变压器中性点间隙接地
(整理)NS-ZJB变压器中性点间隙接地保护装置
NS-ZJB型变压器中性点间隙接地保护装置使用说明书保定市新思达电气科技有限公司NS-ZJB系列变压器中性点间隙接地保护装置一、 概 述1、NS-ZJB 型变压器中性点间隙接地保护装置专用于110KV 、220KV 、330KV 、500KV 电力变压器中性点,以实现变压器中性点接地运行或不接地运行两种不同的运行方式;从而避免由于系统故障,引发变压器中性点电压升高造成对变压器的损害。
本产品广泛应用于电力、冶金、石化、建筑、环保等领域。
2、一般来说,棒间隙为极不均匀电场,放电电压不稳定分散性大决定其保护性能差。
球间隙为均匀电场放电电压稳定,分散性小保护性能好。
球间隙现场调试比较容易,用户可根据自己地区情况现场调试;而棒间隙尖顶特别难对准,所以现场调试难度大。
球间隙采用不锈钢球表面镀银、成本高并且固定要求高,所以许多厂家为降低成本而采用棒间隙,忽略了使用效果。
3、 电流互感器选用:采用环氧树脂浇注的干式电流互感器。
电流互感器装在不锈钢箱体里,不受环境气候影响,使用寿命长,使保护不会出现误动或拒动且稳定可靠。
二、 技术数据NS-ZJB 型变压器中性点间隙接地保护装置的技术数据如下表:产品型号说明产品型号 变压器额定电压 kV 变压器中性点耐受电压 隔离开关 氧化锌避雷器 放电间隙电流互感器 雷电全波和截波耐受电压 kV (峰值) 1min 工频 kV (有效值) 额定电流 A 操动机构 额定电压 kV (有效值) 持续运行电压 kV (有效值) 直流1mA 参考电压 kV 不小于 8/20µs 雷电冲击电流残压 kV(峰值)工频放电电压kV±10%(有效值) 型式 变比NS-ZJB-11011025095 400 CS8-5(手动)或 CJ6(电动) 725810318683环氧树脂浇注全封闭支柱式10kV 100/5200/5300/5 400/5 500/5600/5 NS-ZJB-220220320 200 600 144116 205 320166 NS-ZJB-330330440 292 600 CJ6(电动)207 166 292 440252NS—ZJB—/S代表手动机构D代表电动机构系统电压等级变压器中性点间隙接地保护成套装置保定市新思达电气科技有限公司我公司为专业生产厂家,技术力量雄厚,售前的技术交流咨询可随时到位。
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理(2007-01-07 22:41:40)转载▼分类:工作目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
这两种保护的原理接线如图23所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。
第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。
定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。
中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。
零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。
一次启动电流通常取100A 左右,时间取0.5s。
110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。
为什么变压器中性点要接地
为什么变压器中性点要接地?
变压器中性点接地就构成了大电流接地系统。
大电流接地系统有什么好处?1,发生单相接地时就构成单相短路,故障电流可以足够大,保证继保装置可靠动作跳闸。
2,中性点接地可以防止中性点过电压,变压器可以采用“半绝缘”结构,节约成本。
所有的变压器中性点都接地行不行?当然可以啊!可是这样有几点坏处:1,多一个中性点接地就相当于多了一个“零序电源”,会使接地短路电流数值增大,增大故障点的破坏性,增大断路器的灭弧负担。
2,零序电流保护定值是根据零序电流计算结果整定的,如果变压器中性点都接地,那么如果停用一台变压器,就相当于少了一个“零序电源”,就要调整零序电流保护的整定值,这样做很麻烦。
所以实际运行中采取一部分变压器中性点接地,为了防止中性点接地的变压器先跳闸而失去接地点,在实际运用中将中性点不接地的变压器投用“零序过压”保护,发生接地故障时,让中性点接地变压器投用的“零序过流”保护带延时后跳闸。
中性点接地变压器每一段母线都要有,防止母线之间分开时都有各自的中性点接地点。
当一条母线上变压器较多时,通常就不止一台变压器中性点接地,这是为了增加零序保护动作的可靠性。
运行中,当中性点接地的变压器退出运行之前,必须先合上容量相当的另一台变压器的中性点接地闸刀。
这样经过中性点调整,保持数量不变,就省去了更改定值的麻烦。
间隙保护国家有关规定
间隙保护国家有关规定根据国家电力公司制定的《防止电力生产重大事故的二十五项重点要求》〔国电发[2000]589号〕和有关网局《110-220KV变压器中性点过电压保护方式规定》,现摘录如下:1、当220KV变电站有两台及以上主变运行时,应将其中一台主变高压绕组中性点直接接地。
2、110KV、220KV变压器不接地的中性点应装设间隙或采用避雷器与间隙并联保护方式。
因接地故障形成局部不接地系统时间隙应动作;系统以有效接地方式运行、发生单向接地故障时,间隙不应动作;避雷器应能承受单向接地时中性点的稳态电压升高。
间隙的标准雷电波放电电压和避雷器雷电冲击残压应低于变压器中性点雷电冲击耐受水平。
3、220KV变压器〔自耦变除外〕的220KV绕组中性点为110KV绝缘水平〔LI400AC200〕,110KV绕组中性点为60KV绝缘水平〔LI325AC140〕,均应采用钢棒间隙与避雷器并联保护方式。
220KV绕组中性点宜选用Y1.5W-144/320型氧化锌,间隙距离宜选用300mm; 110KV绕组中性点宜选用Y1.5W-60/144型氧化锌,间隙距离宜选用140mm。
4、110KV变压器中性点采用以下保护方式110KV绕组中性点为60KV绝缘水平(LI325AC140),宜选用Y1.5W-60/144型氧化锌避雷器与140mm距离的间隙相并联。
110KV绕组中性点为44KV绝缘水平(LI250AC95),宜选用Y1.5W-60/144型氧化锌避雷器与120mm距离的间隙相并联。
110KV绕组中性点为35KV绝缘水平(LI185AC85),可以采用单独间隙保护,间隙距离宜选用115mm。
有关各方可以根据当地海拔高度和空气湿度放电间隙距离作适当调整。
5、棒间隙采用φ16mm镀锌圆钢,端部形状接近半圆无棱角〔不允许焊接铜球〕,尾端应有螺纹以便调节,间隙应水平布置以防止雨水短接。
避雷器应加装放电记数器,以便于巡视人员监视。
220kV与110kV变压器中性点接地方式安排与间隙保护配置及整定要求2017
附件1220kV与110kV变压器中性点接地方式安排与间隙保护配置及整定要求一、变压器中性点接地方式安排要求110kV~220kV电网变压器中性点接地运行方式安排应满足变压器中性点绝缘承受要求,并尽量保持变电站的零序阻抗基本不变且系统任何短路点的零序综合阻抗不大于正序综合阻抗的三倍。
1.自耦变压器中性点必须直接接地或经小电抗接地。
2.没有改造的薄绝缘变压器中性点宜直接接地运行。
3.220kV变压器1)220kV变压器110kV侧中性点绝缘等级为35kV时,220kV侧、110kV侧中性点应直接接地运行。
2)变压器的220kV、110kV侧中性点接地方式宜相同。
3)220kV厂站宜按一台变压器中性点直接接地运行。
4)有两台及以上变压器的220kV厂站,220kV或110kV 侧母线任意一侧或两侧分列运行时,每一段母线上应保持一台变压器中性点直接接地运行。
4.110kV变压器1)110kV变压器110kV中性点绝缘等级为66kV时,中性点可不直接接地运行。
2)110kV中性点绝缘等级是44kV及以下的变压器,中性点宜直接接地运行。
3)发电厂或中、低压侧有电源的变电站,厂站内宜保持一台变压器中性点直接接地运行。
4)无地区电源供电的终端变压器中性点不宜直接接地运行。
二、变压器中性点间隙零序过流、零序过电压保护配置及整定要求间隙零序过电压应取PT开口三角电压;间隙零序电流应取中性点间隙专用CT;间隙零序电压、零序电流宜各按两时限配置;对于全绝缘变压器或中性点放电间隙满足取消条件的变压器(例如:中低压侧无电源且中性点绝缘等级为66kV 的110kV变压器),间隙零序过流保护应退出,间隙零序过电压保护可保留。
1.间隙保护动作逻辑一(推荐)变压器间隙零序过电压元件单独经较短延时T1出口;变压器间隙零序过流和零序过电压元件组成“或门”逻辑,经较长延时T2出口;逻辑简图如图1所示:图1 间隙保护逻辑一简图间隙保护动作时间整定要求如下:1)变压器间隙零序过电压保护动作跳变压器时间应满足变压器中性点绝缘承受能力要求。
变压器中性点接地系统的优缺点
1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is ,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。
(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可靠性。
(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。
2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。
(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可靠性,对通讯干扰小等优点。
在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。
(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。
3 电气设备的保护接地3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。
由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
这两种保护的原理接线如图E-127所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。
第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。
定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。
中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。
零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。
一次启动电流通常取100A左右,时间取0.5s。
110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。
当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。
变压器中性点接地
,我们大家一直说的变压器中性点接地方式,其实是这个变压器所在的整个电压力系统的问题,而不单单是变压器中性点采用什么接地方式,这个是需要注意的.那么电力系统的中性点接地方式有那几种呢?主要有五种:1.不接地 2.经电阻接地 3.经阻抗接地 4.经消弧线圈(消弧电抗)接地 5.直接接地那么平常我们说的大电流接地系统和小电流接地系统是根据电流的大小,把上面的几种接地方式归类.有的书上是这样解释的,我感觉不错,说出来共大家参考:以系统的零序电抗X0和正序电抗X1的比值X0/X1的大小来决定.凡是X0/X1≤4~5的系统,属于大电流接地系统;X0/X1≥4~5的系统属于小电流接地系统.那么根据电力系统的实际情况,具体采用那种接地方式,需要综合很多方面的原因.我说说自己知道的几条:1.供电的可靠性与故障范围,有一些电力系统给一些非常用要的工厂公司,或者民用等,要求单相接地故障条件下运行.在中性点不接地系统中若发生单相接地可不跳闸,而直接接地系统就的跳闸.2.系统中内过电压的倍数问题,在小电流接地系统中,内过电压是在线电压的基础上产生和发展的,相对绝缘要求高,因为过电压的数值大.在大电流接地系统中,内过电压是在相电压的基础上产生的.3.电力系统的绝缘水平,电力设备的绝缘水平主要解决于大气过电压和内过电压,中性点直接接地可使内过电压降低20%~30%.因而这种系统的绝缘工频耐压水平也相应降低20%左右.从过电压与绝缘水平的观点看,中性点直接接地比经消弧线圈接地好,而消弧线圈接地比不接地好,这就是为什么11KV及其以上线路都选用有效接地方式了,主要就是降低对绝缘的要求.330KV及500kv系统中不允许变压器中性点不接地运行.都是为了降低对绝缘的要求.4.系统稳定性方面.在中性点直接接地系统中发生一相接地时,由于短路电流很大,电压的极距下降和输电线路的切断,可能导致系统动态稳定的破坏;而中性点不接地或经消弧线圈接地,就没有这个问题.5.断路器检修方面,因中性点有效接地时,单相接地故障电流大,需要断路器跳闸,频繁.那么断路器检修次数相应上升.二.变压器中性点在什么情况下需要装设保护装置.中性点装设保护,首先应该对于单个(不对应系统)变压器中性点不接地运行时的情况,是否需要装设保护的问题.如直接接地系统中的中性点不接地变压器,而且此变压器是分级绝缘,那么一定要装设保护了,中性点绝缘未按线电压设计,为了防止因断路器非同期操作,线路非全相运行或断线,或因继电保护的原因造成中性点不接地的孤立系统带单相接地运行,引起中性点的避雷器爆炸和变压器绝缘损坏,应在变压器中性点装设保护间隙或将保护间隙与避雷器并接.如中性点的绝缘按线电压设计,非直接接地系统中的变压器中性点一般不用装设保护装置.但多雷区进线变电所应装设保护装置,中性点接有消弧绕组的变压器,如有单进线运行的可能,也应在中性点装设保护装置产品概述110kV、220kV是供电网络的主要电压等级,由于电压很高, 中性点一般采用直接接地方式,由于继电保护整定配置及防止通讯干扰等方面的要求,为了限制单相短路电流,其中有部分变压器采用中性点不接地方式。
变压器中心点接地优缺点
变压器中性点接地与不接地系统1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。
(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。
(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。
2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。
(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。
在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。
(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。
3 电气设备的保护接地3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。
变压器中性点接地与不接地
变压器中性点接地与不接地系统1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。
(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。
(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。
2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。
(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。
在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。
(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。
3 电气设备的保护接地 3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。
变压器中性点接地规范要求
变压器中性点接地规范要求
变压器中性点接地,指的是将变压器的中性点接地,以保证变压
器的安全使用。
通常情况下,用户可以根据使用场合的要求和安装位
置来决定接地方式。
总体而言,变压器中性点接地规范要求,主要是以下四块内容:
一是要求变压器中性点必须接地,确保其电压接触安全;
二是在变压器安装之前,应尽量充分地研究调查,以确保变压器
中性点通过接地达到电气安全;
三是变压器安装后,应进行定期检查,以检查接地是否达到规范
要求;
四是必须建立完善的用电规程,对变压器进行定期的维护和管理,以确保其电压接触安全。
除此之外,如果变压器安装在潮湿的环境中,那么接地系统的选
择和安装方式也应当十分小心,以确保变压器的正常使用。
在潮湿环
境中,安装金属管地线或非金属管(桥架)地线并非最优选择;只有
采用横穿性能较优的接地电缆,才能保证变压器获得最优的电压接触
安全。
综上所述,变压器中性点接地规范要求主要是为了确保变压器的
电压接触安全,在设计安装时,应根据使用场合的要求和安装位置,
采取必要的介质隔离手段,合理设置接地系统,确保变压器安全工作,及时检查接地、完善用电规程,才能做到“安全使用电气”。
220kV与110kV变压器中性点接地方式安排与间隙保护配置及整定要求2017
附件1220kV与110kV变压器中性点接地方式安排与间隙保护配置及整定要求一、变压器中性点接地方式安排要求110kV~220kV电网变压器中性点接地运行方式安排应满足变压器中性点绝缘承受要求,并尽量保持变电站的零序阻抗基本不变且系统任何短路点的零序综合阻抗不大于正序综合阻抗的三倍。
1.自耦变压器中性点必须直接接地或经小电抗接地。
2.没有改造的薄绝缘变压器中性点宜直接接地运行。
3.220kV变压器1)220kV变压器110kV侧中性点绝缘等级为35kV时,220kV侧、110kV侧中性点应直接接地运行。
2)变压器的220kV、110kV侧中性点接地方式宜相同。
3)220kV厂站宜按一台变压器中性点直接接地运行。
4)有两台及以上变压器的220kV厂站,220kV或110kV 侧母线任意一侧或两侧分列运行时,每一段母线上应保持一台变压器中性点直接接地运行。
4.110kV变压器1)110kV变压器110kV中性点绝缘等级为66kV时,中性点可不直接接地运行。
2)110kV中性点绝缘等级是44kV及以下的变压器,中性点宜直接接地运行。
3)发电厂或中、低压侧有电源的变电站,厂站内宜保持一台变压器中性点直接接地运行。
4)无地区电源供电的终端变压器中性点不宜直接接地运行。
二、变压器中性点间隙零序过流、零序过电压保护配置及整定要求间隙零序过电压应取PT开口三角电压;间隙零序电流应取中性点间隙专用CT;间隙零序电压、零序电流宜各按两时限配置;对于全绝缘变压器或中性点放电间隙满足取消条件的变压器(例如:中低压侧无电源且中性点绝缘等级为66kV 的110kV变压器),间隙零序过流保护应退出,间隙零序过电压保护可保留。
1.间隙保护动作逻辑一(推荐)变压器间隙零序过电压元件单独经较短延时T1出口;变压器间隙零序过流和零序过电压元件组成“或门”逻辑,经较长延时T2出口;逻辑简图如图1所示:图1 间隙保护逻辑一简图间隙保护动作时间整定要求如下:1)变压器间隙零序过电压保护动作跳变压器时间应满足变压器中性点绝缘承受能力要求。
变压器间隙保护
2.1 介绍常规的原理及整定原则按照变压器中性点过电压保护设计原则,对110kv、220kv 有效接地系统中可能形成的局部不接地(如中性点接地变压器误跳闸)或低压侧有电源或电动机的不接地变压器的中性点,应装设放电间隙和间隙零序保护,在间隙放电时,应由主变压器高压侧中性点间隙接地零序保护动作切除短路点。
主变压器高压侧中性点间隙接地零序保护应分别整定计算中性点间隙零序过流保护和中性点间隙零序过电压保护。
(1)中性点间隙接地零序过流保护动作电流计算动作量取自间隙接地回路零序电流互感器TA.的二次电流310,其值当考虑间隙电弧放电因素时,根据运行经验取一次动作电流为100A,时间取O. 3s,保护动作跳变压器三侧开关。
(2)中性点间隙接地零序过电压保护动作电压计算当系统失去直接接地中性点,而又发生单相接地时,此时Tv 开口三角形绕组出现的电压(Tv不饱和时)3u0为300v,但实际上当3u0为200v时,Tv已开始饱和(电磁型TV测量回路的伏安特性,根据实测为:Tv二次绕组加电压70v时,绕组励磁电流为20A,即饱和电压约为70v)。
所以系统失去直接接地的中性点,而又发生单相接地时,Tv开口三角形绕组饱和电压3u0约为210v,所以当系统失去中性点直接接地,而又发生单相接地时,规程上规定零序过电压保护动作电压整定3u0为180v,动作时间应躲过暂态过电压时间,可整定T为O. 3—0. 5s,保护动作跳变压器三侧开关。
2. 2A变电站的间隙零流保护的误动分析具体系统如图1所示。
该站为有两台110kV不接地变压器,通过35kv负荷侧联络线连接一并网小由源F1有110kv两路丰电源A和B线。
当动作,也经O. 3s跳两台主变三侧开关。
虽然电源线A故障跳闸后,经1s 重合成功,但此时变电站已全所失压。
从这次事故过程分析,可以看出:由于常规按整定设计规程,间隙电流一次动作值取100A、O, 3s,与上一级线路零序电流二段整定时间相同,因此在有效接地方式下发生单相接地短路时,变压器间隙电流保护动作时间躲不过上一级线路后备保护动作时间,而造成误动,结果延长了停电时间,极大地影响了供电可靠性。
220kV变压器中性点间隙保护问题探究
220kV变压器中性点间隙保护问题探究摘要:对于电力系统中110kV及以上电压等级的中性点直接接地系统,中性点直接接地数目,直接影响整个网络零序电流的大小和分布,进而影响零序过流保护的适应性和整定计算。
一般双主变或多主变并列运行的变电站,为保证系统为直接接地系统,其中1台主变中性点直接接地运行,其余主变中性点经间隙接地运行。
变电运维人员通常根据调度指令对主变中性点接地方式进行切换倒闸操作。
并同时需要对主变中性点零序、间隙保护投压板进行投退,跟随中性点接地运行方式进行中性点零序、间隙保护的切换。
基于此,本篇文章对220kV变压器中性点间隙保护问题进行研究,以供参考。
关键词:220kV;变压器;中性点;间隙保护问题引言直流输电系统以大地回线方式运行时,易导致交流变压器中性点直流电流过大,发生直流偏磁,因此一般需在变压器中性点加装中性点隔直装置,保证交流变压器的可靠运行。
本文对某电厂在220kV变压器中性点隔直装置保护间隙发生的误击穿现象进行故障分析与研究,并提出相应的解决措施。
1主变零序保护、间隙保护原理对于直接接地系统内的变压器,当变压器中性点直接接地时,零序电流保护作为接地短路故障的后备保护;当中性点经间隙接地时,间隙保护作为接地故障的后备保护。
放电间隙击穿后产生的间隙电流I0和在接地故障时在故障母线TV 的开口三角绕组两端产生的零序电压U0构成"或"逻辑,组成间隙保护,即间隙保护包括间隙电流保护和间隙电压保护220kV直接接地系统中母线电压互感器变压比为220/姨3/0.1/姨3/0.1,间隙保护动作电流通常整定为100A,间隙保护动作电压通常整定为180V。
原理如图1所示。
2引起中性点隔直装置间隙击穿原因分析变压器空载合闸后的三相励磁涌流和三相电压不对称,使得变压器中性点流过高幅值、高频率的励磁涌流,并产生高幅值的暂态过电压。
即使变压器中性点通过隔直装置的旁路开关直接接地,由于变压器中性点与隔直装置之间、隔直装置与变电站接地网之间的连接电缆较长,且隔直装置内部组件之间的连接导体存在寄生电感,具有瞬变特性的电流流经该电感,会在变压器隔直装置电容器及保护间隙两端产生高幅值的暂态过电压,从而使得中性点隔直装置的保护间隙发生击穿现象。
变压器中性点间隙接地保护装置应用研究
= !! !! !! ! ±!! ! ! = !! !!! ! ! != == ==一
变 压 器 中性 点 间隙接 地 保 护 装置 应用 研 究
丁双 松 徐 航
( 兰溪 市 供 电局 , 江 金 华 3 10 ) 浙 2 10
业化。 22 有 效 保 护 . 性 稳 定 . 特
33 .
图 1 接 地保护装置结构图
电 流 互 感 器 选 用
号, 如果其 他保 护 没有 正确 动作 , 电流
或不接 地运 行 2种 不同 的运行 方式 。
ቤተ መጻሕፍቲ ባይዱ
( H 系统 ) () 5 z 0 。 6 安装 场所 的空气 中不 应 含化 学腐 蚀气 体和蒸 气 , 无爆 炸性 尘埃 。
32 使 用 注 意 事 项 .
1 技 术 数 据
变 压器 中性 点 间隙接 地保 护装 置 的技术 数据 如表 1 示 。 所
《 高压 输 变 电设 备的 绝缘 配 合》 国家 电 网公 司十 八 项 电 网重 大 及“ 反事 故 措 施 ” 国 家及 行 业 标准 的有 关 规 定 设 计 , 配 套 专 门的 等 并
工艺 流程 、 检验 流程 和 设 备 , 证产 品制 造 的流 程 化 、 准 化和 专 保 标
摘
要: 基于 高压 线路变压器 中性 点电压升高造成对变压 器的损害 , 究了中性点 间隙接 地保护装置 的设计思路与应用条件 , 研 在分析接地
保 护 装 置 技 术 参 数 的 基 础 上 ,详 细 探 讨 了设 计 特 点 ,论 述 了工 程 实 践 中接 地 保 护 装 置 使 用 时 的注 意 事 项 与 中性 点 间 隙 对 接 地 装 置 稳 定 性 的 影
KY-500系列变压器中性点接地保护装置
KY-500系列变压器中性点接地保护装置说明书保定市科悦电气有限责任公司目录一、产品用途 (1)二、引用标准 (1)三、使用环境条件 (1)四、型号含义 (2)五、国家有关规定 (2)六、技术数据 (4)七、外形与地基安装图 (4)八、外形及安装尺寸 (5)九、运输及储存 (7)十、安装要求 (7)十一、产品验收 (7)一、产品用途中性点的运行方式不同,其技术特性和工作条件也不同,因而对运行的可靠性、设备绝缘及其保护措施的影响和要求也不一样。
KY-500系列变压器中性点间隙接地保护装置专用于110KV、220KV、330KV、500KV 电力变压器中性点,以实现中性点接地或不接地两种不同的运行方式而设计的,从而避免变压器中性点因受雷电冲击和故障引起电压升高、对变压器绝缘造成损害。
此产品可以广泛应用于电力、冶金、化工、煤炭行业。
二、引用标准GB156-93 标准电压GB/T 1985—89 交流高压隔离开关和接地开关DL/T486 交流高压隔离开关和接地开关订货技术条件DL/T593 高压开关设备的共用订货技术导则DL/T615 交流高压断路器参数选用导则DL/T620 交流电气装置的过电压保护和绝缘配合GB/T 311—1997 高压输变电设备的绝缘配合GB/T 775—1987 绝缘子试验方法GB/T 5582—1993 高压电力设备外绝缘污秽等级GB/T 7354—1987 局部放电测量GB11032—2000 交流无间隙金属氧化物避雷器GB/T 11604—1989高压电器设备天线电干扰测量方法GB/T 16927—1997高电压试验技术GB191-1990 包装储运图示标志GB/T 2900-1989 电工名词术语避雷器DL/T 620-1997 交流电气装置的过电压保护及绝缘配合国电发[2000]589号防止电力生产重大事故的二十五项重点要求三、使用环境条件1.安装地点:户外。
2.产品结构:组合式柱上设备3. 周围空气温度:最高温度:+55℃最低温度:-40℃最大日温差:25K日照强度:0.1W/cm2 4. 海拔高度:2000m 5. 最大风速:35m/s 6. 地震烈度: 8度水平加速度:0.3g 垂直加速度:0.15g7. 污秽等级: III 级(2.8KV/cm) 8. 覆冰厚度: 10mm四、型号含义五、国家有关规定根据国家电力公司制定的《防止电力生产重大事故的二十五项重点要求》〔国电发[2000]589号〕和有关网局《110-220KV 变压器中性点过电压保护方式规定》,现摘录如下:1、当220KV 变电站有两台及以上主变运行时,应将其中一台主变高压绕组中性点直接接地。
110kV电力系统中变压器中性点接地方式分析
110kV电力系统中变压器中性点接地方式分析摘要:在我国,110 kV和电压等级更高的电网普遍采用中性点有效接地方式,当单相接地故障事故发生时,继电保护迅速跳闸解除故障。
介绍了110 kV变压器中性点接地方式及其保护配置,并结合实例分析了保护配置的必要性。
关键词:变压器中性点;避雷器;零序保护;单相接地电流中图分类号:TM862 文献标识码:A DOI:10.15913/ki.kjycx.2015.05.145随着我国经济的不断增长,电力系统的建设越来越快,在110 kV和更高电压等级的电网系统中,变压器是生产电力的主要设备,具有中性点的绝缘水平比三相端部出线电压等级低的特点。
但在一些变压器中性点接地的电力系统中,接地短路故障时有发生,严重影响了变压器的中性点绝缘。
因此,如何对大型变压器实施中性点保护已成为人们需要解决的问题。
1 变压器中性点接地方式1.1 变压器中性点接地系统的优缺点对于电源中性点接地系统,如果发生某单相接地,另两相电压不变,这样会使整个系统的绝缘水平降低,此外,单相接地还会产生较大的短路电流,使保护装置迅速准确动作,从而提高保护的可靠性;电源中性点接地系统的缺点是单相短路电流很大,且还能造成系统不稳定和干扰通讯线路等,因此,要选择容量较大的开关和电气设备等。
1.2 变压器中性点不接地系统的优缺点对于变压器中性点不接地系统,由于限制了单相接地电流,所以,通讯的干扰较小,提高了供电的可靠性;变压器中性点不接地系统的缺点是,当一相接地时,另两相对地电压升高1倍,易使绝缘薄弱地方击穿,进而造成两相接地短路。
1.3 我国110 kV变压器中性点接地的方式为了限制单相接地短路电流,满足防止通讯干扰和继电保护的整定配置等要求,我国110 kV系统普遍采用1台变压器中性点直接接地,其余变压器的中性点以不接地的运行方式,即整体采用部分变压器中性点接地方式。
2 变压器中性点过电压及其保护2.1 变压器中性点过电压2.1.1 工频过电压在操作系统或发生接地故障时,频率等于工频或接近工频的高于系统最高工作电压的过电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器中性点间隙接地
在电力系统故障中,非对称三相故障可以分解出正序分量、负序分量和零序分量,而变压器线圈中性点接地通道就是零序电流途径通道,零序保护装置是根据零序电压和零序电流大小有选择地切除故障变压器。
110kV、220kV是供电网络的主要电压等级,由于电压很高, 中性点一般采用直接接地方式,由于继电保护整定配置及防止通讯干扰等方面的要求,为了限制单相短路电流,其中有部分变压器采用中性点不接地方式。
【限制单相短路电流的目的:1、使单相短路电流不大于三相短路电流,因选择设备均按三相短路电流来校验的,以防损坏。
2、控制单相短路电流的数值和在系统中的分布,满足零序保护的需要。
3、减少不对称的单相短路电流对通信系统的干扰。
】而为了防止中性点不接地,变压器中性点电压在故障时升高伤害变压器绝缘,所以不直接接地的变压器中性点采用间隙保护。
当中性点电压升高时,空气间隙被击穿引燃电弧,将中性点接地。
当电压降低后,电弧熄灭,中性点又不接地了。
如果在这个间隙保护回路上加一个电流互感器,在保护动作时,电流流过发出信号,如果其他保护没有正确动作,电流一直持续,经过一定延时,也能动作跳开开关。
110KV、220KV、330KV、500KV电力变压器中性点必须安装间隙接地保护装置,从而实现变压器中性点接地运行或不接地运行2种不同的运行方式。
接地间隙的选择决定保护装置的稳定性。
实际工程中的间隙有2种,分别为棒间隙与球间隙。
一般来说,棒间隙为极不均匀电场,放电电压不稳定,分散性大,从而决定了其保护性能差。
球间隙为均匀电场,放电电压稳定,分散性小,保护性能好。
基于此,变压器中性点间隙接地保护装置主要采用球形放电间隙方式,比惯用的棒形放电间隙放电电压准确率高、分散性小、特性稳定,与避雷器特性及主要变压器的绝缘配合精确、充分有效,热容量大,不易烧损。
提高了保护安全性和保护效果。