【深圳市】人教版小学五年级上册数学总复习知识点整理版本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学五年级上册数学总复习知识点
一、小数乘法和除法
1、小数乘整数:
意义:求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
小数乘整数计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
意义:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
小数乘小数计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律1:①一个数(0除外)乘大于1的数,积比原来的数大;
②一个数(0除外)乘小于1的数,积比原来的数小:
③一个数(0除外)乘1的数,积等于原来的数。
4、求近似数的方法一般有三种:
(1)四舍五入法(2)进一法(3)去尾法
5、计算钱数时,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:①乘法交换律:a×b=b×a
②乘法结合律:(a×b)×c=a×(b×c)
③乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
除法:除法性质:a÷b÷c=a÷(b×c)
例1 用简便方法计算下列各题
①0.25⨯104 ②2.4⨯2.5⨯44
③ 0.31⨯99 ④4.2⨯99+4.2
例2 明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。每支黑色笔芯多少钱?
例3 7.9468保留整数是( ) ,保留一位小数是( ) ,保留两位小数是( ) 。
一、基础知识填空
1、小数乘法的计算先按整数乘法算出(),在给()点上
()。看因数中一共有几位(),就从积的右边起数出(),点上()。乘得的积的小数位数不够,要在前面用()补足,再点小数点。
2、积的近似数可以根据需要,按()法保留一定的小数位数。
3、0.367保留两位小数的近似数是(),5.999保留一位小数的近似数是()。
三、用简便方法计算下面各题。
4.8×0.25 2.33×0.5×4
1.5×105 1.2×
2.5+0.8×2.5
五、解决实际问题。
1、鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是56千米/时, 非洲野狗的最高速度是多少千米/时?
2、小明从家到学校的距离是1.8千米,计算每天从家到学校往返要走多少千米(每天往返两次),一周(按5天计算)要走多少千米?
3、回收1吨废纸,可以保护16棵树,回收54.5吨废纸可以保护多少棵树?
4、王老师从家骑车到学校要用0.25小时,家离学校有多远?如果他改为步行,每小时走5千米,用0.8小时能走到学校吗?
二、小数除法
1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数, 求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6, 求另一个因数是多少。
2、小数除以整数计算方法,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。如果除到末尾仍有余数,要添0再继续除。
3、除数是小数的除法计算方法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。再按照除数是整数的小数除法进行计算。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、被除数、除数和商的关系。
①被除数比除数大,商大于1。被除数比除数小,商小于1。
②一个数(0除外)除以小于1的数(0除外),商大于被除数;
③一个数(0除外)除以1,商等于被除数;
④一个数(0除外)除以小于1的数(0除外),商大于被除数。
6、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
注意: A 除以B=A÷B;A 除B=B÷A;A 去除B=B÷A;A 被B 除=A÷B。
7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
8、小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。
9、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
10、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个循环点。循环点最多只点两个。
11、取近似数有三种方法:1、四舍五入法;2、去尾法;3、进一法。在解决实际问题时,要根据实际情况取商的近似值。
例:0.25×3.94(积保留一位小数)17.6×22.92(得数保留两位小数)
1.06×
2.7(积精确到百分位)0.74×0.21(积精确到十分位)
3、用简便记法表示下列各循环小数。
0.06262···写作()
3.2727···()
16.203203···写作()
0.33066···()
4、列竖式计算下面各题,商用循环小数表示。
2.75÷6289÷90156÷11
三、整数、小数四则混合运算和应用题
1、四则混合运算顺序
整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数四则混合运算的运算定律对小数同样适用。
一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算;如果有括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
2、解答应用题的步骤
(1)弄清题意,并找出已知条件和所求问题;
(2)分析题里数量间的关系,确定先算什么,再算什么,最后算什么;
(3)确定每一步该怎样算,列出算式,算出得数;
(4)进行检验,写出答案。