各种水管摩擦阻力计算表

合集下载

水管水力计算表格

水管水力计算表格

S-35
/
/
/
/
/ R-35
S-36
/
/
/
/
/ R-36
SUM(Pa)
0
36 回
运动粘度 (10-6m2/s) 0.805


内径 管段长 流 速 阻力
(mm) m
m/s
系数
13 14
15
16
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
40
制冷机组
41
热水锅炉
42
热交换器
43 电动调节阀
44
空调箱
45
风机盘管
46
冷却塔
SUM(Pa)
0
水系统总阻力
水系统水力计算
管径 内径 数量 阻力 mm mm (只) 系数
4 567
流量 m3/h
8
流 速 局部阻力
m/s
Pa
9
10
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

流体流动阻力损失

流体流动阻力损失
阀门高度为势能基准面,阀全关时 ℘A = ℘1 =( 1.013 + 0.9 ) × 105 = 1.91 × 105 N / m 2
1.013 + 0.45 × 10 = 1.46 × 10 N / m ℘B = ℘2 =( )
5 5 2
阀半开时,在A-B面列机械能衡算式:
1 1
le1 u2 le2 u2 hf = hf 1− A + hfAB + hfB2 = λ + hfAB + λ d 2 d 2 p p u减小,hfAB增大 q ↓ pa pa 1 V1 k 2 gz1 + = + hf ρ ρ 2 k A 3 k B 2 总hf不变
A B 1 2 3
阻力控制问题(瓶颈问题)
已知∑hf、L、d,求u或qv
l u hf = λ d 2
试差法:
2
设λ →u →Re →查的λ1→ λ1 ≈λ,u为所求, 否则重设λ。 若可判断λ或已知λ ,则可直接计算
3 900 kg / m 例题:密度为 ,黏度为 30mPa.s 的液体自 敞口容器A流向敞口容器B中,两容器液面视为不变。 管路中有一阀门,阀前管长50m,阀后管长20m , (均包括局部阻力的当量长度)。当阀门全关时,阀 前、后压力表读数分别为 0.09MPa 和 0.045MPa 。 现将阀门半开,阀门阻力的当量长度为30m。管子内 径40mm。
℘A ℘B = + hfA− B ρ ρ
设为层流, hfAB
1.91 - 1.46 ) × 10 5 32 × 30 × 0.001 × u × 100 ( = 2 900 900 × ( 0.04 )
32µu ∑ l = ρd 2

矿井瓦斯抽采系统计算及设备选型

矿井瓦斯抽采系统计算及设备选型

矿井瓦斯抽采系统计算及设备选型第一节抽采管路系统的选择及计算一、管路敷设及安装的要求1、抽采管路通过的巷道曲线段少、距离短。

地面埋设的无缝钢管瓦斯管道必须进行防腐处理;采用矿用聚乙烯塑料管作抽采管的必须要与其它管道有明显的区别标志。

2、抽采管路设于主要运输巷内,在人行道侧其架设高度不应小于1.8m,并固定在巷道壁上,与巷道壁的距离应满足检修要求;抽采瓦斯管件的外缘距巷道壁不宜小于0.1m。

3、主管、干管、支管及其与钻场连接处应装设瓦斯计量装置。

4、抽采钻场、门框架、低洼、温度突变处及沿管路适当距离(间距一般为200m~300m,最大不超过500m),应设置放水器。

5、在抽采管路的适当部位应设置除渣装置和测压装置。

6、抽采管路分岔处应设置控制阀门,阀门规格应与安装地点的管径相匹配。

7、主管上的阀门应设置在井下主要分区点,确保每点进行撤安管路时,不影响其它区域的正常抽采,并便于人员操作。

8、抽采管路应根据巷道保持一定的坡度,一般不小于3‰的流水坡度。

9、凡遇跨越巷道时,抽采管路安装设置门框架,门框架设置要求以不影响行车,行人为准。

10、管路要托挂或垫起,吊挂要平直,拐弯处设弯头,不拐急弯。

管子的接头接口要拧紧,用法兰盘连接的管子必须加垫圈,做到不漏气、不漏水。

11、在倾斜和水平巷道中安设管路时,必须先安管子托架,管托架间距不大于10m,要接好一节运一节,并把接好的管子用卡子或8~10号铁丝卡在或绑在预先打好的管子托架上。

12、在有电缆的巷道内铺设管路时,应铺设在电缆的另一侧,严禁瓦斯管路与电缆同侧吊挂。

13、新安装或更换的管路要进行漏气和漏水实验,凡漏气和漏水的不能使用。

拆除或更换瓦斯管路时,必须把计划拆除的管路与在使用的管路用闸阀或闸门隔开,瓦斯管路内的瓦斯排除后方可动工拆除。

14、地面敷设管路及附属设施除符合井下管路的有关要求外,尚需符合下列要求:⑴冬季寒冷时应采取防冻措施;⑵瓦斯管路不宜沿车辆来往繁忙的主要交通干线敷设;⑶瓦斯管路不充许与自来水管、暖气管、下水道管、动力电缆、照明电缆和电话线缆等敷设于一个地沟内;⑷在空旷的地带敷设瓦斯管路时,应考虑未来的发展规划和建筑物的布置情况;⑸瓦斯主管距建筑物的距离大于5m,距动力电缆大于1m,距水管和排水沟大于1.5m,距铁路大于4m,距木电线杆大于2m;⑹瓦斯管路与其它建筑物相交时,其垂直距离大于0.15m,与动力电缆、照明电缆和电话线大于0.5m,且距相交构筑物2m范围内,管路不准有接头。

摩擦系数和局部阻力系数的测定详解

摩擦系数和局部阻力系数的测定详解

汕头大学实验报告学院:工学院系:机电系年级: 14机电姓名:莫智斌学号:2014124066 组:¥实验四、摩擦系数和局部阻力系数的测定实验小组成员:#####费玉洁,薛栋栋等五人计算:## 莫智斌校核:#实验时间2016 年5 月5 日晚上8 时一、实验目的和要求摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。

二、主要仪器设备伯努利实验仪设备流程图三、实验步骤1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打开总电源和仪表开关,启动水泵,待电机转动平稳后,注意观察水箱水位是否稳定。

2. 静水压强:在水箱水位稳定、管路出口阀关闭的情况下,记录零流速水位于表4。

3.流量调节:开启管路出口阀,调节流量,让流量从1 到3m3/h 范围内变化。

每次改变流量,待流动达到稳定后,在表4 记下对应测点的压差值。

4.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。

四、实验数据记录表4 阻力测定记录表格实验日期:实验者莫智斌等六人设备号:ZB-3 型第2 号1、2 号测头距离0.25 米;3、4号测头距离0.5米;规格:大管内径:21.2mm,水温:24.5 C ,零流速水位:582.1mm ,左小管内径12.9mm ,右小管内径:13.4mm序号各测头水位(mm)流量流量l/s1 2 3 4 5 6 体积/ml 时间/s零流速58582.5582.5582.5581.5 581.5# # #1 578.5 574.5575 574.5573 566 1640 70 0.2342 558 548.5551 550 544 516 1740 36.7 0.4733 539 523527.5526 513 469.51690 26.200.6434 517 494.5501 499.5478 415 1430 18.850.7595 523 505512.5510 492 436 1565 22.550.0696 482.5 450.5466.5456 425 328 1940 19.4550.997五、实验数据计算的结果分析a.摩擦系数的测定:图10 是摩擦系数λ的实验测定方法图。

给排水设计各种计算

给排水设计各种计算

目录1.给水设计流量 (2)2.短管计算 (2)3.水池调节容积计算 (3)4.热媒消耗量计算 (4)5.容积式加热器 (5)6.快速加热器 (6)7.膨胀管 (6)8.管道热伸长量计算 (7)9.饮用水计算 (7)10.排水流量计算 (8)11.洗衣工作量计算 (10)12.孔口和管嘴出流 (10)13.堰流计算 (11)14.喇叭口溢流管计算 (11)15.水池泄水管径计算 (12)16.池水的泄空时间 (12)给水设计流量1住宅,公寓,集体宿舍,旅馆,医院,疗养院,休养所,诊疗所,幼儿园,托儿所,办公楼教学楼等建筑的生活给水管道设计秒流量,按下式计算:──qg=0·2a√Ng+KNg(2·4─1)式中:qg─计算管段的设计秒流量(L/s)Ng─计算管段的卫生器具给水当量总数,按表2·4─1确定;a,K─根据建筑物用途而定的系数,按表2·4─2采用。

1)按上式计算结果,如计算值小于该管段上一个卫生器具给水额定流量时,应采用一个最大的卫生器具给水额定流量作为设计秒流量。

这种情况主要发生在支管计算时,卫生器具的支管一般不需计算,可按表中所给支管管径选用。

2)如计算值大于该管段上卫生器具给水额定流量的累加值时,应按卫生器具给水额定流量累加值采用。

2公共浴室,洗衣房,公共食堂,实验室,影剧院,游泳场,体育场(馆)等建筑物的生活给水管道设计秒流量,应按下式计算:qg=∑q0n0b(2·4─2)式中qg─计算管段的给水设计秒流量(L/s);q0─同类型的卫生器具给水额定流量(L/s);n0─同类型的卫生器具数;b─卫生器具的同时给水百分数,见表2·4─3。

短管计算当管道的供水压力已经确定时,如清水池的进水管,溢流管,上区水箱向下区减压供水的供水专用管等的管径和供水流量计算,建议按短管出流方式计算。

计算公式如下:πD2───Q=μ───√2gH(2·4─11)4式中Q─管段的通过流量(m3/s);μ─管段的流量系数;D─管道直径(m);g─重力加速度为9·81(m/s2);π─常数为3·14;H─管段两端的水头差(m)。

化工原理 第一章 管内流体流动的摩擦阻力损失

化工原理 第一章 管内流体流动的摩擦阻力损失
2012810管道类别绝对粗糙度mm金属管无缝黄铜管钢管及铝管新的无缝铜管或镀锌铁管新的铸铁管具有轻度腐蚀的无缝钢管具有显著腐蚀的无缝钢管旧的铸铁管001005010203020305以上085以上非金属管干净玻璃管橡皮软管木管道陶土排水管很好整平的水泥管石棉水泥管000150010010030251250456003300308某些工业管道的绝对粗糙度20128102管壁粗糙度对摩擦系数的影响影响的原因由于流体在管道中流动时流体质点与管壁凸出部分相碰撞而增加了流体的能量损失影响的方式1与管径的大小有关粗糙度相同但管径不同摩擦系数也不同因此在摩擦系数图中用相对粗糙度d而不是绝对粗糙度
pf
32lu
d2
(单位 J/kg)
【表明】层流时阻力与速度的一次方成正比。
2021/7/16
2、层流时的摩擦系数 将上式改写为:
32 lu64l u2 64l u2 hf d2 dud2Re d2
将式与范宁公式比较,可得层流时摩擦系数的计 算式:
64
Re
【结论】层流时摩擦系数λ是雷诺数Re的函数。
12lg3/.7dR2.5e1
此式适用于湍流区的光滑管与粗糙管直至完全湍流区。
2021/7/16
5、管壁粗糙度对摩擦系数的影响 【光滑管】玻璃管、铜管、铅管及塑料管等称为光 滑管; 【粗糙管】钢管、铸铁管等。 (1)管壁粗糙度的表示方法 【绝对粗糙度】管道壁面凸出部分的平均高度,称 为绝对粗糙度,以ε表示。 【相对粗糙度】绝对粗糙度与管径的比值即ε/d,称 为相对粗糙度。
2021/7/16
②随Re的增加,层流内层的厚度逐渐减薄,当δ<ε
时,壁面凸出部分伸入湍流主体区,与流体质点发 生碰撞,使流动阻力增加。
2021/7/16

煤矿机电常用公式汇总

煤矿机电常用公式汇总

矿井机电常用选型、验算公式汇总第一篇矿井机电设计部分一、水泵的选型计算1、水泵选型依据《煤矿安全规程》第二百七十八条规定,主要排水设备应符合下列要求:水泵:必须有工作、备用和检修水泵。

工作水泵的能力,应能在20h内排水矿井24h 的正常涌水量,(包括充填水及其他用水)。

备用水泵的能力应不小于工作水泵能力的70%,工作和备用水泵的总能力,应能在20h内排出矿井24h的最大涌水量。

检修水泵的能力应不小于工作水泵能力的25%。

配电设备:应同工作、备用以及检修水泵相适应,并能同时开动工作和备用水泵。

2、水泵的选型计算正常涌水时期,水泵必需的排水能力QB ≥2024q(m3/h)最大涌水时期,水泵必需的排水能力Qmax ≥2024qmax (m3/h)水泵必须的扬程HB=Hc(1+sin 12.0~1.0)式中:q—正常涌水量(m3/h)Qmax—最大涌水量(m3/h)Hc = Hg+(车场与最低吸水水面标高差)+(排水管出口高出上一水平的高度)α-井筒倾角;0.1~0.12-扬程损失系数。

初选水泵根据涌水量QB和排水高度HB,自产品目录查符合要求的水泵3、水泵稳定性校验为保证水泵工作稳定性,应符合0.9H0≥HC ,其中,H0为水泵零流量时的扬程,根据水泵的特性曲线查找。

4、确定水泵台数根据《煤矿安全规程》第二百七十八条规定:水泵必须有工作、备用和检修水泵。

工作水泵的能力,应能在20h 内排水矿井24h 的正常涌水量,(包括充填水及其他用水)。

备用水泵的能力应不小于工作水泵能力的70%,工作和备用水泵的总能力,应能在20h 内排出矿井24h 的最大涌水量。

检修水泵的能力应不小于工作水泵能力的25%。

比较Q 、Qmax 、Qe 可知,正常涌水时期需要水泵的台数:n1=eQ Q (台)最大涌水期需要投入工作水泵台数n1+ n2 =eQ Q m ax(台) Qe —水泵的额定流量 (m3/h)备用水泵:n3= n1×0.7 (台) 检修水泵 n4= n1×0.25 (台) 一共需要的水泵数量为:n= n1+ n2+ n3+ n4 5、管路趟数确定管路选择依据《煤矿安全规程》第二百七十八条规定:水管:必须有工作和备用的水管。

管径选择与管道压力降计算(一)1~60

管径选择与管道压力降计算(一)1~60

管径选择与管道压力降计算第一部分管径选择1.应用范围和说明1.0.1本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。

1.0.2对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。

本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。

1.0.3当按预定介质流速来确定管径时,采用下式以初选管径:d=18.81W0.5 u-0.5ρ-0.5(1.0.3—1)或d=18.81V00.5 u-0.5(1.0.3—2)式中d——管道的内径,mm;W——管内介质的质量流量,kg/h;V0——管内介质的体积流量,m3/h;ρ——介质在工作条件下的密度,kg/m3;u——介质在管内的平均流速,m/s。

预定介质流速的推荐值见表2.0.1。

1.0.4当按每100m计算管长的压力降控制值(⊿Pf100)来选择管径时,采用下式以初定管径:d=18.16W0.38ρ-0.207 µ0.033⊿P f100–0.207(1.0.4—1)或d=18.16V00.38ρ0.173 µ0.033⊿P f100–0.207(1.0.4—2)式中µ——介质的动力粘度,Pa·s;⊿P f100——100m计算管长的压力降控制值,kPa。

推荐的⊿P f100值见表2.0.2。

1.0.5本规定除注明外,压力均为绝对压力。

2.管道内流体常用流速范围和一般工程设计中的压力降控制值2.0.1管道内各种介质常用流速范围见表2.0.1。

表中管道的材质除注明外,一律为钢。

该表中流速为推荐值。

2.0.2管道压力降控制值见表2.0.2-1和表2.0.2-2,该表中压力降值为推荐值。

管道摩擦阻力计算

管道摩擦阻力计算

长距离输水管道水力计算公式的选用之马矢奏春创作1. 经常使用的水力计算公式:供水工程中的管道水力计算一般均依照均匀流计算,目前工程设计中普遍采取的管道水力计算公式有: 达西(DARCY )公式:gd v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C lQ h h f ***= (3) 式中hf------------沿程损失,m λ―――沿程阻力系数 l――管段长度,m d-----管道计算内径,m g----重力加速度,m/s2 C----谢才系数 i----水力坡降; R―――水力半径,mQ―――管道流量m/s2 v----流速 m/sCn----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。

海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。

三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。

2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对分歧的设计条件,推荐采取的水力计算公式也有所差别,见表1:表1 各规范推荐采取的水力计算公式4. 公式的适用范围:3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。

公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采取经验公式计算得出。

舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。

舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果标明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不但包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用. 布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采取)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式自己而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包含反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包含流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m≤R≤3m;0.011≤n≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与分歧管材的管壁概况粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106. 通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采取谢才公式外,其它管材大多推荐采取达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采取达西公式,但未明确要求计算λ值采取的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采取的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁概况均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采取舍维列夫公式显然也就会发生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采取柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采取适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此,《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》其实不矛盾.海澄-威廉公式可以适用于各种分歧材质管道得水力计算,其中海澄-威廉系数Ch得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采取达西公式,谢才公式或者海澄-威廉公式计算,分歧管材得差别均表示在管内壁概况当量粗糙程度得分歧上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采取分歧得加工工艺,其内概况得粗糙度也可能有所差别,这一因素在设计过程种也应重视(经常使用管材得粗糙度系数参考值见表2)表2 罕见管材粗糙度相关系数参考值根据雷诺数计算公式vVd Re ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得分歧设计条件应对所使用计算公式得适用范围进行复核.包管计算得准确性.大多说供水工程得设计依照水温10℃,运动粘度1.3*10-5 m2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采取布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采取布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采取《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏平安,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采取塑料内衬管不宜采取布拉修斯公式计算,而更宜于采取如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采取谢才公式计算时,如果管道内径大于2m 时则不采取曼宁公式计算谢才系数.如果采取巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS和HAZEN在大量工业管道现场或试验丈量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外很多管道水力计算软件均采取该公式编制.由此可见,对于口径大于2m得管道应尽量防止采取海澄-威廉公式计算以策平安.6.值得提出得是,上述所有水力计算公式中采取得管径均为计算内径,各种管道均应采取管道净内空直径计算,对于采取水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量防止采取海澄-威廉公式,建议采取柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才干得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。

水系统管道阻力计算

水系统管道阻力计算

空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m时,则式中λ——摩擦阻力系数,m;——管道直径,m;R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;——水的密度,kg/m3;——水的流速,m/s。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。

二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数;——水流速度,m/s。

常用管道的配件可以通过相应的表格进行查询。

根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。

对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。

因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。

在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。

阻力损失计算

阻力损失计算

第五节 阻力损失1-5-1 两种阻力损失直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管, 另一种是弯头、三通、阀门等各种管件。

无论是直管或管件都对流动有一定的阻力, 消耗一定的机械能。

直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失);管件造成的机械能损失称为局部阻力损失。

对阻力损失作此划分是因为两种不同阻力损失起因于不同的外部条件,也为了工程计算及研究的方便, 但这并不意味着两者有质的不同。

此外, 应注意将直管阻力损失与固体表面间的摩擦损失相区别。

固体摩擦仅发生在接触的外表面, 而直管阻力损失发生在流体内部, 紧贴管壁的流体层与管壁之间并没有相对滑动。

图1-33 阻力损失阻力损失表现为流体势能的降低 图1-33表示流体在均匀直管中作定态流动, u 1=u 2。

截面1、2之间未加入机械能, h e =0。

由机械能衡算式(1-42)可知: ρρρ212211P P -=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=g z p g z p h f (1-71) 由此可知, 对于通常的管路,无论是直管阻力或是局部阻力, 也不论是层流或湍流, 阻力损失均主要表现为流体势能的降低, 即ρ/P ∆。

该式同时表明, 只有水平管道, 才能以p ∆(即p 1-p 2)代替P ∆以表达阻力损失。

层流时直管阻力损失 流体在直管中作层流流动时, 因阻力损失造成的势能差可直接由式(1-68)求出: 232dlu μ=∆P (1-72) 此式称为泊稷叶(Poiseuille)方程。

层流阻力损失遂为: 232dlu h f ρμ=(1-73)1-5-2 湍流时直管阻力损失的实验研究方法层流时阻力损失的计算式是由理论推导得到的。

湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究, 获得经验的计算式。

这种实验研究方法是化工中常用的方法。

因此本节通过湍流时直管阻力损失的实验研究, 对此法作介绍。

实验研究的基本步骤如下:(1) 析因实验──寻找影响过程的主要因素对所研究的过程作初步的实验和经验的归纳, 尽可能地列出影响过程的主要因素对于湍流时直管阻力损失h f , 经分析和初步实验获知诸影响因素为:流体性质:密度ρ、粘度μ;流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε (管内壁表面高低不平);流动条件:流速u ;于是待求的关系式应为:),,,,,(ερμu l d f h f = (1-74)(2) 规划实验──减少实验工作量当一个过程受多个变量影响时, 通常用网络法通过实验以寻找自变量与过程结果的关系。

风系统以及水系统的阻力计算

风系统以及水系统的阻力计算

风系统以及水系统的阻力计算风系统以及水系统的阻力计算风系统水力计算风管设计原则参见《空调与制冷设计手册》P269,设计中要兼顾制作管道的材料耗量,管道保温用料,管道所占的空间体积,风机耗功率以及满足噪声允许值的风管风速等。

其风速参考值如下表:表7-1低速风管内的风速(m/s)室内允许噪声级Db(A)主管风速m/s支管风速m/s新风入口m/s25~353~4≤2335~504~72~33.550~656~93~54~4.565~858~125~85根据新风量和参考风速,由《供暖通风设计手册》表18-12 查的。

7.1.1 一层商场风管计算结果表7-2一层商场风管计算管段流量(m3 /h)管宽(㎜)管高(㎜)长度(m)ν(m/s)R(Pa/m)△Py(Pa)ξ动压(Pa)△Pj(Pa)管段阻力(Pa)1-2114250020023.890.6161.23219.109.1010.332-3114250020023.890.6161.23219.109.1010.332-4218450032053.620.371.84817.857.859.704-6114250020023.890.6161.23219.109.1010.334-5114250020023.890.6161.23219.109.1010.334-7425650032037.241.2919.294131.4131.4140.71 7-9224050032013.620.371.84817.857.859.708-9114250020023.890.6161.23219.109.1010.339-10114250020023.890.6161.23219.109.1010.33 7-1163815003208.10.852.69821.582170.6870.6892.2618-19114250020023.890.6161.23219.109.1010.3316-19228450032053.620.371.84817.857.859.7015-16114250020023.890.6161.23219.109.1010.3316-17114250020023.890.6161.23219.109.1010.3319-20114250020023.890.6161.23219.109.1010.3311-16425650032037.241.2919.294131.4131.4140.71 12-13124550020023.890.6161.23219.109.1010.3313-14124550020023.890.6161.23219.109.1010.3311-21134826305007.511.031.81613.620172.9472.9486.5 621-23224050032013.620.371.84817.857.859.7023-24114250020023.890.6161.23219.109.1010.3322-23114250020023.890.6161.23219.109.1010.3321-32196438006306.310.341.2227.698164.1164.1171.81 21-26425650032037.241.2919.294131.4131.4140.71 25-26114250020023.890.6161.23219.109.1010.3326-27114250020023.890.6161.23219.109.1010.3329-30114250020023.890.6161.23219.109.1010.3328-29114250020023.890.6161.23219.109.1010.3332-31114250020013.890.6160.61619.109.109.7132-33228450032033.620.371.10917.857.858.9633-34114250020053.890.6163.07919.109.1012.1832-3530572100063049.650.9663.862155.8555.8559.717.1.2 二楼商场风管计算结果表7-3 二楼商场风管计算管段流量(m3 /h)管宽(㎜)管高(㎜)长度(m)ν(m/s)R(Pa/m)△Py(Pa)ξ动压(Pa)△Pj(Pa)管段阻力(Pa)1-210525002002.52.790.3220.80414.404.405.212-310525002002.52.790.3220.80414.404.405.212-5208350032053.390.3281.64016.886.888.524-51055002002.52.790.3220.80414.404.405.215-610525002002.52.790.3220.80414.404.405.215-740785003202.56.771.1442.861127.5027.5030.36 7-920835002002.53.390.3280.82016.886.887.708-910525002002.52.790.3220.80414.404.405.219-1010525002002.52.790.3220.80414.404.405.217-176578500320810.162.39019.120161.8861.8881.00 11-1210525002002.52.790.3220.80414.404.405.2112-1310525002002.52.790.3220.80414.404.405.2115-16114250020023.890.6161.23219.109.1010.3312-15114250020023.890.6161.23219.109.1010.3314-15114250020023.890.6161.23219.109.1010.3315-16425650032037.241.2919.294131.4131.4140.71 15-17124550020023.890.6161.23219.109.1010.3317-19124550020023.890.6161.23219.109.1010.3318-19134826305007.511.031.81613.620172.9472.9486.5 619-20224050032013.620.371.84817.857.859.7017-27114250020023.890.6161.23219.109.1010.3321-2210835002002.52.790.3220.80414.404.405.2122-23196438006306.310.341.2227.698164.1164.1171.81 22-25425650032037.241.2919.294131.4131.4140.71 25-27114250020023.890.6161.23219.109.1010.3327-29114250020023.890.6161.23219.109.1010.3327-37114250020023.890.6161.23219.109.1010.3321-32114250020023.890.6161.23219.109.1010.3332-31114250020013.890.6160.61619.109.109.7132-33228450032033.620.371.10917.857.858.9633-34114250020053.890.6163.07919.109.1012.1832-3530572100063049.650.9663.862155.8555.8559.717.1.3 三层办公室风管计算结果表7-4 三层办公室风管计算管道流量(m3 /h )风速(m/s)管径(mm)动压(pa)单位摩擦阻力(pa/h)1-23861.71250×2501.84650.1792-36643.13250×2505.23860.4993-414354.95320×25017.0241.1284-522006.00320×32020.3331.4175-625225.00400×32019.0001.1566-735895.21400×40021.0021.0337-835234.2500×40017.6980.4506`-76251.66320×3201.2110.0951`-23451.62250×2001.68550.1987.1.4 四层宾馆风管计算结果表7-5 四层宾馆风管计算管道流量(m3 /h )风速(m/s)管径(mm)动压(pa)单位摩擦阻力(pa/h)1-21561.50160×1201.6820.4512-32213.05160×1206.2651.4143-43052.29200×1604.9230.2174-54943.54200×2008.3001.0025-66956.04200×20014.9241.4266-79125.88200×20024.6642.8827-812446.4250×20024.6583.0018-913445.8250×25020.6651.5649-1015637.0250×25026.1512.45610-1116885.9320×25022.3941.56411-1218775.4320×32015.9911.46112-1320484.6400×32018.2451.1451`-21122.04120×1202.4100.5197.2 三层阻力计算沿程损失=单位摩擦阻力(pa/h)×管段长(m);局部损失=局部阻力系数×空气密度×速度的平方/2;根据三通断面与总断面之比、风量之比,查得局部阻力系数。

管道摩擦阻力计算

管道摩擦阻力计算

长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。

海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。

三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。

2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。

公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。

舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。

舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。

第4章 制冷系统管道设计计算

第4章 制冷系统管道设计计算
22
ln
D dw
1
D 2
思考题
1.写出密封系统单相流体总阻力的计算式并说明每个 符号的意义。
2.怎样计算两相流体的阻力?
3.选择《600吨水产冷库制冷工艺设计》中的管道直 径。
5.确定管道内径有哪两种方法?试作简要说明。
6.什么叫管件的当量长度?在选定管径时有何意义? 7.已知氨液分离器至压缩机吸入管道负荷为:
4-4 管道的隔热
4-4 管道的隔热
•一、低温管道隔热的目的
•主要是为了减少冷量损耗和回气过热,其次是为了
防止管壁表面凝水结霜。
•二、低温管道隔热层的计算原则
•应使求得的隔热层厚度能保证隔热层外表面的温度
不低于当地露点温度,以防止管道外表凝结滴水或结
霜。
计算式:tw tw
tn tb
D 2
1
• (二)壁厚 表4-2-4、表4-2-5
• 壁厚的确定与管道可以承受的压力有关。 目前设计手册或五金手册给出的管道均 可以满足压力要求。
• (三)管道的规格表示法 表4-2-6
DN
Øδ DN Øδ
6
10
15
20
25
32
40
50
1/4’ 3/8’ ½’
¾’
1” 1” 1/4’ 1”1/2’ 2”
102.0 102.0 102.0 102.0 102. 102.0 102.0 102.0
(二)辅助管道:根据经验确定管径
名称
热氨管
排液管 放油管 安全管 放空气管 均压管 降压管 冲霜水管
Øδ
382.2~573.5 252.0~382.2 322.2~382.2 252.0~322.2 252.0~382.2 252.0~382.2 252.0~322.2 252.0~553.5

水管选型及水力计算

水管选型及水力计算

245 0.7 R1 705 471 343 237 198 142 103 82 63 48 38 25 19 15 12
11
R2 948 622 446 304 253 179 129 102 78 58 46 30 23 18 15
1 = −2.0lg( ε + 2.51 )
λ
3.71d Re λ
式中 ε——管内表面的当量绝对粗糙度,[m];
推荐水管的ε值如下:对于开式系统,取 0.0005[m];对于闭式系统, 取 0.0002[m];
Re——雷诺数,Re= vd v
其中 v 是水的运动粘滞系数,与水温有关,在标准大气压时,水的运动粘滞
三、空调冷却/冷冻水管选型及水力计算
1、水管选型 根据表 1 可以确定空调冷却/冷冻水管的水管形式,包括钢管和铸铁管,常
见的为镀锌钢管和无缝钢管;水管选型常采用假设流速法,可以根据水流量和相 应管的流速范围来确定管径。
1
水系统水管选用及水力计算
水管径 D 由下式确定:
式中 D——管径,m;
D = 4L πv
1、水管选型 .....................................................1 2、水力计算 .....................................................3 四、PP-R 管选型及水力计算 ...........................................7 1、PP-R 管特点...................................................7 2、PP-R 管主要用途...............................................7 3、PP-R 管选型...................................................7 4、水力计算 ....................................................10 5、中国十大 PPR 管品牌 ..........................................17 五、冷凝水管选型................................................... 18 1、冷凝水管系统特点 ............................................18 2、冷凝水管流速 ................................................18 3、冷凝水管管径选型 ............................................18 六、常用水系统设备的水压降......................................... 19 1、常用风冷水系统机组水压降 ....................................19 2、常用水冷机组水压降 ..........................................19
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档