆ Y 顺便指出 ,记 y ˆi Y i
则有
ˆ ˆ X ) ( ˆ ˆ X e) ˆi ( y 0 1 i 0 1 ˆ (X X ) 1 e 1 i n i
可得
ˆx ˆi y 1 i
(**)
(**)式也称为样本回归函数的离差形式。
注意:
在计量经济学中,往往以小写字母表示对均值 的离差。
易知 故
x k x
i
i
2 i
0
k X
i
i
1
ˆ k i i 1 1
ˆ ) E ( k ) k E ( ) E( i i 1 i i 1 1 1
同样地,容易得出
ˆ ) E ( w ) E( ) w E ( ) E( i i i i 0 0 0 0
1 (2 ) n
n 2

1 2

一元线性回归PPT课件

一元线性回归PPT课件

第九章 一元线性回归
9.6.2误差项的自相性关检验
误差项具有负自相关性的残差图
图9-11
第九章 一元线性回归
9.6.2误差项的自相性关检验
误差项具有正自相关性的残差图
图9-12
情况二
图9-7
第九章 一元线性回归
9.4.2 样本相关系数
情况三
图9-8
第九章 一元线性回归
9.4.2 样本相关系数
情况四
图9-9
第九章 一元线性回归
9.5 一元线性回归显著性检验
在回归函数E(Y)=β0+β1X中,如果β1=0,则对于X的一切 水平E(Y)=β0,说明Y的变化与X的变化无关,因而,我们不 能通过X去预测Y。所以,对模型Yi=β0+β1Xi+εi 检验β1=0 是否成立,等价于检验Y与X之间是否存在线性关系。
9.2.4 一元线性回归方程
Yi=β0+β1Xi+εi β0和β1均未知
根据样本数据
对β0和β1
进行估计
β0和β1的估计
值为b0和b1
建立一元线性回归方程
Yˆb0 b1X
第九章 一元线性回归
9.2.4 一元线性回归方程
一般而言,所求的b0和b1应能使每个样本观测点(X i,Y i) 与回归直线之间的偏差尽可能小,即使观察值与拟 合值的误差平方和Q达到最小。
Yi=β0+β1Xi+εi (i=1,2,···,n)
其中,(X i,Yj)表示(X,Y)的第i个观测值,β0 , β1为参
数,β0+β1Xi为反映统计关系直线的分量,ε i为 反映在统计关系直线周围散布的随机分量ε i~N
(0,σ 2)。

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法

第9章 回归分析

第9章 回归分析
9.1.2 多元线性回归
1. 多元线性回归模型 设随机变量 y 与 m (m ≥ 2) 个自变量 x1 , x2 , ⋅⋅⋅, xm 之间存在相关关系,且有
y= a + b1 x1 + b2 x2 + ⋅⋅⋅ + bm xm + ε 2 ε ~ N (0, σ )
其中 a, b1 , b2 , ⋅⋅⋅, bm , σ 是与 x1 , x2 , ⋅⋅⋅, xm 无关的未知参数, ε 是不可观测的随机变量.称上式
= F
SR ~ F (1, n − 2) , Se /(n − 2)
168
对于给定的显著性水平 α ,拒绝域为 = F
SR ≥ Fα (1, n − 2) . Se /(n − 2)
Se
2
t 检验法: ˆ ~ N (b, 由b
此得到
σ2
lxx
) 知,
ˆ−b b
σ
lxx ~ N (0,1) .又由
σ
=
= i 1
n
ˆ ( x − x )x ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1
n n
n
= i 1
ˆ ( x − x )( x − x + x ) ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1 n n n
=
= i 1
ˆˆ ( x − x ) 2 − b ∑ xi yi − y ∑ xi − b ∑ i
当原假设 H 0 为真时, (3) F 检验法
σ
SR
2
~ χ 2 (m) ,且 S R 与 Se 相互独立.
SR / m , 当 H 0 为真时, F ~ F ( m, n − m − 1) . 因此 ,对于给定 Se / (n − m − 1) 的显著性水平 α ,拒绝域为 F ≥ Fα (m, n − m − 1) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 若是根据样本数据计算的,则称为样本相关系数, 简称为相关系数,记为 r
也称为Pearson相关系数 (Pearson’s correlation coefficient)
2. 样本相关系数的计算公式
r (x x)( y y) (x x)2 (y y)2
相关系数的性质
• 性质1:r 的取值范围是 [-1,1]
9.1 变量间的关系
9.1.1 变量间是什么样的关系? 9.1.2 用散点图描述相关关系 9.1.3 用相关系数度量关系强度
怎样分析变量间的关系?
建立回归模型时,首先需要弄清楚变量之 间的关系。分析变量之间的关系需要解决 下面的问题
变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体
2020-11-17
散点图
(销售收入和广告费用的散点图)
2020-11-17
9.1 变量间的关系 9.1.3 用相关系数度量关系强度
相关系数
(correlation coefficient)
1. 度量变量之间线性关系强度的一个统计量
– 若相关系数是根据总体全部数据计算的,称为总体
相关系数,记为
变量之间的关系?
2020-11-17
9.1 变量间的关系
9.1.1 变量间是什么样的关系?
函数有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完
y
全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量

的相关系数相等,即rxy= ryx
• 性质3:r数值大小与x和y原点及尺度无关,即改变x和y的

数据原点及计量尺度,并不改变r数值大小
• 性质4:仅仅是x与y之间线性关系的一个度量,它不能用

于描述非线性关系。这意为着, r=0只表示两个

变量之间不存在线性相关关系,并不说明变量之

间没有任何关系
第 9 章 一元线性回归
9.1 变量间关系的度量 9.2 一元线性回归的估计和检验 9.3 利用回归方程进行预测 9.4 用残差检验模型的假定
回归分析研究什么?
假定因变量与自变量之间有某种关系,并把这种关系用 适当的数学模型表达出来,那么,就可以利用这一模型 根据给定的自变量来预测因变量,这就是回归要解决的 问题
收入水平相同的人,他们受教育的程度也不可能不同,而受 教育程度相同的人,他们的收入水平也往往不同。因为收入 水平虽然与受教育程度有关系,但它并不是决定收入的惟一 因素,还有职业、工作年限等诸多因素的影响
农作物的单位面积产量与降雨量之间的关系
在一定条件下,降雨量越多,单位面积产量就越高。但产量 并不是由降雨量一个因素决定的,还有施肥量、温度、管理 水平等其他许多因素的影响
– |r|=1,为完全相关
r =1,为完全正相关 r =-1,为完全负正相关
– r = 0,不存在线性相关关系
– -1r<0,为负相关 – 0<r1,为正相关 – |r|越趋于1表示关系越强;|r|越趋于0表示关
系越弱
2020-11-17
相关系数的性质
• 性质2:r具有对称性。即x与y之间的相关系数和y与x之间
2. 计算检验的统计量
t 0.9306 20 2 10.789 1 0.93062
在回归分析中,只涉及一个自变量时称为一元回归,涉 及多个自变量时则称为多元回归。如果因变量与自变量 之间是线性关系,则称为线性回归(linear regression);如 果因变量与自变量之间是非线性关系则称为非线性回归 (nonlinear regression)
2020-11-17
第 9 章 一元线性回归
完全正线性相关
正线性相关
2020-11-17
散点图
(scatter diagram)
完全负线性相关
负线性相关
非线性相关
不相关
用散点图描述变量间的关系
(例题分析)
• 【例9-1】为研究销售收入与广告费用支出之间的关系, 某医药管理部门随机抽取20家药品生产企业,得到它 们的年销售收入和广告费用支出(万元)的数据如下。 绘制散点图描述销售收入与广告费用之间的关系
极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性
进行检验的基础之上
2020-11-17
相关系数的显著性检验
(检验的步骤)
1. 检验两个变量之间是否存在线性相关关系 2. 采用R.A.Fisher提出的 t 检验 3. 检验的步骤为
– 提出假设:H0: ;H1: 0
– 计算检验的统计量
t r n 2 ~ t(n 2) 1 r2
– 用Excel中的【TDIST】函数得双尾计算P值,并于显 著性水平比较,并作出决策
• 若P<,拒绝H0
2020-11-17
相关系数的显著性检验
(例题分析)
• 【例9-3】检验销售收入与广告费用之间的相关系数
是否显著 (0.05) 1. 提出假设:H0: ;H1: 0
• 性质5:r虽然是两个变量之间线性关系的一个度量,却不

一定意味着x与y一定有因果关系
2020-11-17
相关系数的经验解释
1. |r|0.8时,可视为两个变量之间高度相 关
2. 0.5|r|<0.8时,可视为中度相关 3. 0.3|r|<0.5时,视为低度相关 4. |r|<0.3时,说明两个变量之间的相关程度
2020-11-17
相关关系
(correlation)
1. 一 个 变 量 的 取 值 不 能
由另一个变量唯一确

y
2. 当变量 x 取某个值时, 变量 y 的取值对应着 一个分布
3. 各 观 测 点 分 布 在 直 线 周围
x
2020-11-17
9.1 变量间的关系
9.1.2 用散点图描述相关关系
3. 各观测点落在一条线上
x
2020-11-17
相关关系
(几个例子)
子女的身高与其父母身高的关系
从遗传学角度看,父母身高较高时,其子女的身高一般也比 较高。但实际情况并不完全是这样,因为子女的身高并不完 全是由父母身高一个因素所决定的,还有其他许多因素的影 响
一个人的收入水平同他受教育程度的关系
相关文档
最新文档