主备一次函数集体备课教案
八下数学《一次函数》集体备课
团风县实验中学集体备课记录八年级数学教学内容19.1.1 变量与函数主备教师缺勤教师审核教师课时 1参加教师发言记录(或修改记录)备课内容要点【教学目标】一、知识与能力1.理解函数的概念,了解变量与常量以及自变量的意义.2.理解自变量的取值范围和函数值的意义,会求自变量的取值范围,会根据自变量的取值范围求函数值.二、过程与方法经历函数概念的抽象概括过程,体会函数的模型思想,让学生参与观察、操作、交流、归纳等活动,形成自己对数学知识的理解和有效的学习模式.三、情感、态度价值观通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力,从而培养学生乐于探究,合作学习的习惯,培养学生努力寻找解决问题的进取心.【教学重难点】教学重点:函数的概念和函数自变量的取值范围.教学难点:求函数自变量的取值范围.【教学过程】一.创设情境,导入新知行星在宇宙中的位置随时间而变化……;气温随海拔而变化……;树高随树龄而变化……学生回答,教师点评.2.引出课题:19.1.1 变量与函数.二.合作交流,探求新知问题:(1)汽车以60 km/h 的速度匀速行驶,行驶路程为 s km,行驶时间为 t h.那么s的值是随t的值变化而变化吗?行驶时间 1 2 3 4 5 t行驶路程(2)每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.那么y的值是随x的值变化而变化吗?销售数量150 200 250 300 350 x票房收入(3)你见过水中涟漪吗?圆形水波慢慢地扩大.设圆的半径为r㎝,圆的面积为S ㎝2.那么S的值是随r的值变化而变化吗?圆的半径10 20 30 40 50 r圆的面积(4)用10m长的绳子围一个矩形.设矩形的一边长为x m,它的邻边长为y m.那么y的值是随x的值变化而变化吗?一边长 2 2.5 3 3.5 4 x邻边长思考:1.这些问题中,哪些量是变化的?哪些量是始终不变的?2.这些问题中是否各有两个变量?同一个问题中的变量之间有什么联系?(1)s=60t ;(2) y=10x ;(3) S=πr2;(4) y=5-x .归纳:①在一个变化过程中,数值发生变化的量为变量,数值始终不变的量为常量.②在一个变化过程中,如果两个变量 x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么x是自变量,y是x的函数.③如果当x= a时y =b ,那么b叫做当自变量的值为a时的函数值.④像以下这样,用关于自变量的数学式子来表示函数与自变量之间的关系,这种式子叫做函数的解析式.它是描述函数的常用方法.三.例题讲解,应用新知探究点一:常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=12gt2(其中g取9.8m/s2);(4)已知橙子每千克的售价是1.8元,则购买数量w千克与所付款x元之间的关系式是x=1.8w.分析:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.解:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2,其中,常量是4π,变量是S,R;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2,常量是v0,4.9,变量是h,t;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=12gt2(其中g取9.8m/s2),其中常量是12g,变量是h,t;(4)已知橙子每千克的售价是1.8元,则购买数量w千克与所付款x元之间的关系式是x=1.8w,常量是1.8,变量是x,w.方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.探究点二:函数的定义下列说法中正确的是()A .变量x ,y 满足x +3y =1,则y 是x 的函数B .变量x ,y 满足y =-x 2-1,则y 可以是x 的函数C .变量x ,y 满足|y |=x ,则y 可以是x 的函数D .变量x ,y 满足y 2=x ,则y 可以是x 的函数 分析:A 中x +3y =1,y 可以看作x 的函数,因为y =1-x3;B 中y =-x 2-1,因为-x 2-1<0,等式无意义,即对于变量x 的任何一个取值,变量y 都没有唯一确定的值,故y 不是x 的函数;C 、D 中的|y |=x 和y 2=x ,对于变量x 的任意一个正数值,变量y 都有两个(不唯一)值与其对应,故y 不是x 的函数.故选A.方法总结:判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定好哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应的关系. 探究点三:确定自变量的取值范围【类型一】 确定函数解析式中自变量的取值范围写出下列函数中自变量x 的取值范围.(1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2.分析:当表达式的分母不含有自变量时,自变量取全体实数;当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.解:(1)全体实数;(2)分母1-x ≠0,即x ≠1; (3)被开方数4-x ≥0,即x ≤4;(4)由题意得⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.【类型二】 实际问题中自变量的取值范围水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经过t 分钟后,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)几点几分水箱内的水恰好放完?分析:(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y =200-2t .∵y ≥0,∴200-2t ≥0,解得t ≤100,∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100);(2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y =0时,200-2t =0,解得t =100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.探究点四:函数值根据如图所示程序计算函数值,若输入x的值为52,则输出的函数值为()A.32 B.25 C.425 D.254分析:∵x=52时,在2≤x≤4之间,∴将x=52代入函数y=1x,得y=25.选B.方法总结:根据所给的自变量的值,结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.四.课堂练习,巩固新知教材74页练习1、2题;五.课堂小结,回顾新知1.请你谈谈本堂课的收获.2.你有什么困惑?六.布置作业,深化新知1.必做题:2.选做题:【教学反思】团风县实验中学集体备课记录八年级数学教学 内容 19.1.2函数的图象 主备 教师缺勤 教师审核 教师课时1参加 教师发言记录 (或修改记录)备 课 内 容 要 点【教学目标】 一、知识与能力1. 了解函数的三种不同的表示方法,在实际情境中,会根据不同的需要,选择恰当的函数的表示方法.2.能根据函数图象所提供的信息获取函数的性质.3.会画函数的图象,能准确判断点与函数图象的位置关系. 二、过程与方法让学生经历画函数图象的过程,初步学会观察分析图象,获得变量之间关系的直观体验,可以数形结合地研究函数,提高学生运用数学知识解决实际问题的能力.三、情感、态度价值观渗透数形结合的思想,体会到数学来源于生活,又应用于生活,培养学生在小组合作交流中的协作精神、探究精神,增强学习信心. 【教学重难点】教学重点:画函数图象.教学难点:能根据函数图象所提供的信息获取函数的性质.【教学过程】一.提出问题,导入新知1.问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?学生回答,教师点评. 2.引出课题:19.1.2 函数的图象. 二.合作交流,探求新知探究:正方形的面积S 与边长x 的函数关系式是()02>=x xS .思考:①能否利用在坐标系中画图的方法来表示S 与x 的函数关系? ②自变量x 的一个确定的值与它所对应的唯一的数值S ,是否确定了一个点(x ,S )呢?归纳:①函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.②描点法画函数图象的一般步骤:列表、描点、连线.三.例题讲解,应用新知【类型一】用列表法表示函数关系有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克)1234…伸长量(厘米)0.51 1.52…总长度(厘米)10.51111.512…(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用h表示总长度,请写出此时弹簧的总长度的函数表达式;(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克?分析:(1)根据挂重物每克弹簧伸长0.5厘米,要伸长5厘米需挂重物质量;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据题意求出函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克;(2)函数的表达式为h=10+0.5x(0≤x≤50);(3)当h=25时,25=10+0.5x,x=30.答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.方法总结:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.【类型二】用图象法表示函数关系如图所示,修建高速公路的过程中,施工队在工作了一段时间后,因暴雨被迫停工几天,暴雨过后施工队加快了施工进度,按时完成了工程任务,下面能反映该工程未修建的公路里程y(千米)与时间x(天)之间的函数关系的大致图象是()解析:∵y表示未修建的公路里程,x表示时间,∴y由大变小,∴选项A、D错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,随后加快了施工进度,∴y随x的增大减小得比开始的快,线段与x轴夹角变大.∴选项C错误,选项B正确.故选B.方法总结:在选择合适图象时,要先弄清横纵坐标表示的意义,再根据描述找出关键转折点,分析转折前后是否都均匀变化,确定图象的线条是直线还是曲线.变化的趋势是快是慢,则可用与x轴的夹角来表示出来.【类型三】用解析法表示函数关系一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升,行驶了多千米?分析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值.解:(1)y=-0.6x+48;(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.方法总结:解析法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.【类型四】利用函数图象解决实际问题如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);(2)由横坐标看出,2-1.5=0.5(小时),汽车在行驶途中停留了0.5小时;(3)由纵坐标看出汽车到达D点时的路程是120千米,由横坐标看出到达D点时的时间是3小时,由此算出平均速度120÷3=40(km/h);由纵坐标看出返回的路程是120千米,由横坐标看出,4.5-3=1.5(小时),汽车返回家用了1.5小时,由此算出平均速度是120÷1.5=80(km/h);(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.方法总结:图象法的优点:直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.四.课堂练习,巩固新知教材79页练习1、2题;五.课堂小结,回顾新知1.请你谈谈本堂课的收获.2.你有什么困惑?六.布置作业,深化新知1.必做题:2.选做题:【教学反思】团风县实验中学集体备课记录八年级数学教学 内容 19.2.1正比例函数 主备 教师缺勤教师审核 教师课时1参加 教师发言记录 (或修改记录)备 课 内 容 要 点【教学目标】 一、知识与能力1.初步理解正比例函数的概念及其图象的特征,能够判断两个变量是否成正比例函数关系.2.能够画出正比例函数的图象,能利用正比例函数解决简单的数学问题. 二、过程与方法通过对正比例函数图象的学习和研究,感知数形结合的思想,体会建立数学模型的思想,提高学生运用数学知识解决实际问题的能力. 三、情感、态度价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心. 【教学重难点】教学重点:正比例函数的概念. 教学难点:正比例函数的图象及性质.【教学过程】一.创设情境,导入新知鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在2.56万千米外的澳大利亚发现了它.(1)这只百余克重的小鸟大约平均每天飞行多少千米?(2)这只燕鸥飞行一个半月(一个月按30天计算)的行程大约是多少千米? (3)这只燕鸥的行程y (单位:千米)与飞行时间x (单位:天)之间有什么关系?学生回答,教师点评.2.引出课题:19.2.1 正比例函数. 二.合作交流,探求新知 1.正比例函数的定义形如 的函数叫做正比例函数,其中 叫做比例系数. 注意:①正比例函数都是常数与自变量的乘积的形式;②系数k ≠0,x 的次数为1.2.正比例函数的图象及其性质 正比例函数kx y =(k 是常数,0≠k )的图象是一条经过原点的直线,我们通常称之为直线kx y =.当0>k 时,直线kx y =依次经过第三、第一象限,从左向右上升,y随x 的增大而增大;当0<k 时,直线kx y =依次经过第二、第四象限,从左向右下降,y 随x的增大而减小.注意:根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象.这两个点是(0,0)、(1,k ) 三.例题讲解,应用新知 【类型一】 正比例函数的识别下列函数是一次函数的是( )A .y =-8xB .y =-8xC .y =-8x 2+2D .y =-8x +2解析:A.它是正比例函数,正确;B.自变量次数不为1,不是正比例函数,错误;C.自变量次数不为1,不是正比例函数,错误;D.自变量次数不为1,不是正比例函数,错误;故选A.方法总结:正比例函数解析y =kx 的结构特征:k ≠0;自变量的次数为1. 【类型二】正比例函数的图象在下列各图象中,表示函数y =-kx (k <0)的图象的是( )解析:∵k <0,∴-k >0,∴函数y =-kx (k <0)的值随自变量x 的增大而增大,且函数为正比例函数,故选C.方法总结:要知道正比例函数的图象是过原点的直线,且当k >0时,图象过第一、三象限;当k <0时,图象过第二、四象限.【类型三】 直接考查正比例函数的性质关于函数y =13x ,下列结论中,正确的是( )A .函数图象经过点(1,3)B .不论x 为何值,总有y >0C .y 随x 的增大而减小D .函数图象经过第一、三象限 解析:当x =1时,y =13,故A 选项错误;只有当x >0时,y >0,故选项B错误;∵k =13>0,∴y 随x 的增大而增大,故选项C 错误;∵k =13>0,∴函数图象经过第一、三象限,D 选项正确.故选D.方法总结:解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系.【类型四】 利用图象性质比较函数值大小点A (5,y 1)和B (2,y 2)都在直线y =-x 上,则y 1与y 2的关系是( ) A .y 1≥y 2 B .y 1=y 2 C .y 1<y 2 D .y 1>y 2解析:∵点A (5,y 1)和B (2,y 2)都在直线y =-x 上,∴y 1=-5,y 2=-2,∵-5<-2,∴y 1<y 2.故选C.方法总结:熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.【类型五】实际问题中的正比例函数一辆车从A地将一批物品匀速运往B地,如图,线段OP表示车离A 地的距离s(千米)与时间t(小时)的关系,a表示A、B两地间的距离.现有以下四个结论:①车的速度为40km/h;②两地之间的距离为180km;③点P 的坐标为(4.5,180);④车到达B地后以原速度的1.5倍立即返回,可在出发7.5小时后回到A地.以上四个结论正确的是()A.①②④B.①③④C.②③④D.①②③④解析:利用图象上D点的坐标得出车的速度为40千米/小时,再利用P点的坐标列出等量关系求出a即可;再设甲返回的速度为x km/h,根据路程、时间、速度间关系,进而求出即可.解:∵车的速度为601.5=40(千米/小时),所以①正确;根据题意,得a4.5=601.5,解得a=180(千米).点P的坐标为(4.5,180),则②③正确;设甲车返回的时间为x小时,则180=40×1.5x,解得x=3,则总时间为4.5+3=7.5(小时),经检验,x=3是方程的解并符合题意,则④正确.故正确的有①②③④.故选D.方法总结:根据图象找到有用的信息,要注意横纵坐标表示的意义各是什么,再结合文字分析图中的图线所表示的实际意义是解题的关键.四.课堂练习,巩固新知教材87页练习1、2题;教材89页练习1题;五.课堂小结,回顾新知1.请你谈谈本堂课的收获.2.你有什么困惑?六.布置作业,深化新知1.必做题:2.选做题:【教学反思】团风县实验中学集体备课记录八年级数学教学 内容 19.2.2一次函数(1) 主备 教师缺勤 教师审核 教师课时1参加 教师发言记录 (或修改记录)备 课 内 容 要 点【教学目标】 一、知识与能力1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的解析式,能利用一次函数解决简单的问题.二、过程与方法通过学生经历探究一次函数的概念的过程,初步提高数学探究能力和归纳表达能力,发展抽象思维能力,体验特殊到一般的辩证关系. 三、情感、态度价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心. 【教学重难点】教学重点:一次函数的概念.教学难点:理解一次函数与正比例函数的关系.【教学过程】一.复习回顾,导入新知 1.复习:什么是正比例函数? 2.问题:某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃. 登山队员由向上登高xkm 时,他们所在位置的气温为y ℃,试用函数解析式表示y 与x 的关系.3.这个函数是正比例函数吗?它与正比例函数有什么不同?学生回答,教师点评.4.引出课题:19.2.2 一次函数(1). 二.合作交流,探求新知 1.一次函数的概念形如 的函数叫做一次函数.注意:①一次函数都是常数k 与自变量的积与常数b 的和的形式;②系数k ≠0,x 的次数为1;③常数项b 可为任意实数. 2.正比例函数与一次函数的关系正比例函数是一种特殊的一次函数,一次函数包括正比例函数. 一次函数()0≠+=k b kx y ,当0=b 时,是特殊的一次函数;当0≠b 时,是一般的一次函数.三.例题讲解,应用新知 【类型一】 一次函数的识别下列函数是一次函数的是( )A.y=-8x B.y=-8x C.y=-8x2+2 D.y=-8x+2解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误;故选A.方法总结:一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.【类型二】利用一次函数和正比例函数定义确定字母的值已知y=(m+1)x2-|m|+n+4.(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?解析:(1)根据一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,据此求解即可;(2)根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,据此求解即可.解:(1)根据一次函数的定义,得2-|m|=1,解得m=±1.又∵m+1≠0即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得2-|m|=1,n+4=0,解得m=±1,n=-4,又∵m+1≠0即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数.方法总结:一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.四.课堂练习,巩固新知教材90页练习1、2、3题;五.课堂小结,回顾新知1.请你谈谈本堂课的收获.2.你有什么困惑?六.布置作业,深化新知1.必做题:2.选做题:【教学反思】团风县实验中学集体备课记录八年级数学教学 内容 19.2.2一次函数(2) 主备 教师缺勤 教师审核 教师课时1参加 教师发言记录 (或修改记录)备 课 内 容 要 点【教学目标】 一、知识与能力 1.理解直线b kx y +=与直线kx y =之间的位置关系.2.会选择两个合适的点画出一次函数的图象.3.掌握一次函数的性质. 二、过程与方法通过对应描点来研究一次函数的图象,学生经历探究一次函数的性质的过程,初步提高数学探究能力和归纳表达能力,体验数形结合和从特殊到一般的数学思想. 三、情感、态度价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心. 【教学重难点】教学重点:会画一次函数的图象,理解掌握一次函数的图象和性质. 教学难点:理解直线y =kx +b 与直线y =kx 之间位置关系.【教学过程】一.复习回顾,导入新知1.什么叫正比例函数、一次函数?它们之间有什么关系? 2.正比例函数的图象是什么形状?3.正比例函数y =kx (k 是常数,k ≠0)中,k 的正负对函数图象有什么影响?既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?它们的图象之间有什么关系?学生回答,教师点评.4.引出课题:19.2.2 一次函数(2). 二.合作交流,探求新知 1.一次函数图象的画法 经过两点(0,b )、(kb-,0)或(0,b )、(1,k +b )作直线y =kx +b . 注意:用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况确定,所选取的点的横、纵坐标尽量取整数,以便于描点准确. 2. 直线y =kx +b 与直线y =kx 之间位置关系 直线y =kx +b 可以看作由直线y =kx 平移b 个单位而得到.当b >0时,向上平移;b <0时,向下平移.注意:①如果两条直线平行,则比例系数相等;②将直线平移的规律是:上加下减,左加右减.3.一次函数的性质 ①当00>>b k 、时,直线经过第一、二、三象限,函数图象从左到右上升,y 随x 的增大而增大; ②当00<>b k 、时,直线经过第一、三、四象限,函数图象从左到右上升,y 随x 的增大而增大; ③当00><b k 、时,直线经过第一、二、四象限,函数图象从左到右下降,y 随x 的增大而减小; ④当00<<b k、时,直线经过第二、三、四象限,函数图象从左到右下降,y 随x 的增大而减小. 三.例题讲解,应用新知 【类型一】 一次函数图象的画法在同一平面直角坐标系中,作出下列函数的图象. (1)y =2x -1; (2)y =x +3;(3)y =-2x; (4)y =5x .解析:分别求出满足各直线的两个特殊点的坐标,经过这两点作直线.解:(1)一次函数y =2x -1图象过(1,1),(0,-1); (2)一次函数y =x +3的图象过(0,3),(-3,0); (3)正比例函数y =-2x 的图象过(1,-2),(0,0); (4)正比例函数y =5x 的图象过(0,0),(1,5).方法总结:此题考查了一次函数的作图,解题关键是找出两个满足条件的点,连线即可.【类型二】 判定一次函数图象的位置已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =2x +k 的图象大致是( )解析:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,∴k >0,∵一次函数y =2x +k 的一次项系数大于0,常数项大于0,∴一次函数y =2x +k 的图象经过第一、二、三象限.故选A.方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)是一条直线,当k >0,图象必经过第一、三象限,y 随x 的增大而增大;当k <0,图象必经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ).【类型三】 判断函数的增减性和图象所经过的象限对于函数y =-5x +1,下列结论:①它的图象必经过点(-1,5);②它的图象经过第一、二、三象限;③当x >1时,y <0;④y 的值随x 值的增大而增大.其中正确的个数是( )A .0B .1C .2D .3解析:∵当x =-1时,y =-5×(-1)+1=6≠5,∴点(-1,5)不在此函数的图象上,故①错误;∵k =-5<0,b =1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x =1时,y =-5×1+1=-4,又k =-5<0,∴y 随x 的增大而减小,∴当x >1时,y <-4,则y <0,故③正确,④。
5.2集体备课一次函数与一元一次不等式2
分析:安排车厢的方案不是题目中直接给出的,是通过解不等式组得出的。问题(1)是写出两个一次函数的解析式,问题(2)是通过解不等式组,得出三个方案,问题(3)是比较三个方案的运费,找出最优方案。
[设计意图:让学生用数学语言、数学符号表示问题中的变量,学会用一次函数结合一元一次不等式解决实际问题,培养学生的建模思想和符号思想,体验解决问题后的快乐,即数学在现实中的魅力,从而使学生喜欢数学,钻研数学。]
(三)、学以致用:
1、巩固新知:
课后练习1题。
2、能力提升:
课本第15页习题5.2的3—4题。
(四)、达标测评:
1、选择题:
(1)(2011天津)一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计算;方式B除收月基费20元外,再以每分0.05元的价格按上网所用时间计费.若上网所用时问为x分,计费为y元.如图,是在同一直角坐标系中,分别描述两种计费方式的函救的图象.有下列结论:①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间为500分时,选择方式B省钱.
[设计意图:利用生活中的实际问题让学生感悟解决数学问题要充分利用知识间的内在联系,初步感悟转化思想。]
(二)、探究新知:
1、问题导读:
某企业生产的一种产品,每件的出厂价为1万元,其成本为0.55万元,平均每生产一件产品产生1吨废渣.为达到环保要求,需要对废渣进行脱硫、脱氮等处理,现有两种方案可供选择:
五、课堂小结:
(1)谈一谈,这节课你有哪些收获?
(2)对于本节所学内容你还有哪些疑惑?
六、作业布置:行知天下45页11题。
板书设计:
教学反思
八年级数学教师集体备课教案一次函数解析式的确定
八年级数学教师集体备课教案一、新课导入1.导入课题大家知道,如果一个点在函数的图象上,那么这个点的横纵坐标x,y的值就满足函数关系式,试问:如果知道函数图象上的两个点的坐标,那么能确定函数的解析式吗?(板书课题)2.学习目标(1)会用待定系数法求一次函数的解析式.(2)会求分段函数的解析式以及确定自变量的取值范围.3.学习重、难点重点:求一次函数的解析式的思想方法.难点:正确建立一次函数模型.二、分层学习1.自学指导(1)自学内容:P93到P94的例4.(2)自学时间:5分钟.(3)自学方法:阅读教材内容,重点语句及疑点做上记号.(4)自学参考提纲:①例4中得到k,b的方程组的依据是什么?②用待定系数法求一次函数解析式的一般步骤是什么?③已知一次函数的图象经过点(9,0)和点(24,20),求其解析式.答案:y=43x-12④求与直线y=2x平行,且过点(1,1)的直线的解析式.答案:y=2x-12.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生在看书、完成提纲时存在的问题和困难.②差异指导:对学习困难的学生进行针对性指导,特别是方法步骤指导.(2)生助生:学生相互交流,帮助矫正错误.4.强化(1)总结用待定系数法求一次函数解析式的一般步骤.(2)点两位学生板演自学参考提纲中的第③、④题,并点评.1.自学指导(1)自学内容:P94到P95练习上面的例5.(2)自学时间:10分钟.(3)自学方法:认真阅读例5对比分析内容,边看边思考解题思路过程.(4)自学参考提纲:①0≤x≤2与x>2时的价格有什么不同?②当0≤x≤2时,x与y的数量关系是正比例函数,由此得到y关于x的函数解析式是y=5x .③当x>2时,x与y的数量关系是一次函数,由此得到y关于x的函数解析式是y=4x+2.④对于②、③中的函数关系式合起来可以怎么表示?⑤回答P95的思考.⑥总结根据数量关系列一次函数的解析式的思路和一般步骤.⑦一个试验室在0:00—2:00保持20℃的恒温,在2:00—4:00匀速升温,每小时升高5℃.写出试验室温度T(单位:℃)关于时间t(单位:h)的函数解析式,(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)已知一次函数的图象过点(0,3)和(-2,0),那么函数图象必过下面的点(B)A.(4,6)B.(-4,-3)C.(6,9)D.(-6,6)2.(15分)根据图中的程序,当输入x=2时,输出结果y=2.3.(10分)y+1与z成正比例,比例系数为2,z与x-1成正比例.当x=-1时,y=7,那么y与x之间的函数关系式是(D)A.y=2x+9B.y=-2x+5C.y=4x+11D.y=-4x+34.(15分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论正确的是①③④ .二、综合应用(15分)5.如图所示,一次函数的图象与x轴、y轴分别相交于A、B两点,如果A 点的坐标为(2,0),且OA=OB,试求一次函数的解析式.解:∵A(2,0),OA=OB.∴B(0,-2).设一次函数的解析式为y=kx+b(k≠0).又∵一次函数的图象过A、B两点,∴220bk b=-+=⎧⎨⎩解得12kb==-⎧⎨⎩∴一次函数的解析式为y=x-2.6.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示.(1)求线段AB的解析式;(2)求此人回家用了多长时间?解:(1)设线段AB的解析式为y=kx+b,∵图象过A(0,18), B(6,12).∴18612bk b=⎧⎨+=⎩解得118kb=-=⎧⎨⎩∴线段AB的解析式为y=-x+18(0≤x≤6);(2)设线段BC的解析式为y=k′x+b′,∵图象过B(6,12)和点(8,8).∴61288k bk b'+'='+'=⎧⎨⎩解得224.kb'=-'=⎧⎨⎩∴线段BC的解析式为y=-2x+24.∴C点的坐标为(12,0).∴此人回家用了12分钟.三、拓展延伸(15分)7.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按。
第十九章--一次函数集体备课教案
(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(中国人口数统计表一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph).•上图中的曲线即为函数S=函数图象可以数形结合地研究函数,给我们带来便利.[活动一]活动内容设计:下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?从函数图象可以看出,曲线从左向右下降,之减小.[师]我们来总结归纳一下描点法画函数图象的一般步骤,好吗?第一步:列表.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.(2)a是自变量x取值范围内的任意一个值,过点(a,0)画y轴的平行线,•与图中曲线相交.下列哪个图中的曲线表示y是x的函数?为什么?(提示:当x=a时,x的函数y只能有一个函数值)Ⅲ.随堂练习1.A(-2.5,-4),B(1,3)不在函数y=2x-1的图象上,数y=2x-1的图象上.2.(1)这一天内,12时上海北京气温相同.(2)略3.(1)x …-2 -1y … 4 1Ⅳ.课时小结本节通过两个活动,学会了分析图象信息,解答有关问题.通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想.Ⅴ.课后作业P104板书设计§11.1.3 函数图象Ⅲ.随堂练习Ⅳ.课时小结通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化,为下面学习数形结合的函数做好了准备.Ⅴ.课后作业板书设计§11.1.4 函数表示方法画出图象如图(1).2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x -3 -2 -1 0 1y 6 4 2 0 -2画出图象如图(2).3.两个图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈上升状态,即随着增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随Ⅳ.课时小结本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.板书设计§14.2.1 正比例函数观察思考得出结论:这两个函数的图象形状都是直线,并且平行,即倾斜程度相同;函数y=-6x•的图象经过原点.函数y=-6x+5看作由直线y=-6x向上平移5个单位长度而得到.比较两个函数解析式.联系它们图象的特征,我们不难看出自变量的系数相同是它们图象平行的原因,而常数项不同正是造成图象与过(0,-1)点与(1,1)点画出直线过(0,1)点与(1,0.5[活动二]活动内容设计:画出函数y=x+1、y=-x+1、次函数解析式y=kx+b(k、b是常数,影响?活动设计意图:。
《一次函数》数学教案
《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
初二数学教案《一次函数》(优秀10篇)
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
《一次函数》教学教案
《一次函数》教学教案《一次函数》教学教案(通用11篇)14.1.1变量与函数【学习目标】1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定学习过程:【前置自学】问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?关系式:________ 1.请同学们根据题意填写下表:面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.__r=_________________s的取值范围是这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
一元一次函数集体备课.doc
课题:一元一次函数的图像及其性质活动形式:集体备课活动过程:一、数学组全体教师观看江超和熊云老师准备的教案二、教师集体备课制定一份新的符合本班学生学情的教案、各位老师针对本节课的发言记录:孙琼英:一次函数是中学教学中的一类基本的函数,是数形结合典型之一,它与一元一次方程和一元一次不等式联系紧密。
掌握一次函数的基本概念和图像性质,能够解决相关问题是屮考的测试要点之一。
题型有填空题、选择题、和解答题。
其中计算题和综合题居多。
所以复习课过程中应注意链接各知识点,围绕中考常考题目类型展开。
漆金华:我觉得这节课是一节复习课要定位准确。
初三复习课主要目的是帮助学生对已掌握零碎的数学知识进行归纳、整顿、加工、使Z规律化。
这节课应先对于一元一次函数的解析式。
图像性质等知识点进行归纳,再对中考热点、考点进行讲解练习。
做到知识点过度自然, 训练题符合本版学生实际情况。
王新宇:制定合理的教案,我觉得这个合理必须是针对本班学生的数学学情。
我们这一届初三学生数学基础较差,针对这个情况应制订直观、易懂、以基础知识点为主,综合性训练为辅的方案。
讲解一元一次函数解析式和图像性质时最好能归纳成一个表格形式。
将图像知识点直观呈现出来。
而且训练题讲解由最基础知识点开始循序渐进到巩固性练习最后过渡到屮考类型的综合性练习。
方雄:复习课是一个无聊、枯燥的课。
刚刚上面老师也讲到了,将这节课上的简单,生动。
来提高学生的学习兴趣调动学生学习的积极性、主动性。
最重要的是必须紧扣小考经典,服务于中考。
三、参考各位教师的意见下,制定教学流程。
讨论结果从几个方而进行设计:1、师生一起归纳总结一元一次函数的图像及其性质,并以表格的形式总体呈现出来包括Kb各种取值范围经过象限特点等等。
2、进一步拓深一元一次函数与其他知识点结合的性质。
3、训练题等是哪个阶段,基础训练、巩固训练、综合性训练。
4、合理安排时间,讲练结合搞好集体备课处理好的三个关系议。
教学内容:一次函数复习课教案教学目标:1.掌握一次函数的图像和性质,掌握怎样用函数图象解方程(组)或解不等式2.学会用函数思想解决问题,培养学生数学建模思想.3.渗透数形相结合思想.教学重点和难点重点:运用一次函数数形相结合思想解决实际问题难点:灵活运用数与形解决实际问题教学过程.—.复习回顾.1.正比例函数与一次函数的关系正比例函数是当y=kx+b中b=0时特殊的一次函数.2•待「定系数法确定正比例函数、一次函数的解析式通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式.3. 一次函数的图象正上匕例函数y二kx(kHO)是过(0, 0), (1, k)两点的一条直线;一次函数y二kx+b(kHO)是过(0, b),( --,0)两点的一条直线.K② 当k>0时,y 随着x 的增大而增大, ③ 当kVO 时,y 随着x 的增大而增大, ④ 当b>0时,直线交于y 轴的正半轴, ⑤ 当bVO 时,直线交于y 轴的负半轴 ⑥ 当b=0时,直线交经过原点,二.简单应用1.—次函数y 二kx+b 的图象与x 轴交于点(1,0); (-2, 0)①方程kx+b 二0的解是 ② 则不等式kx+b>0的解集是 ③ 则不等式kx+b V0的解集是④ 此时一次函数的关系式是 ⑤AOAB 的面积是一次函数y = kx + b 的图象与性质决定图象与y 轴的交点位置5.k.b 与一次函数y 二kx+b的图象与 性质:k 决定函数的 增减性;b2•在同一坐标系中作一次函数y1=2x-2与y2=0. 5x+1的图象.① 求出它们和交点坐标是 ② 则方程组 y 二2x-2 , y=0. 5x+1 的解是.③ 当x时,y1 >y2 ④当x 时,y1=y2 ⑤当x时,y1 <y2⑥直线yh y2与y 轴所围成三角形的面积是3.用图象法方程组:y+2二2x, 2y-x 二24用图象法不等式:2x~2<0. 5x+15.求一次函数 y 二-2x-4, y 二x+3 图象的交点坐标.三,综合运用 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 兀①),两车之间的距离为歹化皿),图中的折线表示丿与兀之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为km ;(2) 请解释图中点B 的实际意义;图象理解(3) 求慢车和快车的速度;(4)求线段BC 所表示的)'与X 之间的函数关系式,并写出自鍾空騒值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车 相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晩出发多少小时? 四、拓展创新 某函数具有下列两条性质:(1)它的图像是经过原点(0, 0)的一条直线;(2) y 的值随 x 值的增大而增大•请你举出一个满足上述条件的函数(用关系式表示)2. 若把函数的图象沿x 轴向左平移5个单位,则得到的图象的函数解析式是五. 小结回顾与反思⑥若将此图象向 是 函数.平移 个单位,使直线经过原点,此时我在这节课学到的有_____________________ .・我参与最多的是__________________________ .我参与最少的是_________________________ •我希望在______________________________ 方面多加努力• •2.作业中考经典热身训练课题:一元一次函数的图像及其性质活动形式:集体评课活动过程:一、所谓评课,顾名思义,即评价课堂教学。
八年级数学教师集体备课教案一次函数的概念
八年级数学教师集体备课教案根据实际问题列一次函数表达式.一、新课导入1.导入课题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队由大本营向上登高xkm时,他们所在位置的气温是y℃,让学生试用x表示y,然后提问:这个y关于x的函数表达式是什么函数关系呢?由此导入课题(板书课题).2.学习目标(1)知道什么样的函数是一次函数,能根据一次函数的定义求函数表达式中未知字母系数的值.(2)知道正比例函数是特殊的一次函数.(3)根据等量关系列一次函数关系式.3.学习重、难点重点:一次函数的概念.难点:根据实际问题列一次函数表达式.二、分层学习1.自学指导(1)自学内容:P89到P90练习以上的内容.(2)自学时间:10分钟.(3)自学要求:看书、动手、观察关系式的共同特点,尝试归纳一次函数的一般形式.(4)自学参考提纲:①思考中的四个解析式有什么共同特点?②请叙述一次函数的定义,注意不能忽视什么问题?③一次函数与正比例函数有什么联系和区别?④已知y=(a2-1)x+b-2,a.当a≠±1,b≠2时,它是一次函数.b.当a≠±1,b=2时,它是正比例函数.⑤完成P90的练习.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生在完成提纲时存在的问题和困难.②差异指导:对个别存在疑难问题的学生进行指导.(2)生助生:学生研讨疑难之处.4.强化(1)一次函数的定义及确定字母系数的依据.(2)展示练习的答案,并点评.(3)正比例函数与一次函数的异同点.1.自学指导(1)自学内容:一次函数意义的应用.(2)自学时间:10分钟.(3)自学要求:结合自学参考提纲进行自主学习,合作交流.(4)自学参考提纲:①下列函数中,是一次函数的是(B)本课时的教学,教师应选取适当的材料帮助学生从不同的角度认识一次函数,引导学生把握一次函数与正比例函数之间的区别和联系,并通过一定的练习指导学生巩固知识,明白正比例函数是特殊的一次函数.由特殊到一般,循序渐进,让学生经历观察、思考、讨论、分析、归纳的过程,进行更加深刻地学习.(时间:12分钟满分:100分)一、基础巩固(65分)1.(10分)下列说法中不正确的是(D)A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数2.(10分)矩形的周长为50,设它的长为x,宽为y,则y与x的函数关系式为(A)A.y=-x+25B.y=x+25C.y=-x+50D.y=x+503.(10分)王明妈妈购进一批苹果,到售货市场零售,已知卖出的苹果重量x(千克)与销售额y(元)之间的对应关系如下表.则y关于x的函数关系式是(B)A.y=2x+0.1B.y=2x+0.1xC.y=4x+0.2D.y=4x+0.2x4.(10分)若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是(A)A.(1,1)B.(-1,1)C.(-2,-2)。
一次函数-备课教案
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
疑点、易错点(1)若两个变量x 、y 间的关系式可以表示成y =kx +b (k ≠0),则称y 是x 的一次函数.特别地,当b =0时,称y 是x 的正比例函数,就是说,正比例函数是一次函数的特例,而一次函数包含正比例函数,是正比例函数一定是一次函数,但一次函数不一定是正比例函数.如y =-x 是正比例函数,也是一次函数,而y =-2x -3是一次函数,但并不是正比例函数.因此,同学们在复习时一定要注意正确理解正比例函数和一次函数的概念,注意掌握它们之间的区别和联系.(2)一次函数的图象是一条直线,它所经过的象限是由k 与b 决定的,所以在复习巩固一次函数的性质时可以通过函数图象来巩固,从而可以避免因k 与b 的符号的干扰.如,在如图中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )对于两不同函数图象共存同一坐标系问题,常假设某一图象正确而后根据字母系数所表示的实际意义来判定另一图象是否正确来解决问题.例如,假设选项B 中的直线y =mx +n 正确则m <0,n >0,mn <0则正比例函数y =mnx 则应过第二、四象限,而实际图象则过第O xyA O xy BO xyCOxy D一、三象限,所以选项B 错误.同理可得A 正确.故应选A .(3)虽然一次函数的表达式简单,性质也并不复杂,且一次函数y =kx +b (k ≠0)的图象是一条直线,它的位置由k 、b 的符号确定.但是,涉及实际问题的一次函数图象与自变量的取值范围,画出来的图象不一定是直线,可能是线段或其他图形,这一点既是学习一次函数的疑点,也是难点,更是解题量的易错点.如,拖拉机开始工作时,油箱中有油40L ,如果每小时耗油5L ,那么工作时,油箱中的余油量Q (L)与工作时间t (h)的函数关系用图象可表示为( )依题意可以得到油箱中的余油量Q (L)与工作时间t (h)的函数关系为Q =40-5t ,就这个一次函数的解析式而言,它的图象是一条直线,所以不少同学就会选择A ,而事实上,自变量t 有一个取值范围,即0≤t ≤8,所以正确的答案应该选择C .【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
一次函数教案
一次函数教案【教案】一次函数一、教学内容:一次函数二、教学目标:1. 理解一次函数的含义和性质。
2. 掌握一次函数的图象和表示方法。
3. 熟练运用一次函数解决实际问题。
三、教学重点和难点:1. 理解一次函数的定义和概念。
2. 掌握一次函数的图象和表示方法。
四、教学准备:1. 教师准备:教学课件、教学资料。
2. 学生准备:笔记本、教材、计算器。
五、教学过程:步骤一:导入(10分钟)1. 向学生介绍一次函数的概念和定义。
2. 提问:你知道什么是一次函数吗?请举例说明。
3. 激发学生的学习兴趣,引导他们思考问题。
步骤二:概念解释(15分钟)1. 通过示例解释一次函数的定义。
(1) 函数的定义:一次函数是一个以x为变量的函数,其表达式为f(x)=ax+b,其中a和b是常数,且a不等于0。
(2) 函数的含义:一次函数表示的是一个直线。
(3) 函数的性质:一次函数的图象是一条直线,且直线上的点关于x轴对称。
2. 提示学生记住一次函数的定义和性质。
步骤三:图象讲解(15分钟)1. 解释一次函数的图象。
(1) 当a>0时,直线向上倾斜,表示函数是递增的。
(2) 当a<0时,直线向下倾斜,表示函数是递减的。
(3) 当b=0时,直线经过原点;当b≠0时,直线与y轴有交点。
2. 分析一次函数的图象对应的函数关系式。
步骤四:例题讲解(20分钟)1. 将一些常见的实际问题转化为一次函数的问题进行讲解。
2. 引导学生将实际问题与一次函数的概念结合起来,理解问题解决的方法。
步骤五:练习(20分钟)1. 让学生自主完成一些练习题,巩固所学的知识。
2. 解答学生遇到的问题。
步骤六:小结归纳(10分钟)1. 教师总结本节课的重点内容,并强调重点。
2. 学生积极参与小结,提出问题和疑惑。
3. 教师对学生提出的问题进行解答。
六、课堂作业:1. 让学生完成课后习题,巩固所学的知识。
2. 要求学生写一篇关于一次函数的总结。
七、教学反思:通过本节课的教学,学生对一次函数的概念、定义和性质有了初步的了解。
5.4 一次函数的应用 集体备课教案
5.4一次函数的应用新授课初二年级组一、教学目标1、能根据实际问题中变量之间的关系,确定一次函数关系式。
2、能利用函数图象解决简单的实际问题,培养学生的数形结合意识。
3、在应用一次函数解决问题的过程中,体会数学的抽象性和应用的广泛性。
二、教学过程讲授新课例1:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米。
写出y与x之间的关系式,并求出所挂物体的质量为4千克时的弹簧的长度。
练习一1、根据条件确定函数的表达式:y是x的正比例函数,当x=2时,y=6,求y与x的关系式。
2、某班同学秋游时,照相共用了3卷胶卷,秋游后冲洗3卷胶卷并根据同学需要加印照片。
已知冲洗胶卷的价格是3.0元/卷,加印照片的价格是0.45元/张。
(1)试写出冲印合计的费用y元与加印张数x之间的函数关系式:(2)如果秋游后尚结余49.5元,那么冲洗胶卷后还可以加印照片多少张?3、某市出租车的收费标准:不超过3km记费为7.0元,3km后按2.4元/km记费。
(1)写出车费y(元)与路程x(km)之间的函数关系式;(2)小亮乘出租车出行,付费12.3元,你能算出小亮乘车的路程吗?(精确到0.1)例2 我国很多城市水资源缺乏,为了加强居民的节水意识,雉城镇制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:指每吨水的价格),用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示。
(1)观察图象,求出函数在不同范围内的解析式;说出自来水公司在这两个月用水范围内的收费标准;(2)若一用户5月份交水费12.8元,求他用了多少吨水?例3、某单位要制作一批宣传材料。
甲公司提出:每份材料收费20元,另收3000元的设计费;乙公司提出:每份材料收费30元,不收设计费。
(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两家的收费相同?练习二1、蔬菜基地要把一批新鲜蔬菜运往外地,有2种运输方式可供选择,主要参考数据如下(1)请分别写出汽车、火车运输的总费用y1(元)、y2(元)与运输路程x(km)之间的函数式;(2)你能指出用哪种运输方式较好?2、某公司要租一辆车,出租公司的租肺费为:每百千米租费110元;个体出租司机的租费为:每月付800元工资,另外每百千米付10元油费。
一次函数集体备课资料
第19章一次函数一、教学目标与要求1.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生抽象思维能力;经历一次函数的图象及其性质的探索过程,在合作交流中发展学生的合作意识和能力.2.经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别与应用过程,发展学生的形象思维能力.3.初步理解函数的概念;理解一次函数极其图象的有关性质;初步体会方程和函数的关系.4. 根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.二、知识结构生活中充满着许许多多变化的量,函数就是刻画变量之间关系的常用模型,其中最为简单的是一次函数.本章是在探索了变量之间关系的基础上,继续通过对变量间关系的考察,让学生初步体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数,通过解剖一次函数这一“麻雀”,使学生了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力.在具体内容的呈现上,教科书力求为学生提供生动有趣的问题情境,提供观察、操作、交流、归纳等数学活动,在活动中加深学生对数学知识的理解,发展学生的数学思维;在新知的导入上,既注重了与学生生活实际的联系,又注意了新旧知识的联系,在新旧知识的比较与联系中,促进了学生新的认知结构的建立与完善.三、本章涉及到的主要思想方法1.函数思想2.数形结思想3.待定系数法4.方程思想四、教学建议1.素材贯穿整章教学的始终.充分挖掘结合学生生活实际的素材,体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,在实际问题情境中抽象出函数以及一次函数的概念,进而探索一次函数及其图象的性质,加强数学与现实的联系,让学生体会数学的广泛应用.2.鼓励学生的自主探索和合作交流.函数是现实世界变化规律的一个重要模型,与学生的生活实际紧密联系,学生有能力和条件进行探索,注重学生对学习函数过程、方法的体验,所以教师应引导学生主动从事观察、操作、交流、归纳,并应给予学生足够的活动和空间,从而使学生形成自己对数学知识的理解和有效的学习模式,而不要以教师的讲解代替学生的探索.3.加强新旧知识的联系,促进学生新的认知结构的建构.教材开始引入变量和变量之间关系的内容,非形式化地开始对函数内容的学习,学生感受现实世界中变量和变量之间存在的各种各样的关系及其规律,了解表示这些关系的基本方法,在此基础上建立函数的概念,进一步构建“数”与“形”的模型.4.尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表达方式和解题方法的多样化.对于学习有困难的学生,教师要给予及时的帮助与指导,鼓励他们主动参与数学学习活动,鼓励他们自主地解决问题,发表自己的看法;对于学有余力的学生,鼓励他们探索问题的多种表述方式和解题方法,给他们提供丰富的学习材料,拓宽他们的知识视野,发展他们的数学才能.五、课时安排------------------------------------------总计17课时19.1.1 函数————————————共计3课时(1) 变量与常量 1课时(2) 函数 2课时19.1.2 函数图像———————————————共计2课时(1) 画函数图像 1课时(2) 读函数图像及函数的表示法 1课时19.2 一次函数——————————————共计7课时19.2.1 正比例函数 1课时19.2.2 一次函数 3课时19.2.3 一次函数与方程、不等式 3课时19.3 课题学习选择方案————————共计2课时复习小结——————————————————共计3课时第一课时:变量与常量教学目标:理解变量与常量的概念及相互关系。
祝正堂主备一次函数集体备课教案
主备人:祝正堂参备人:吴恒孙荣慧陈启国19.1 变量教学过程设计板书设计19.1.2 函数填表:19.1.3函数的图象归纳:描点法画函数的图象一般步骤:1、列表:列出自变量与函数的对应值表变量的值(满足取值范围),并取适当2、描点:建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.你从图象中能得到什么信息?学生回答:(1)这一天中凌晨4时气温最低为-3℃,14气温最高为8℃.(2)从0时至4时气温呈下降状态,即温度随根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?6.甲、乙两人在一次赛跑中,路程s(米)与所用时间t(秒)的关系如图所示,则下列说法正确的是()A.甲比乙先出发.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用分别表示乌龟和兔子的行程,t为时间,则下列图.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家下面的图描述了小明在散步过程中离家的距离板书设画函数图象的一般步骤1、列表2、描点3、连线数形结合思想19.1.3函数的图象(2)教学过程设计2、如图所示的曲线,哪个表示y是x的函数(.柿子熟了,从树上落下来,可以大致刻画出柿子下落.小明家距学校m千米,一天他从家上学,/时的速度跑步,后以b千米/时的速度步行,到达学校共用n小时。
设小明同学距学校的距离为上学的时间为t(小时),则s与t之间的大致图象是.在夏天,一杯开水放在院里,其水温T与放置的时间6.在平面直角坐标系中画出函数2y(2-=x19.1.3函数的图象(3)教学过程设计通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的方法来解决问题,为下面学习数形结合的函数做好了准备。
一次函数全章备课教案
第十九章一次函数本章概述本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系.以及以建立一次函数模型来选择最优方案为素材的课题学习.全章包括三节:第19.1节变量与函数是全章的基础部分;第19.2节是全章的重点部分;第19.3节是全章的拓展提高部分,通过两个典型问题的讨论,展示函数的应用价值,突出建立数学模型的思想方法和实际意义.教学目标1. 以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.2. 结合实例,了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.3. 能确定简单实际问题中函数自变量的取值范围,并会求函数值.4. 结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.5. 通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.6. 进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.课时安排本章教学时间约需17课时,具体分配如下:19.1 变量与函数6课时19.2 一次函数6课时19.3 课题学习选择方案3课时教学活动小结2课时19.1 函数教案A第1课时教学内容变量与函数.教学目标1. 结合实例,了解常量、变量的意义,体会“变化与对应”的思想.2. 通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.3. 引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.教学重点变量发现的过程.教学难点变量发现的过程.教学过程一、导入新课“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,树高随树龄而变化……在你周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在.那么,什么是变量呢?我们今天就研究这个问题.二、新课教学1. 思考问题(1)汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h.填写下表,s 的值随t 的值的变化而变化吗?(2)电影票的售价为10元/张.第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元?设一场电影售出x张票,票房收入为y元,y的值随x 的值的变化而变化吗?(3)你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S 分别为多少?S 的值随r 的值的变化而变化吗?(4)用10 m长的绳子围一个矩形.当矩形的一边长x 分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?设计意图:让学生熟练地从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.教师引导学生思考这些问题,通过合理、正确的思维方法探索出变化规律.可以分组进行实验活动,然后各组选派代表汇报.最后教师进行点评.通过动手实验,调动学生的学习积极性,使学生进一步深刻体会了变量间的关系,学会运用表格形式来表示实验信息.2. 变量与常量的概念(1)在学生动手实验并充分发表自己意见的基础上,师生共同归纳:这些问题反映了不同事物的变化过程.其中有些量的数值是变化的,例如时间t,路程s;售出票数x,票房收入y……有些量的数值是始终不变的,例如速度60 km/h,票价10元/张……在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.(2)请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.(3)举出一些变化的实例,指出其中的变量和常量.学生先独立思考,然后组内交流并作记录,最后各组选派代表汇报.通过活动,培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.三、课堂练习指出下列问题中的变量和常量:1. 某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.2. 某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为t min,话费卡中的余额为w元.3. 水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π.4. 把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.练习答案:1. 变量x,y;常量4.2. 变量t,w;常量0.2,30.3. 变量r,C;常量π.4. 变量x,y;常量10.四、课堂小结对本节课进行总结、理清脉络.五、布置作业教材第71、72页练习.第2课时教学内容变量与函数.教学目标1. 了解函数的概念.2. 能结合具体实例概括函数的概念.3. 在函数概念的形成过程中体会运动变化与对应的思想.教学重点函数的概念.教学难点函数概念中的“单值对应”.教学过程一、导入新课教师:我们首先回顾一下上节课中的四个问题.问题(1)~(4)中是否各有两个变量?同一个问题中的变量之间有什么联系?通过挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.归纳出变量间的单值对应关系.二、新课教学学生1:在问题(1)中,有t和s 是两个变量,每当t 取定一个值时,s就有唯一确定的值与其对应.学生2:在问题(2)中,有x和y是两个变量,每当x取定一个值时,y就有唯一确定的值与其对应.学生3:在问题(3)中,有r和S是两个变量,每当r 取定一个值时,S就有唯一确定的值与其对应.它们的关系式为S=πr2.据此可以算出r分别为10cm,20cm,30cm时,S分别为100 πcm2,400 πcm2,900 πcm2.学生4:在问题(4)中,有x和y是两个变量,每当x取定一个值时,y就有唯一确定的值与其对应.它们的关系式为y=5-x.据此可以算出x 分别为3m,3.5m,4m,4.5m时,y分别为2m,1.5m,1m,0.5m.教师:同学们说的很好,我们为他们鼓掌.上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量就有唯一确定的值与其对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题:(1)下图是体检时的心电图,其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的值与其对应吗?(2)下面的我国人口数统计表中,年份与人口数可以分别记作两个变量x与y.对于表中每一个确定的年份x,都对应着一个确定的人口数y吗?中国人口数统计表学生:我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.教师:说的很好.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x 的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.从这个意义看,我们前面学习的问题中,自变量、函数和函数值分别是什么?学生1:在汽车行驶中,时间t是自变量,路程s是t的函数,当t=1时,函数值s=60,当t=2时,函数值s=120.学生2:在心电图中,时间x是自变量,心脏部位的生物电流y是x的函数.学生3:在人口数统计表中,年份x是自变量,人口数y是x的函数,当x=2010时,函数值y=13.71.教师:从上面可知,函数是刻画变量之间对应关系的数学模型,许多问题中变量之间的关系都可以用函数来表示.三、课堂练习教材第74、75页练习.四、课堂小结今天学习了什么?还有什么问题?五、布置作业习题第19.2第1、2题.第3课时教学内容变量与函数.教学目标1. 初步掌握函数概念,能判断两个变量间的关系是否可看做函数.2. 能举出生活中函数的实例,并能初步形成利用函数的观点认识现实世界的意识和能力.3. 经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力和从图象中获取信息的能力.教学重点了解函数的意义,会求函数值.教学难点函数概念的抽象性.教学过程一、导入新课上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?二、实例探究例1 汽车油箱中有汽油50 L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油箱中还有多少汽油?解:(1)行驶路程x 是自变量,油箱中的油量y是x 的函数,它们的关系为y=50-0.1x.(2)仅从式子y=50-0.1x 看,x 可以取任意实数.但是考虑到x 代表的实际意义为行驶路程,因此x 不能取负数.行驶中的耗油量为0.1x,它不能超过油箱中现有汽油量50,即0.1x ≤50.因此,自变量狓的取值范围是0≤x≤500.(3)汽车行驶200 km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值.将x=200代入y=50-0.1x ,得y=50-0.1×200=30.汽车行驶200 km时,油箱中还有30 L汽油.像y=50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的解析式.三、拓展应用例2 自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.解:(1)y=0.3x+0.5×(3500―x)=―0.2x+1750(x是正整数,0≤x≤3500) .(2)若变速车的辆次不小于25%,但不大于40%,则3500×(1―40%)≤x≤3500×(1―25%).∴y max=―0.2×3500×(1―40%) +1750=1330.y min=―0.2×3500×(1―25%) +1750=1225.∴该保管站这个星期日收入保管费总数的范围在1225元至1330元之间.总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.四、课堂练习1. 学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.2. 为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n (个)与单价(a)元的关系.答案:1. y=30n;y是函数,n是自变量.2. 100,n是函数,a是自变量.na五、布置作业习题第19.2第4、5题.第4课时教学内容函数的图象.教学目标1. 学会用描点法画出简单函数的图象,初步了解函数关系式与函数图象之间的关系.2. 学会观察、分析函数图象信息.3. 提高识图能力、分析函数图象信息能力.4. 体会数形结合思想,并利用它解决问题,提高解决问题能力.教学重点1. 函数图象的画法.2. 观察分析图象信息.教学难点分析概括图象中的信息.教学过程一、导入新课教师指导学生在网上打开天气预报页面,引导学生学生阅读气温变化图,体会图象的直观和简单.随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.二、新课教学例如,正方形的面积S与边长x 的函数解析式为S=x2.根据问题的实际意义,可知自变量x 的取值范围是x>0.我们还可以利用在坐标系中画图的方法来表示S与x 的关系.计算并填写下表.如下图,在直角坐标系中,画出上面表格中各对数值所对应的点,然后连接这些点.所得曲线上每一个点都代表x的值与S的值的一种对应,例如点(2,4)表示当x =2时,S=4.注意:(1)要根据表格中的数值画出合适的直角坐标系.(2)描点法画函数的图象时,要描出的点的个数应取值适当.一般地,如果函数在描出的两点之间是连续的,那么已描出的点之间的连线要光滑,不要出现明显的拐弯点.在完成图象后,教师引导学生得出概念:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.上图的曲线即函数S=x2(x>0)的图象.思考:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t 的变化而变化.你从图象中得到了哪些信息?设计目的:由图象分析函数的变化趋势.由图象分析数量变化的规律是研究问题的方法之一.这里的气温变化情况难以用确切的解析式来表达.只能通过分析仪器自动绘制的气温变化曲线得到相关信息.可以认为,气温T是时间t 的函数,上图是这个函数的图象.由图象可知:(1)这一天中凌晨4时气温最低(-3℃),14时气温最高(8℃).(2)从0 时至4 时气温呈下降状态(即温度随时间的增长而下降),从4时到14时气温呈上升状态,从14时至24时气温又呈下降状态.(3)我们可以从图象中看出这一天中任一时刻的气温大约是多少.三、实例探究例某河流受暴雨影响,水位不断上涨,下面是某天此河流的水位记录:时间/时0 4 8 12 16 20 24水位/米 2 2.5 3 4 5 6 8 (1)上表反映的是哪两个量之间的关系?自变量和因变量各是什么?(2)根据表格画出表示两个变量的河流水位变化图.(3)哪段时间水位上升得最快?解:(1)表格反映的是时间与水位之间的关系.自变量是时间,因变量是水位.(2)河流水位变化图如下:(3)在20~24小时内,水位上升得最快.评注:表格中的数据不断变化的量即为变量,时间就是自变量,水位即为因变量.根据表格中的具体数据即可画出折线统计图.在统计图中,倾斜最厉害的那一段就是变化最大的.四、课堂小结总结所学内容,深化学生理解.五、布置作业习题第19.2第6题.第5课时教学内容函数的图象.教学目标1. 学会用列表、描点、连线画函数图象,知道画函数图象的一般步骤.2. 学会观察、分析函数图象信息,提高识图能力、分析函数图象信息能力.3. 体会数形结合思想,并利用它解决实际生活中的问题,提高解决问题能力.4. 使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.教学重点通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学难点通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学过程一、导入新课问题上节课我们从气温曲线上获得了许多信息,知道了一些问题.现在让我们来看看下图,如何从图上找到各个时刻的气温?分析:图中,有一个直角坐标系,它的横轴是t轴,表示时间;它的纵轴是T轴,表示气温.这一气温曲线实质上给出了某日的气温T (℃)与时间t(时)的函数关系.例如,上午10时的气温是2℃,表现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10,2).实质上也就是说,当t=10时,对应的函数值T=2.气温曲线上每一个点的坐标(t,T),表示时间为t时的气温是T.二、新课教学例1 如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.右图反映了这个过程中,小明离家的距离x与时间y之间的对应关系.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?教师首先要引导学生观看函数的图象:这个函数的图象是由几条线段组成的折线,其中每条线段代表一个阶段的活动,这条线段的左右端点是横坐标的差,对应相应活动所用的时间.分析:小明离家的距离y是时间x的函数.由图象中有两段平行于x 轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里.解题过程见教材.例2 在式子y=x+0.5中,对于x的每一个确定的值,y有唯一的对应值,即y 是x的函数,画出这个函数的图象.解:从式子y=x+0.5可以看出,x 取任意实数时这个式子都有意义,所以y 的取值范围是全体实数.从x的取值范围中选出一些数值,算出y的对应值,列表如下.根据表中数值描点(x,y),并用平滑的曲线连接这些点(下图).从函数的图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.通过对函数S=x2(x>0)和y=x+0.5的具体分析和讨论,让学生经历列表、描点、连线等绘制函数图象的具体过程,即加深了对图象意义的认识,了解图象上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及描点法画函数图象的一般步骤进行归纳做了准备.归纳:描点法画函数图象的一般步骤如下:第一步,列表——表中给出一些自变量的值及其对应的函数值;第二步,描点——在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步,连线——按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.三、课堂练习教材第79页练习1、2.四、布置作业习题第19.2第7、8、9、10题.第6课时教学内容函数的图象.教学目标1. 总结函数三种表示方法.2. 了解三种表示方法的优缺点.3. 会根据具体情况选择适当方法.教学重点1. 认清函数的不同表示方法,知道各自优缺点.2. 能按具体情况选用适当方法.教学难点函数表示方法的应用.教学过程一、导入新课我们在前几节课里知道函数解析式、列表格、画函数图象,都可以表示具体的函数.这三种表示函数的方法,分别称为解析式法、列表法和图象法.思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?这就是我们这节课要研究的内容.二、新课教学从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.例4 一个水库的水位在最近5 h内持续上涨.下表记录了这5 h内6个时间点的水位高度,其中t表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将为多少米.解:(1)如下图,描出上表中数据对应的点.可以看出,这6 个点在一条直线上.再结合表中数据,可以发现每小时水位上升0.3 m.由此猜想,如果画出这5 h内其他时刻(如t=2.5 h等)及其水位高度所对应的点,它们可能也在这条直线上,即在这个时间段中水位可能是始终以同一速度均匀上升的.(2)由于水位在最近5 h内持续上涨,对于时间t 的每一个确定的值,水位高度y都有唯一的值与其对应,所以y是t的函数.开始时水位高度为3 m,以后每小时水位上升0.3 m.函数y=0.3t+3(0≤t≤5)是符合表中数据的一个函数,它表示经过t h水位上升0.3t m,即水位y为(0.3t +3)m.其图象是下图中点A(0,3)和点B(5,4.5)之间的线段AB.如果在这5 h 内,水位一直匀速上升,即升速为0.3 m/h,那么函数y=0.3t+3(0≤t≤5)就精确地表示了这种变化规律.即使在这5 h内,水位的升速有些变化,而由于每小时水位上升0.3 m 是确定的,因此这个函数也可以近似地表示水位的变化规律.(3)如果水位的变化规律不变,则可利用上述函数预测,再过2 h,即t=5+2=7 (h)时,水位高度y=0.3×7+3=5.1(m).把本例第一幅图中的函数图象(线段AB)向右延伸到t=7 所对应的位置,得到第二幅图,从中也能看出这时的水位高度约为5.1 m.三、课堂练习教材第81页练习1、2、3.四、布置作业习题第19.2第11、12、13题.教案B第1课时教学内容变量与函数.教学目标1. 结合实例,了解常量、变量的意义,体会“变化与对应”的思想.2. 通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.3. 引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.教学重点1. 变量发现的过程.2. 变量间的单值对应关系.教学难点变量间的单值对应关系.教学过程一、导入新课问题1:汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h.填写下表,s 的值随t 的值的变化而变化吗?1. 请同学们根据题意填写下表:2. 在以上这个过程中,变化的量是________.不变化的量是__________.3. 试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.二、新课教学我们首先来思考上面的几个问题,可以互相讨论一下,然后回答.分析:从题意中可以知道汽车是匀速行驶,那么它1小时行驶60km,2小时行驶2×60km,即120km,3小时行驶3×60km,即180 km,4小时行驶4×60 km,即240 km,5小时行驶5×60 km,即300 km……因此行驶里程s km与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60 km/ h是不变的量.这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60 km/h.。
一次函数教案
一次函数教案一次函数教案教案主题:一次函数教案目标:1. 让学生了解一次函数的概念和特点;2. 学生能够掌握一次函数的图像、方程以及性质;3. 学生能够应用一次函数解决实际问题。
教学重点:1. 一次函数的概念和特点;2. 一次函数的图像、方程以及性质。
教学难点:1. 学生如何理解和应用一次函数的概念和特点;2. 学生如何通过一次函数解决实际问题。
教学准备:1. PowerPoint课件;2. 教材:数学教科书等;3. 黑板和白板笔。
教学过程:Step 1:导入新课1. 向学生介绍今天的主题:“一次函数”;2. 引导学生回顾线性函数的概念和性质。
Step 2:讲解一次函数的概念和特点1. 通过PPT显示一次函数的定义:y = ax + b(a ≠ 0);2. 解释一次函数的特点:函数图像为一条直线,且斜率为常数,截距为常数;3. 使用示例方程y = 2x + 3来说明一次函数的特点。
Step 3:讲解一次函数的图像和方程1. 通过PPT展示一次函数的图像,同时解释坐标系表示方法;2. 根据示例方程y = 2x + 3,让学生在坐标系上绘制函数图像;3. 家庭作业:要求学生完成绘制指定一次函数图像的作业。
Step 4:巩固知识点1. 通过PPT展示一元一次方程以及其解答方法;2. 通过示例方程,引导学生解一元一次方程,并求得解的具体值;3. 分组练习:给学生出一些一次函数方程,要求解出解的具体值。
Step 5:应用一次函数解决实际问题1. 通过PPT展示实际问题,并引导学生建立函数模型;2. 分组讨论:让学生合作解决实际问题,并展示自己的解答过程;3. 总结解题方法和步骤。
Step 6:课堂总结和作业布置1. 回顾一次函数的概念和特点;2. 强调一次函数的图像和方程的关系;3. 布置作业:完成课后习题。
教学反思:本节课通过PPT展示和示例方程的讲解,帮助学生理解了一次函数的概念和特点,学生能够绘制一次函数的图像,并掌握了解一元一次方程的解答方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主备人:祝正堂参备人:吴恒孙荣慧陈启国19.1 变量教学过程设计板书设计19.1.2 函数①汽车行驶;②电影售票;③弹簧挂物.提问:每个问题中是否各有两个变量?同一个问题中的变量之间有什么关系?2、通过以上几个问题,你能说出在这几个问题中存在的共同点吗?上面每个问题中的两个变量互相联系,当其中的一个变量取一定的值时,另一个变量就___________。
3、如何确定自变量的取值范围?4、什么叫函数值,如何确定函数值?举例说明。
如果当x=a时y=b,那么b叫做当自变量x的值为a时的函数值.5、出示教材中的探究。
在计算器上按照下面的程序进行操作:填表:x 1 3 -4 01 01y显示的数y是输入的数x的函数吗?如果是,写出它的关系表达式.归纳:每给出一个自变量的值x,y有唯一的值和它对应。
三、例题讲解(一)一辆汽车油箱现有汽油50L,如果再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减小。
平均耗油量为0.1L/km。
1、写出表示y与x的函数关系式。
2、指出自变量x的取值范围。
33、汽车行驶200km时,油箱中还有多少汽油。
分析:(1)油箱中的油量y随行驶里程x的增加而减少,所以x是自变量,y是x的函数,y与x的函数解析式是xy1.050-=;(2)自变量x的取值,首先要考虑其表示的意义,即x表示行驶里程,因此x≥0;其次要考虑本题的实际情况,必须保证50-0.1x≥0,所以自变量x的取值出关系式。
解答时,关注学生是否答出每个问题中的两个变量的单值对应。
师生共同归纳之后教师给出函数的概念并板书。
教师强调:确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且注意问题实际意义。
以例1为例,讲解他t取值不同,值s有唯一确定的值和它对应。
让学生细心阅读计算交换意见、讨论结果。
教师引导学生分析题意,学生写出表达式。
注意(1)要根据实际意义确定自变量取值范围x、y不能为负。
(2)计算函数值时,注意自变量的范围。
感知每个问题中两个变量的存在。
学生共同参与解决问题意在巩固其方法。
巩固函数定义函数值的定义。
加深对函数意义的理解,熟练掌握函数关系式确定的办法。
范围是5000≤≤x .(3)本小题就是求x =200时的函数值,把x =200代入解析式x y 1.050-=,求得y =30,即汽车行驶200km 时,油箱中还有30L 汽油.点拨 :(1) y 与x 的函数关系式就是以x 为自变量,以y 为函数,其解析式就是用含x 的式子表示y .(2)解决函数问题或是用函数方法解决问题,最为关键的是求出函数关系式,利用函数关系式可以求出自变量为任意值时的函数值,也可以求出函数等于某一值时自变量的值.(二)练习:教材99页,练习(1)(2)。
三、课堂训练 1.下列关于变量x 、y 的关系:①5=-y x ;②x y 22=③x y =;④xy 3=;其中y 是x 的函数的是( )A .①②③B .①②③④C .①③D .①③④2.下列关系中,y 不是x 的函数的是( ). A .y 是实数x 的平方 B .y 是实数x 的立方根 C .y 是非负实数x 的平方根D .y 是非负实数x 的算术平方根3.下表中,x 表示乘公共汽车的站数,y 表示应付的票价(元):x (站)1 345678910 y (元)1 2223334 4 根据表中数据判断:下列说法中正确的是( ) A .y 是x 的函数 B .y 不是x 的函数 C .x 是y 的函数 D .以上说法都不对 4.水泥管的外径为6,内径为R ,横截面积S 与内径R 有如下关系:S =π(36- R 2),则( )A .S 是R 的函数;R 的取值范围是R >0B .S 是R 的函数;R 的取值范围是R <6C .S 是R 的函数;R 的取值范围是0<R <6D .S 是R 的函数;R 也是S 的函数 5.函数1 =x y 的自变量x 的取值范围是( ) A .x >0 B .x ≥0 C .0≤x ≤1 D .x ≥1 一架飞机从2100m 的高空开始降落,每秒钟下降150米.(1)写出飞机离地面的高度h (m)与降落时间t (秒)19.1.3函数的图象平滑曲线连接起来.即连线.归纳:描点法画函数的图象一般步骤:1、列表:列出自变量与函数的对应值表.注意:自变量的值(满足取值范围),并取适当.2、描点:建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.3、连线:按照横坐标从小到大的顺序把描出的点用平滑曲线依次连接起来.(三)、识函数的图象1.这个图是自动测温仪记录的图象,它反映了我们地区春季某天气温T 随时间t 变化而变化的规律.你从图象中能得到什么信息?学生回答:(1)这一天中凌晨4时气温最低为-3℃,14时气温最高为8℃.(2)从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.(3)一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t的函数.(4)我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.(5)气温为0℃时大约是哪一时刻.三、课堂训练(一).下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.师生共同归纳用描点法画函数的图象一般步骤和体现数形结合思想.教师板书.通过图象进一步认识函数意义.体会图象的直观性、优越性及变化趋势.教师指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律.教师提出问题,学生思考并回答.可以体现数形结合的思想.加深对概念的认识理解,感受生活中无所不在的数学.从两个变量的对应关系上认识函数,体会函数意义;找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….提高对图象的分析能力、根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?归纳解答函数图象题主要步骤如下:1. 了解横、纵轴的意义2. 从函数图象上判定函数与自变量的关系3. 抓住特殊点的实际意义一看坐标轴,二看特殊点,三看变化趋势;四看如果有两个图象就看交点。
(二)教材104页练习2 四、小结归纳1.画函数的图象一般步骤 :列表、 描点、 连线.2.解答函数图象问题主要步骤.3.解答图象信息题主要运用数形结合思想和分类讨论思想,化图像信息为数字信息. 五、作业设计(一)教材86页6题(二)1.已知点(1,0),(0,-1),(2,-1),(-1,2),其中在函数y =-x +1的图象上的点有__________________.2.已知函数①x y 1=,②35-=x y ,③x y 21=,④122+-=x x y ,⑤x y 2=,其中图象经过原点的有_____个.3.若点(a ,6)在函数y =3x 的的图象上,则a =____. 4.若函数y =kx +5的图象经过(1,-2),则k =____. 5.某人进行登山活动,从山脚到山顶,休息一会儿又沿原路返回。
若用横轴表示时间t ,纵轴表示与山脚距离h ,那么反映全程h 与t 的关系的图是( )教师播放课件出示问题,通过课件演示整个过程. 教师提出问题,引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x•轴的线段的意义,学生在教师引导下,积极思考、探求答案.教师对学生完成情况,点评指正.归纳解答函数图象题主要步骤.教师总结本节课所学内容,总结用画函数的图象一般步骤;解答函数图象问题主要步骤认识水平.掌握函数变化规律.进一步提高识图能力.按要求从图象中挖掘所需信息,并得出结论. 回顾知识点,做到整体认识,突出方法总结,使学生掌握解题规律. 巩固深化,提高所学知识.6.甲、乙两人在一次赛跑中,路程s(米)与所用时间t(秒)的关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲先到达终点D.甲、乙两人的速度相同7.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用s1,s2分别表示乌龟和兔子的行程,t为时间,则下列图象中与故事情节相吻合的图象是()8.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系。
请你有条理地具体说明小明散步的情况。
巩固所学知识.板书设计课题19.1.3函数的图像函数的图象概念自变量---横坐标函数值---纵坐标画函数图象的一般步骤1、列表2、描点3、连线数形结合思想解答函数图象问题主要步骤一看坐标轴,二看特殊点,三看变化趋势;四看如果有两个图象就看交点.数形结合思想和分类讨论思想,化图象信息为数字信息.教学反思19.1.3函数的图象(2)教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、情境引入问题仓库里现有1000t 粮食,每天运进80t ,x(天)后仓库里一共有粮食y (t )1、y 与x 之间的关系式?2、说明y 随x 的变化情况吗?3、还有什么方法可描述它们的变化情况呢?4、怎样用描点法画出它的图象呢?二、探究新知1、怎样画出y=x +0.5的图象问题:点(-2,-1.5)是否在函数图象上?2、生独立完成画出)0(6>=x xy 的图象的过程问题 :点(2,6)是否在函数图象上?3、总结出画函数图像的步骤及其具体操作过程第一步 列表 表中给出一些自变量的值及其对应函数值 第二步 描点 在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
第三步 连线 按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来4、观察 y=x +0.5与)0(6>=x xy 的图象,两个函数图象由左到右的变化规律是什么? y 是如何随 x 的变化而变化的?三、课堂训练1、如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。
用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?2、如图所示的曲线,哪个表示y 是x 的函数( )教师出示问题,学生思考后用解析式表达函数关系,并描述变化规律 学生简单回顾所学内容 教师引导学生共同画图象但应关注学生: 1、引导学生注意取自变量的值要合理。