最新二次根式加减法练习题

合集下载

二次根式计算专题_30题(教师版含答案)

二次根式计算专题_30题(教师版含答案)

.word 格式.二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π++【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π++312=+--6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:=32=-1=;(2)2÷=÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯.word 格式.【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.试题解析6=-考点:二次根式化简.6.计算:2421332--. 【答案】22. 【解析】 试题分析:根据二次根式的运算法则计算即可.试题解析-==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.【答案2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析1)=31-2. 考点:二次根式的化简.8.计算2⎛ ⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.试题解析0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()02014120143π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,.word 格式.然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.13.计算0(2013)|+-+-.【答案】1.【解析】试题分析:解0(2013)|-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:???23=-考点: 二次根式的混合运算.15.计算【答案】32-.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析2332=-=-考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】.word 格式.试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2-(2)2-【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-+. (2)(2223===.考点:二次根式化简.18.计算1)(1+ 【答案】17.【解析】试题分析:和4,运用平方差公式计算1)(1-+,再进行计算求解.试题解析:原式181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 012⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝【答案1;②143;③a 3-. 【解析】 试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析01112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂..word 格式.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π+- (2)2(3(4-+【答案】(1)1+;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+==.(2)((()2344951675-+=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(2)3)6;(4)6- 【解析】 试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)
21.计算:(1) (1)2012 5 ( 1 )1 3 27 ( 2 1)0 2
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:

8
2



1 2
0

6 3 2
1 3
48
12

3a2 3
a 2


1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2

初二数学二次根式加减法[人教版]

初二数学二次根式加减法[人教版]
第五节二次根式的加减法
二次根式的加减法
看下面问题: 1.下列二次根式中哪个是最 简二次根式?哪个不是?为 什么?
12, 2 3
2. 12与2 3的形式与实质是 什么? 3. 2 3 5 3 ,可以化简吗? 4. 12 75,可以化简吗?
上次更新: 2018年4月9日星期一
同类二次根式定义
同类二次根式 定义
几个二次根式化成最简二次 根式以后,如果被开方数相 同,这几个二次根式就叫做 同类二次根式. 例如, 8, 1 8,4 2 是同类 二次根式.
二次根式的加减法例题
二次根式的加减法练习题
练习1 判断下列各式是否是同类二 次根式?
(1) 12, (2) 32., (3) 23, (4) 128, (5) 39( , 6) 40.
答案: 同类二次根式有
(2) 32, (4) 128.
二次根式的加减法例题
例题2 计算:
分析: 本题考查二次根式的加减法 运算,应先化简各二次根式, 再合并同类二次根式 1 解: 32 2 0.5 27
1 32 2 0.5 27 3
3 4 2 2 3 3 2 3
二次根式的加减法练习题
二次根式加减法的法则: 二次根式相加减,先把各 个二次根式化成最简二 次根式,再把同类二次 根式进行合并,合并方 法为系数相加减,根式 不变.
第五节二次根式的加减法
然新规矩增多了壹些,但这也不能成为你的借口和理由,否则还要你这个嫡福晋做什么?”爷第壹次当着 第十一章二次根式
对爷说:“爷教训得是,妾身刚刚跟姐妹们闲聊天,壹时忘记了规矩,还望爷恕罪。”“不是爷挑你的理,咱们贝勒府自从升格为王府以来,虽 ; https:///u/5053696712 lgh80neh 众人的面,这么不给雅思琦面子,又是破天荒的头壹遭。众人耳朵里听着,心里直打鼓:爷这是怎么了?不过大家也没有心思想为什么,都在提 心吊胆不要成为了第二个被爷教训的对象。不过,这只是大家的壹厢情愿而已。爷前面的壹番话刚壹出口,就觉得对福晋实在是重了壹些,毕竟 她是嫡福晋,管理好后院诸人是她的天职。福晋要是没有了威信,还怎么可能去管理其它的诸人?因此,稍微顿了壹顿,他将目光又逐壹扫过在 场的每壹个人,然后再次开口道:“福晋疏于管理是末,你们没有做好自己份内的事情是本,归根究底,这府里的规矩是要靠你们每壹个人认真 做好。你们不上心去做好,福晋就壹个人,怎么管得过来?”众人壹听,爷的这股火果然烧到了自己的身上。还没等大家想好怎么办呢,惜月见 淑清有想起身的动作,立即手疾眼快即刻效仿,这两个人壹带头,其它人全跟着赶快起身跪下,七嘴八舌地说着“请爷恕罪”之类的话,眼见着 自己面前跪倒的这壹片,他也有些后悔。明明是因为自己在怡然居生了壹肚子闷气,现在跑到霞光苑来撒这股子邪火,对眼前这些诸人确实很不 公平。可自己那番话已经说出口,断然没有收回的道理,只好继续把这壹出戏唱下去:“行了,你们都起来吧,爷才说了这么壹句,你们就又是 下跪又是恕罪的,好像都是爷的不是似的。”众人更是忐忑不安了,爷的这脸色变得太快了!刚刚还怒气冲冲的样子,现在又和风细雨,这是真 的平安无事了,还是山雨欲来风满楼?第六十四章 乍到就在众人不知道是听从命令起身,还是继续跪着听训话,只听红莲的声音在门外响起: “年侧福晋吉祥!”这壹回谁也不用猜测爷的脸色,也不用观望别人,众人步调壹致地立即起了身,因为谁也不想被这个年龄与她们相比最小, 位份与她们相比最高的新妇看到她们被爷训话的场面,实在是太丢人现眼的事情。望着王爷的背影消失在院外的小路上,冰凝和吟雪、月影三个 人以最快的速度冲回房间,吟雪负责打水,月影负责卸妆,两人兵分两路、七手八脚地用最短的时间完成了换装任务。壹头的金银首饰,壹身的 喜服锦衣,全都乱七八糟地扔在壹旁,头发梳成了壹个发髻,只插了壹个镶有珍珠的银簪,额边垂下几缕青丝,既换作了妇人打扮,又保留了壹 些女孩子的俏皮与天真。衣裳换了壹件淡紫色的旗装,不是特意挑选的紫色,只是冰凝太喜欢紫色,她的衣服大部分都是这个颜色。虽然她非常 不习惯旗装,但即将进行的是新妇敬茶,这娘的意

二次根式混合运算125题(有答案)

二次根式混合运算125题(有答案)

二次根式混合运算125题(有答案)1、2、3、4、5、6、7、.8、10、;11、.12、;13、;14、.15、;16、.17、.18、19、20、;21、22、.23、24、25、26、;.27、28、;;29、;30、31、;(5);32、33、;34、;35、36、3﹣9+337、÷(3×)38、39、40、;.41、42、43、44、45、;46、.47、(﹣)2﹣;48、;49、;50、.51、;52、.53、3﹣﹣+(﹣2)(+2)54、55、56、57、58、59、2÷﹣(2﹣)260、﹣2+(﹣1)261、(+2)﹣.62、63、64、65、.66、67、.68、69、70、3﹣(﹣)71、72、﹣273、74、76、77、÷78、×+÷﹣79、80、81、﹣.82、84、85、(+1)2﹣286、(+1)(1﹣)﹣(﹣1)2+(+1)287、88、89、90、;91、.92、;93、;94、;95、;96、;97、98、|﹣|+﹣;99、;;100、101、(+)2008(﹣)2009.102、;103、;104、.105、(3+)÷;106、107、;108、;109、.110、﹣1111、(﹣)(+)+2+|﹣3|﹣2﹣1(4)(﹣2)×﹣6 114、115、(2﹣);116、117、;118、.119、.120、121、122、+6a;﹣×.123、124、(2)(7+4)(7﹣4)+(2+)125、参考答案1、原式=2﹣3=﹣;2、原式=×==30;3、原式=2﹣12=﹣10.4、原式==2.5、原式===﹣6a.6、原式=;7、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)=8、原式=.9、.原式=(3﹣2+3)×=(+3)×=1+10、原式=﹣+=;11、原式=(4+)÷3=12、原式=2+3﹣=;13、原式==;14、原式=(7+)(7+)=14×2=15、原式==3+6﹣10=﹣1;16、原式=2﹣=﹣2.17、原式=﹣2+=3﹣2+=18、原式=(3﹣2)(3+2)=18﹣12=6;19、原式=(2﹣+)=(+)=+120、原式=﹣3•5÷=﹣15÷=﹣15;21、原式=3+﹣2+﹣3=;22、原式=3a+﹣2b23、原式=3﹣2+1﹣(2﹣3)=5﹣2.25、原式=2+1﹣(﹣)=3﹣1=2.26、原式=17﹣(19﹣)=﹣2+;27、原式=2﹣3﹣2=﹣3.28、原式=4+12=;29、原式=+2﹣10=;30、原式=4﹣+=;31、原式=6﹣5=1;32、原式=12+18﹣12=;33、原式=(2+)×﹣2=3﹣2=1;34、原式=+×6﹣m=2m+3m﹣m=0;35、原式=++1=﹣1++1=36、原式=12=(12﹣3﹣+6)=;37、原式=6÷(×)=6÷6=38、原式=+3﹣2=3+3﹣2=3+.39、原式=++×1=6+1+=7+.40、原式=×3+6×﹣2x•=2+3﹣2=3;41、原式=2﹣+3﹣2=2﹣2+142、原式=(6﹣+﹣2)÷2﹣3=3﹣+﹣﹣3=﹣+﹣;43、原式===444、=(4÷2)=45、原式=2+3﹣7=﹣2;46、原式===14.47、原式=10﹣7+=3+;48、原式=×(2﹣+)=+×=+1;49、原式=﹣1;50、原式=2+3+2﹣(2﹣3)=5+2+1=6+252、原式=(4﹣2+6)÷=2+253、原式=6﹣3﹣+5﹣4=(6﹣3﹣)+1=+154、原式==;55、原式==.56、原式=[﹣(﹣)][+(﹣)]=5﹣(﹣)2=5﹣(5﹣2)=2.57、原式=4×2﹣16+12﹣16﹣8=﹣4﹣16;58、原式=+﹣+3=59、原式=2﹣(4﹣4+2)=2﹣6+4=6﹣6.60、原式=×2﹣2×3+5﹣2+1=﹣6﹣2+6=6﹣7.61、原式=a+2=2.62、原式=;63、原式=﹣+=﹣+=0.64、=2+﹣2=.65、=﹣=66、原式=9﹣14+4=﹣;67、原式=﹣43=﹣12=﹣11.68、原式=2×=12;69、原式=×3×=﹣;70、原式=12﹣2+6=16;71、原式=(4﹣2+6)×=2+272、原式=27÷(3×)×﹣8=3×﹣8=﹣8;73、原式=()2﹣()2=3﹣(2+2+5)=﹣4﹣274、原式=3+8=11;75、原式=2﹣12=﹣10;76、原式=5+﹣6=0;77、原式=÷=÷=1.78、原式=﹣==4+=4+.79、原式===;82、原式==;83、原式=;84、原式=5﹣6=﹣1;85、原式=4+=86、(1+)(1﹣)﹣(﹣1)2+(+1)2=1﹣()2﹣(2﹣2+1)+2+2+1=1﹣2﹣2+2﹣1+2+2+1=4﹣1.87、原式=+4×﹣+1=++1=1+.88、原式=(40)=30=15;89、原式=2+2=2+.90、原式===;91、原式===12.92、原式=2+2+4+2=;93、原式=9﹣14+24=;94、原式=(7+4)(7﹣4)+4﹣3=49﹣48+1=2;95、原式=﹣4×+9﹣12﹣()=﹣8+9﹣12﹣+1=﹣11;96、原式=﹣+=2x+=;97、原式=2a(b﹣×+)=2ab﹣+ab=98、原式=﹣+3﹣5=2﹣4;99、原式=12﹣4+1=13﹣4;100、原式=2+﹣=;101、原式=()=102、原式=3×2﹣2×3+5×4=6﹣6+20=20;103、原式=7﹣3+2=6;104、原式=•(﹣)×=﹣=﹣105、原式=3÷+÷=3+=;106、原式=3﹣1﹣=2﹣107、原式=+1﹣×2=2+1﹣2=1;108、原式=3﹣2+1﹣1=3﹣2;109、原式=+4﹣3=110、﹣1=﹣1=﹣1=0;111、()()+2=﹣+2=5﹣7+2=0;112、+|﹣3|﹣2﹣1=1+3﹣=3;113、(﹣2)×﹣6=﹣4﹣=﹣9﹣=﹣114、原式=4﹣5=﹣1;116、原式=5﹣2﹣5+2=;117、原式=4﹣2+﹣1=3﹣118、原式==3﹣2=1.119、原式==120、原式=+1=121、原式=3+6a=2a+3a=5a;122、原式=﹣=﹣=3﹣2=1.123、原式==12;124、原式=49﹣48+2+=3+.125、原式===.二次根式混合运算----21。

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30 小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+| ﹣2| ﹣+()-2.(2)﹣4﹣(﹣).(3)( x﹣ 3)(3﹣x)﹣( x﹣ 2)2.3.计算化简:(1)++(2)2﹣6 +3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣2+|﹣|(2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)?(a≥ 0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)( 2 +)(2 ﹣ ); (4) + ﹣( ﹣1)0.11.计算:(1)(3+ ﹣4 )÷ ( 2) +9﹣2x 2?.12.计算:①4+﹣+4;②( 7+4 )( 7﹣ 4 )﹣( 3﹣1)2.13.计算题(1)××(2)﹣ +2(3)(﹣ 1﹣)(﹣ +1) (4) ÷( ﹣ )(5)÷ ﹣ × + (6) ..已知:a=,b=,求2+3ab+b2的值.14a15.已知 x, y 都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9 +5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知 y=+﹣4,计算x﹣y2的值.20.已知: a、 b、 c 是△ ABC的三边长,化简.21.已知 1< x<5,化简:﹣| x﹣5|.22.观察下列等式:①==;②==;③==⋯⋯⋯回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++⋯+.23.观察下面的变形规律:=,=,=,=,⋯解答下面的问题:(1)若 n 为正整数,请你猜想=;(2)计算:(++⋯+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++⋯+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9 +7﹣5+2(2)(2﹣1)(2+1)﹣( 1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9 +7﹣5+2(2)(﹣1)(+1)﹣( 1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共 30 小题)1.计算:( 1)+= 2+5=7;(2)(+)+(﹣=4+2+2﹣ =6+. 2.计算:( 1)(π﹣3.14) 0+|﹣2| ﹣+( )﹣2﹣ ﹣4 +9=1+2=12﹣5;( 2)﹣4 ﹣( ﹣ )=2 ﹣4× ﹣ +2=+( 3)(x ﹣3)( 3﹣ x )﹣( x ﹣2)2=﹣x 2+6x ﹣ 9﹣( x 2﹣4x+4)=﹣2x 2+10x ﹣133.计算化简:(1)++ =2 +3 +2=5+2;(2)2﹣6 +3= 2×2 ﹣6× +3×4 = 144.计算( 1)+﹣= 2+4﹣2 = 6 ﹣ 2.(2)÷×=2 ÷3 ×3= 2 .5.计算:( 1)× +3×2 = 7 +30= 37 (2)2﹣ 6+3= 4 ﹣2+12 = 146.计算:( 1)()2﹣20+| ﹣ | = 3﹣1+ =(2)(﹣)×( 3﹣)×= 24=(3)2﹣ 3+= 4﹣12+5 ﹣+5= 8(4)(7+4 )(2﹣ )2+(2+)(2﹣)(2+ ) 2(2﹣ )2+(2+ )(2﹣) =1+1=2=7.计算( 1) ? (a ≥0)== 6a( 2)÷==(3)+ ﹣ ﹣=2 +3 ﹣2 ﹣4=2 ﹣3(4)(3+)( ﹣ )=3 ﹣3 +2 ﹣5 ﹣﹣= 28.计算:( 1) +﹣=+3 ﹣2=2 ;(2)3 +(﹣)+ ÷=+﹣2+ = .9.计算:(1)﹣4 + ÷ =3 ﹣2+ =3 ﹣2 +2 =3 ;( 2)(1﹣ )(1+ )+(1+ )2=1﹣ 5+1+2 +5 =2+2 .10.计算:(1)﹣4 + =3 ﹣ 2 + =2 ;( 2) +2﹣(﹣)=2 +2﹣ 3 +=3﹣;(3)(2 + )(2 ﹣ )=12﹣6=6;( 4)+﹣(﹣1)0= +1+3﹣1 =4.11.计算:(1)(3+﹣4 )÷=4 +3﹣2x 2×=(9 + ﹣ 2)÷ 4=8 ÷4=7 ﹣2=2;=5 .(2)+9﹣ 2x 2?12.计算: ①4 + ﹣ +4 =4 +3 ﹣2 +4 =7 +2 ;②( 7+4)(7﹣4)﹣( 3 ﹣1)2 ﹣ ﹣( ﹣6 )﹣ 45+6 .=49 48 45+1 =13.计算题(1)××= ==2×3×5 =30;(2)﹣ +2=×4 ﹣2 +2×=2 ﹣2 += ;(3)(﹣ 1﹣ )(﹣ +1)=﹣( 1+ )(1﹣ ) =﹣( 1﹣5) =4;(4) ÷( ﹣ )=2 ÷(﹣)=2÷=12;(5) ÷﹣ ×+=4÷ ﹣+2 =4+ ;(6)===..已知: a=, b= ,求2+3ab+b 2的值.14a解: a==2+ ,b=2﹣ ,则 a+b=4, ab=1,a 2+3ab+b 2=( a+b )2+ab =17.15.已知 x , y 都是有理数,并且满足,求 的值.【分析】观察式子,需求出 x ,y 的值,因此,将已知等式变形:,x ,y 都是有理数,可得,求解并使原式有意义即可.【解答】 解:∵,∴.∵x ,y 都是有理数,∴ x 2+2y ﹣17 与 y+4 也是有理数,∴解得∵有意义的条件是 x ≥ y ,∴取 x=5,y=﹣ 4,∴.【点评】 此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a .【分析】 分别求出=﹣ a,=﹣,代入合并即可.【解答】 解:原式 =﹣ a+=(﹣ a+1) .【点评】本题考查了二次根式性质的应用当 a ≥0 时,=a ,当 a ≤0 时,=﹣ a .17.计算:(1)9+5 ﹣3 =9 +10 ﹣12 =7 ;(2)2= 2×2×2×=;(3)()2016( ﹣)2015.=[(+)( ﹣ )]2015?( + )=( 5﹣ 6) 2015?( + )=﹣(+ )=﹣﹣ .18.计算:.解:原式 =+()2﹣2+1﹣+=3+3﹣2 +1﹣2+=4﹣.19.已知 y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x 的值,进而可求出 y 的值,然后代入 x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把 x=代入y=+﹣4,得y=﹣4,当 x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知: a、 b、 c 是△ ABC的三边长,化简.【解】解:∵ a、b、 c 是△ ABC的三边长,∴ a+b>c, b+c>a,b+a>c,∴原式 =| a+b+c| ﹣ | b+c﹣a|+| c﹣b﹣a|=a+b+c﹣( b+c﹣a) +( b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣ c.21.已知 1< x< 5,化简:﹣| x﹣5|.解:∵ 1< x< 5,∴原式 =| x﹣1| ﹣| x﹣ 5| =( x﹣1)﹣( 5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==⋯回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++⋯+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:( 1)原式 ==;)(2)原式=+++⋯+=(﹣1).23 .观察下面的变形规律:=,=,=,=,⋯解答下面的问题:( 1)若 n 为正整数,请你猜想=﹣;( 2)计算:(++⋯+)×()解:原式 =[(﹣1)+(﹣)+(﹣)+⋯+(﹣)](+1)=(﹣1)(+1)=()2﹣12=﹣.2016 1 = 201524.阅读下面的材料,并解答后面的问题:==﹣ 1==﹣;==﹣(1)观察上面的等式,请直接写出(n 为正整数)的结果﹣;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+++⋯+)().=(﹣1+﹣+⋯+﹣)()=(﹣1)(+1)=2017﹣1=2016.第 11 页(共 12 页)25.计算:(1)6﹣2 ﹣3= 6﹣5= 6﹣;(2)4+﹣+4=4 +3 ﹣2+4=7+2.26.计算( 1) |﹣2| ﹣+2= 2﹣﹣2+2=;( 2)﹣×+=﹣×5+=﹣1+﹣.=27.计算.=( 10﹣ 6+4)÷=( 10﹣6+4)÷=( 40﹣18+8)÷=30÷=15.28.计算( 1)9 +7﹣5+2= 9 +14﹣20+=;(2)(2 ﹣1)(2 +1)﹣(1﹣2 )2= 12﹣1﹣1+4 ﹣12 = 4 ﹣2.29.计算下列各题.(1)(﹣)×+3=﹣+=6﹣6 +=6﹣5 ;( 2)﹣×=+1﹣= 2+1﹣2 .30.计算(1)9+7﹣5+2= 9+14 ﹣20+=;(2)(﹣1)( +1)﹣( 1﹣2 )2=3﹣1﹣( 1+12﹣ 4 )=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

(完整版)二次根式计算专题——30题(教师版含答案),推荐文档

(完整版)二次根式计算专题——30题(教师版含答案),推荐文档
试题解析: +10 12 3 1 2 3 3 1 3 .
考点:二次根式的化简.
10.计算: 8 3 1 0.5 3
3
4
3
【答案】
23
3.
22
【解析】
试题分析:先化成最简二次根式,再进行运算.
试题解析:原式= 2 2
3
2
33
=
23
3.
2 22 2
考点:二次根式的化简. 11.计算:
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
=- 2 + 6 23
考点: 二次根式的混合运算.
3
3
考点:二次根式运算.
4.计算: 3 6 6 2 3 2
【答案】 2 2 .
【解析】 试题分析:先算乘除、去绝对值符号,再算加减.
试题解析:原式= 3 2 3 3 2
=2 2
考点:二次根式运算.
5.计算: 2 18 3( 3 2)
【答案】 3 3 .
【解析】 试题分析:先将二次根式化成最简二次根式,再化简.
【答案】(1) 9 ;(2) 6 5 . 2
(1) 27 12 45 1 3
(2) 12014 18 20140 2 2 3
试卷第 3 页,总 10 页
【答案】(1)1 15 ;(2) 3 2 .
【解析】 试题分析:(1)根据二次根式的运算法则计算即可; (2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值 4 个考点分别进行计算, 然后根据实数的运算法则求得计算结果. 试题解析:(1)

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()= ;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣ = 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣) = 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4 =8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6) =﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5) =4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想= ﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

八年级下册数学同步练习题库:二次根式的加减(计算题:一般)

八年级下册数学同步练习题库:二次根式的加减(计算题:一般)

二次根式的加减(计算题:一般)1、计算(1)(2)(3)(4)(5)(6)2、计算(1) (2)(3)3、(1)× (2)4、(1)(-)(2)| | + || +5、计算:.6、先化简,再求值:(),其中x=﹣2.7、观察下面计算:①②;③④.求:(1)直接写出(n为正整数)的值;(2)利用上面所揭示的规律计算:.8、已知x= (+),y= (-),求下列各式的值:(1)x2-xy+y2;(2)+.9、(1)(2)(3)(4)÷10、化简:(1) (2)11、计算:.12、计算:(1)(2).13、14、先化简,再求值:,其中,.15、16、计算: +(﹣1)+()0.17、计算:.18、化简:(4﹣6)÷﹣(+)(﹣)19、计算﹣(﹣2)0﹣|﹣|+2﹣1.20、已知x=3+2,y=3﹣2,求下列各式的值:(1)x2y+xy2;(2).21、计算:.22、计算:.23、计算:(1);(2);(3).24、先化简,后计算:,其中,.25、(1)计算:(2)先化简,再求值:,其中.26、阅读下面计算过程:试求:(1)=__________;(2)(为正整数)=_______________;(3)的值.27、计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.28、计算:()﹣2﹣()0+2sin30°+|﹣3|.29、计算:()﹣1+16÷(﹣2)3+(2016﹣)0﹣tan60°.30、计算:31、计算:32、计算题(1)(2)(3)2022+202×196+982(4)33、计算(1)(2)34、计算(1)+(﹣1)2016﹣(2)(a4)3•(a2)3÷(a4)2(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)(4)9(x+2)(x﹣2)﹣(3x﹣1)2(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x.35、计算:.36、计算:37、计算:38、计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.39、(2016•海南模拟)计算:(1)9×+﹣;(2).40、计算:(1﹣)0+(﹣1)2016﹣tan30°+()﹣2.41、计算:(﹣3)2+()0﹣+2﹣1+•tan30°.42、计算:|﹣|﹣2cos45°+(2016﹣π)0﹣.43、计算:.44、计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|45、计算:|﹣2|+(π﹣1)0×(﹣1)2012+()﹣3.46、计算:47、计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.48、计算:.49、计算(1)(2)50、计算:﹣12+(﹣2)3×﹣×|﹣|+2÷()2.51、(1)计算:(2)化简:.52、求下列各式的值:(1) (2)-+53、计算:54、计算(1)(2)(-3a3)2·a3+(-a)2·a7-(5a3)3(3)(3x+2)2-(3x-2)2+(3x+2)(3x-2)55、计算:56、阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得= = = ;②参照(四)式得= = = ;(2)化简:.57、计算①+3—5②58、(1)计算:+-;(2)化简:59、60、61、计算:(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.62、计算:3+(﹣2)3﹣(π﹣3)0.63、(1)计算:()﹣1﹣﹣()0+|﹣1|(2)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.64、(1)计算:;(2)化简:2a(2a﹣3b)﹣(2a﹣3b)2.65、计算(1)(2)66、计算:(1);(2)。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

二次根式计算专题——30题

二次根式计算专题——30题

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+- 【答案】(1)22; (2) 643- 【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案. (2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+- 22(36)(42)=-=54-32=22.(2)20(3)(3)2732π++-+-313323=+-+-643=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π----【答案】(1)1+(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】0(2013)|-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】2-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.==- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1-+ 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(2) (3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式的加减法专题训练

二次根式的加减法专题训练

I n n a t u r e t h e r e a r e n o r e w a r ds o r p u n i s h me n t s ; t h e r e a r e c 。 n 8 e q u 曲c e ・
( 答 案在参 考答 案第 1页)
、 、

、 ・ — — — — - — — — ・ — - — - - - — - — - — ・ — — — - — - — - — — — ・ — — - — - — - — - … 、 — — … ・ — … — — — - — — — — — - — - — - — - … — - — - ・ ・ — - — — — - — - — ・ — - — — — - — - … — ・ — - — - — - … … … 一
) .
住 2 x X / -  ̄ + 詈
1 4 . 已知 、 / 1 . 4 1 4 ,

1 . 7 3 2 求 下 列

B. a > c > b
D. b >c > a
5 , 若口 , b分 别 是 6 一 、 / 百 的 整 数 部分 和 小 数
部分 , 那么 2 6的值是 ( ) .
( +
) _ l ( 悸一 ) .
7 . 估算、 / + 3的值 (
A . 在 5和 6之 间 C 、 . 在 7和 8之 间
) .
B . 在 6和 7之 间 D . 在 8和 9之 间 1 5 . 已知 0 = — . 求 2 o - 3的值 . 、 / 了一 1
B. a =l , 6 : 一 1
D. a =l , b =l
二、 填 空题
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式加减法练习题
一、选择题
1.下列根式,不能与48合并的是( )A.0.12 B.18 C.1
13 D.75-
2.计算|2﹣
|+|4﹣
|的值是( )A .﹣2 B .2
C .2﹣6
D .6﹣2
3.小明的作业本上有以下四题:① =4a 2;②

=5
a ;
③a
=
=
;④
÷=4.做错的题是( )A .① B .② C .③ D .④
4.若最简二次根式和
能合并,则x 的值可能为( )
A .
B .
C .2
D .5
5.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为( ) A .4+5 B .2+10 C .4+10 D .4+5或2+10 6.已知231a b -=,3ab =(1)(1)a b +-的值为( ) A .3
B .33
C .322
D 31
7.计算221)(21)+的结果是( )21 B.3(21) C.1 D.1- 8. 下列计算中正确的有( )A.0个 B.1个 C.2个 D.3个
(1347=
(2)23555+=(3)32a b a b =- (4)
1275
4252573
==+= 9. 计算32394y x x xy x y y x x
y ⎛- ⎝,结果等于( ) A.2xy - B.0 y
xy x
D.3xy
10. 已知1003997100199921001a b c ===,,,则a b c ,,的大小关系为( ) A.a b c >> B.a c b >> C.b a c >> D.c b a >> 11. 满足等式2003200320032003=+--+xy y x xy y x 的正整数对),(y x 的个数是( ). A .1 B .2 C .3 D .4 12.b a 、为有理数,且满足等式b a b a +++•=+则,324163的值( ). A .2 B .4 C .6 D .8
13. 已知)0,0(02>>=+-y x y xy x ,则
y
xy x y
xy x 4353-++-的值为( )
A .3
1 B .2
1 C .3
2 D .4
3 二、填空题 14.化简:
= .
15.计算(+1)2018(﹣1)2017= .
16.已知x 1=+,x 2=﹣,则x 12+x 22= . 17.如果最简根式5a -+29b
b --能够进行合并,则a b -= .
18.计算:2(35)+= ,2(363)= . 19.若310a =262a a --的值为 . 20.已知3xy =,那么y x
x
y
x y
的值是 . 21. 已知x ,y 为实数,且满足y y x ---+1)1(1=0,那么x 2011﹣y 2011= 22. 如图,以1为直角边长作直角三角形,以它的斜边长和1为直角边作
第二个直角三角形,再以它的斜边和1为直角边作第三个直角三角形, 以此类推,所得第n 个直角三角形的斜边长为 .
23. 20042003 20022001
24. 方程2(x -1)=x +1的解是____________. 25. 已知a 、b 、c 为正数,d 为负数,化简
2
2
22d
c ab
d c ab +-=______.
26. 已知a 是34-的小数部分,那么代数式⎪⎭⎫
⎝⎛-•⎪⎪⎭⎫ ⎝⎛++++-+a a a a a a a a a 42442222的值为________________.
27. 计算2001)13(2)13(2)13(199920002001++-+-+= . 三、解答题
28.计算: ①1254551520+-- ②24a 9a 339
3538154a a a a a
1
1
1
1 1 1
④ ⑤2a -3a 2b +54a -2b
a
2
b
⑥2127–2
318–(43–41
2
) ⑦(235+-)(235--) ⑧11
45--
7114--7
32+ ⑨(a 2m n -
m ab
mn +
m n
n m )÷a 2b 2m
n
⑩(a +b
a ab
b +-)÷(b ab a ++a ab b --ab b a +)(a ≠b )
29.已知a b 、为有理数,m n 、分别表示57的整数部分和小数部分,且
21amn bn +=,求2a+b 的值
30..已知2
323,2
323-+=
+-=y x 求代数式22353y xy x +-的值
31.观察下列各式及其化简过程:
22
322(2)2211
+=+⨯+2
(21)21
=+=+;
22
526(3)232(2)
-=-⨯+32
=-.
(1)按照上述两个根式的化简过程的基本思想,将10221
-
化简;
(2)针对上述各式反映的规律,请你写出2()
a b m n m n
±=±>中a b
,与m n
,之间的关系.
32.有这样一道题,计算2
2
2
2
2
4
4
4
4
x
x
x
x
x
x
x
x
x
-
+
+
-
-
+
-
-
-
+
的值,其中1005
=
x,某同学把“1005
=
x”错钞成“1050
=
x”,但他的计算结果是正确的.请你回答这是怎么回事?试说明理由.
33.先化简,再求值.
[]÷,其中a=3,b=4.
34. 细心观察图,认真分析各式,然后解答各个问题.
2
1
2
2
2
3
1
1)12
2
2
2)13
2
3
3)14
S
S
S
+==
+==
+==



(1)请用含n的(n为正整数)的等式表示上述变化规律.
(2)推算出
10
OA的长度.
(3)求出2222
12310
S S S S
++++的值.
5
A
4
A
3
A
2
A
1
A
1
S
2
S
3
S
4
S


1。

相关文档
最新文档