硅基薄膜电池Vs晶硅电池的五大优势

合集下载

晶硅太阳能与薄膜太阳能区别

晶硅太阳能与薄膜太阳能区别

1、晶硅电池:
晶硅电池包括单晶硅和多晶硅,其中多晶硅电池占主导地位,且技术最为成熟。

优势:
晶硅电池的光电转化率更高,国内晶硅电池转化率也已达到了17%到19%。

晶硅电池技术发展得较为成熟,企业不需频繁进行技术改造。

晶硅电池的设备投资较低,国产设备已经可以满足电池片生产线大部分的需求。

晶硅技术的另一优势在于成熟的生产工艺。

目前大部分单晶硅电池片厂商良品率可达98%以上,而多晶硅电池片生产的良品率也在95%以上。

劣势:
产业链工艺复杂,成本大幅度降低的可能不大。

原材料成本波动幅度较大,近年来国际市场上的多晶硅接连上演过山车的行情。

硅产业是一个高污染、高耗能的产业,存在政策调整风险。

2、薄膜电池:
薄膜电池是在玻璃、不锈钢等物质表面附上几微米后的感光材料制成。

优势:薄膜电池用材料少、制造工艺简单、耗能少、可大面积连续生产,并可采用玻璃或不锈钢等低成本材料作为衬底。

薄膜电池现已发展出多种技术路线,其中CIGS(铜铟镓硒)薄膜太阳能技术、柔性薄膜光伏模块技术等已取得阶段性成果,与晶硅电池光电转化率上的差距正在逐渐缩小。

薄膜电池弱光响应较好,因此特别适合应用于沙漠光伏电站。

以薄膜太阳能电池为主要部件的光伏系统,能够很好的实现光伏建筑一体化。

劣势:
薄膜电池的光电转化率偏低,一般只有8%左右。

薄膜电池的设备和技术投资
是晶硅电池的数倍。

薄膜电池组件生产的良率不尽如人意。

非/微晶硅薄膜电池组件的良品率目前只在60%左右。

CIGS电池组主流厂商也只到65%。

薄膜太阳能电池和硅晶太阳能电池

薄膜太阳能电池和硅晶太阳能电池

薄膜太阳能电池和硅晶太阳能电池随着能源危机的日益严重以及对环境保护的需求,太阳能作为一种可再生能源被越来越广泛应用。

而太阳能电池作为太阳能利用的核心技术之一,也得到了持续的研发和改进。

薄膜太阳能电池和硅晶太阳能电池作为两种主要类型的太阳能电池,在市场上占据了主导地位。

本文将分别介绍这两种太阳能电池的原理、特点以及应用领域。

薄膜太阳能电池是一种使用薄膜材料制造的太阳能电池。

薄膜材料可以是非晶硅、铜铟镓硒等。

与硅晶太阳能电池相比,薄膜太阳能电池具有以下几个特点。

薄膜太阳能电池具有较高的柔性。

由于薄膜材料的特性,薄膜太阳能电池可以制成柔性的电池片,能够适应各种形状和曲面。

这为太阳能电池的应用提供了更大的灵活性,可以广泛应用于建筑物外墙、屋顶、车顶等不同的场景中。

薄膜太阳能电池具有较高的光电转换效率。

虽然薄膜太阳能电池的光电转换效率相对较低,但是由于其较高的透明度,可以在低光照条件下仍然具有较高的发电效率。

这使得薄膜太阳能电池在阴天或者室内光照较弱的环境下也能够有效发电。

薄膜太阳能电池具有较低的制造成本。

相对于硅晶太阳能电池来说,薄膜太阳能电池的制造过程更加简单,材料成本也相对较低。

这使得薄膜太阳能电池在大规模生产时具有一定的竞争优势,能够更好地满足市场需求。

薄膜太阳能电池主要应用于一些对电池柔性性能要求较高的场合,如建筑一体化太阳能系统、便携式电子设备以及一些特殊形状的电池应用等领域。

它的柔性和透明性使得它可以与建筑物的外观融为一体,同时也可以为便携设备提供绿色能源。

硅晶太阳能电池是一种使用硅晶片制造的太阳能电池。

与薄膜太阳能电池相比,硅晶太阳能电池具有以下几个特点。

硅晶太阳能电池具有较高的光电转换效率。

由于硅晶材料的特性,硅晶太阳能电池的光电转换效率相对较高,可以达到20%以上。

这使得硅晶太阳能电池在光照充足的环境下具有较高的发电效率,能够提供更多的电能。

硅晶太阳能电池具有较长的使用寿命。

硅晶太阳能电池的材料稳定性较高,能够在较长的时间内保持较高的发电效率。

太阳能电池材料的种类、原理和特点

太阳能电池材料的种类、原理和特点

太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。

太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。

本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。

一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。

1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。

2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。

3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。

4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。

二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。

不同类型的太阳能电池材料有着不同的工作原理。

1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。

当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。

这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。

2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。

其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。

3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。

三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。

晶硅太阳能电池介绍

晶硅太阳能电池介绍

晶硅太阳能电池介绍晶体硅太阳能电池(也称为硅片太阳能电池)是一种常见且广泛应用于太阳能领域的太阳能转换技术。

它是利用硅片材料对光能的吸收和转化来产生电能的一个过程。

晶体硅太阳能电池主要由硅片、电极、导线和其他附件组成。

硅片是电池的核心部分,也是光能的主要转换区域。

硅片可分为单晶硅、多晶硅和非晶硅三种。

其中,单晶硅最为常见和普遍,它的晶格排列非常有序,电池效率相对较高。

晶体硅太阳能电池的工作原理主要涉及光电效应和PN结。

当光照射到硅片上时,光子会将电子从硅原子中激发出来,使其跃迁到空导带中,形成电流。

此时,硅片的一个表面被掺杂为N型导电层,另一个表面被掺杂为P型电导层,两者之间形成了一个PN结。

当光照射到PN结上时,电子会从N型区域流入P型区域,产生电流,同时产生电压差。

这样就完成了光能到电能的转换。

晶体硅太阳能电池的优点主要有以下几个方面:1.高效率:晶体硅太阳能电池的转换效率相对较高,可以达到20%以上,甚至高达25%。

2.长寿命:晶体硅太阳能电池的使用寿命可以达到25年以上,因此使用寿命较长,可以有效降低运维成本。

3.稳定性:晶体硅太阳能电池的稳定性较好,能够在不同环境条件下保持较高的转换效率。

4.良好的可靠性:晶体硅太阳能电池的可靠性较高,能够适应复杂多变的气候条件和环境。

5.可制造成各种形状和尺寸:晶体硅太阳能电池可以根据需求进行灵活制造,可以制作成不同形状和尺寸的太阳能板。

不过,晶体硅太阳能电池也存在一些局限性:1.成本较高:晶体硅太阳能电池的生产成本相对较高,需要较高的投资。

尽管随着技术不断进步,成本正在逐渐降低,但仍然有一定程度的限制。

2.对光强度和温度的敏感性:晶体硅太阳能电池对光强度和温度的变化较为敏感,在光强度较低或温度较高的环境下,效率会有所降低。

3.制造过程对环境的影响:晶体硅太阳能电池的生产过程中需要使用一定数量的能源和化学物质,可能会对环境造成一定的影响。

综上所述,晶体硅太阳能电池是一种广泛应用于太阳能领域的高效太阳能转换技术。

薄膜电池与晶体硅电池比较

薄膜电池与晶体硅电池比较

发电成本高是两大类太阳能电池的共性问题晶硅太阳能电池和薄膜太阳能电池是目前光伏市场的两种要产品,晶硅太阳能电池占据市场主流,约占90%左右的市场份额。

由于多晶硅生产工艺的属性决定了其产业链生产环节,尤其是多晶硅提纯中会存在高能耗、一些技术水平不高的企业甚至存在高污染问题。

而在应用中,晶硅太阳电池由于其温度效应和光谱响应范围窄的影响,使本来较高的光电转换效率大打折扣,从而影响光伏组件实际发电量。

薄膜太阳能电池因没有这些缺点应运而生,其不足在于转换效率相对较低,生产工艺复杂,生产设备昂贵,难以实现规模化生产。

发电成本高是两大类太阳能电池的共性问题。

中科院院士、北京大学物理学院教授甘子钊介绍说,薄膜太阳能电池家族主要包括硅基非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三大类薄膜太阳能电池。

铜铟镓硒薄膜太阳能电池具有生产成本较低、能耗低,污染小、不衰减、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近多晶硅太阳能电池,而耗材大大低于晶体硅电池,因此,被国际上称为“下一代非常有前途的新型薄膜太阳能电池”。

此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求建筑物BIPV应用的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有潜在的广泛市场。

但CIGS要实现大面积量产,提升效率和良品率,是必须攻克的难题。

河南燕垣光伏能源有限公司总工程师陆真冀具体介绍了CIGS薄膜电池的几大优势,他说,CIGS薄膜电池具有更低廉的发电成本,减少了材料消耗,薄膜电池的生产成本普遍低于晶硅电池;更优越的弱光性能同规模组件,薄膜电池一天的发电量比晶硅电池大约超出10%~20%;更加多样化的用途薄膜电池,可以发展出多用途的产品,比如柔性基底电池等等。

因此,也受到业内不少厂商的广泛关注,但主要都是大面积平板CIGS薄膜电池。

太阳能集电管应运而生CIGS太阳能集电管具有高效、廉价、有自主知识产权、设备能够国产化等一系列优点。

晶体硅VS薄膜电池优劣势权威对比

晶体硅VS薄膜电池优劣势权威对比

晶体硅VS薄膜电池优劣势权威对比命长、光电转化效率相对较高的特点;非晶硅薄膜电池太阳能电池具有弱光效应好,成本相对于晶硅太阳能电池较低的优点。

而碲化镉则由于原材料存在较严重的环保问题;铜铟镓硒电池则因原材料稀缺性、成本率低,其规模受到限制。

晶体硅太阳能电池板晶体硅(c-Si)太阳能电池是目前应用最广泛的太阳能电池,主要因为晶体硅具有稳定性,效率能够达到15%-25%。

不过晶体硅吸收光线能力差,这可能是其超小型结构的天生缺陷,因此必须相当厚且坚固。

一个基本的晶体硅电池包括7层(图1),透明的粘着剂连着玻璃保护层,下面是抗反射涂层,确保所有的光线穿过硅晶体层。

类似于半导体技术,N层夹着P层,有两个电接触点:上层带正电,下层带负电。

图1:晶体硅电池包含7层,其中两层是外部的电接触——将整个结构连在一起通常晶体硅有两种类型:单晶硅和多晶硅。

单晶硅来自高纯度的单晶体,切割自直径为150mm的晶圆,厚度为200mm。

而多晶硅更受欢迎,制造量更大,例如将硅切割成条状再切成晶圆。

无论哪一种,硅太阳能电池产生的电量都约为0.5V,多个电池可以串联依靠提高输出电压。

薄膜太阳能电池板即使采用废弃硅片,考虑到其效率水平,硅晶圆并不一定成本低廉。

薄膜太阳能电池比传统太阳能电池板更便宜,但效率也更低,光伏转换率在20%-30%之间。

根据所采用的材料不同,典型的薄膜太阳能电池可分为以下四类:非晶硅(a-Si)和薄膜硅(TF-Si);碲化镉(CdTe);铜铟镓硒(CIS 或CIGS)和染料敏化太阳能电池(DSC)加上其他天然材料。

薄膜太阳能电池和硅晶体太阳能电池的结构并没有太大不同,它包含六层(图2)结构。

这种结构下,透明涂层覆盖着抗反射层,下面是PN结,然后再是接触板和基底。

很明显,运行原理(光伏)和晶体硅电池是一样的。

图2:薄膜太阳能电池结构包含六层,与对应的晶体硅结构没有太大差别,运行原理也同为光伏原理可能有人会认为,而且他们的想法也可能是对的,就是既然名字是薄膜电池,构成是不是也比其他的电池技术更轻更薄。

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比传统能源存储量有限,不能过度开发使用,各国都积极推广可再生能源,希望改变能源结构,其中太阳能成为新能源中的焦点。

本文对光伏电站系统做了简单介绍,并就在电站设计中,对使用的晶硅组件与双结硅基薄膜组件产生的差异做了分析,同时对两种组件产品在发电输出上做了数据比较。

根据分析结果和实例可以看出,晶硅组件和双结硅基薄膜组件产品各具优缺点,需根据实际情况进行选用。

一、引言:传统能源日益紧张,各国都投入更大的人力和物力研究开发新的再生能源。

如何能够更加合理使用能源,提高能源的利用效率变得比以往更加具有现实和长远的意义。

太阳能因其具有资源丰富,分布广泛,绿色环保等优点,成为新能源中的焦点。

如今太阳能一般用作发电,在各国政府推出各种利好政策的激励下,大型地面电站在近几年被大力推广。

如何有效的降低光伏电站的系统建设成本,提高系统发电效率,成为光伏企业考虑的主要方向。

本文主要对传统的多晶硅组件和双结硅基薄膜组件在光伏电站系统中的差异表现进行分析,并对安装在同一地区光伏电站中的晶硅组件和双结硅基薄膜组件的发电数据做了对比。

二、光伏发电系统的工作原理太阳能光伏发电系统有很多类型,这里以太阳能光伏并网大型地面电站发电系统为例进行介绍。

光伏地面电站发电系统简化后如图1所示,由太阳能电池阵列,并网逆变器,并网保护装置,以及连接这些设备的布线及汇流箱,安装在交流侧的电表,升压变压器等构成。

太阳能电池产生直流电,直流电通过并网逆变器转换为交流电后并入电网,可以与电力公司提供的交流电一起使用。

图1 并网型光伏地面电站系统简化图太阳能组件是由数十个太阳能电池单元进行封装构成,太阳能组件阵列是由若干个太阳能电池组件串联及并联连接构成。

光伏系统的容量是由太阳能电池组件的最大输出功率之和来表示的。

系统的输出功率取决于辐射照度和太阳能电池单元的温度。

[1]逆变器的作用是将太阳能组件阵列产生的直流电转换成与电力公司供给的相同电压和频率的交流电。

谁是王者——薄膜太阳能电池VS晶硅太阳能电池

谁是王者——薄膜太阳能电池VS晶硅太阳能电池

谁是王者——薄膜太阳能电池VS晶硅太阳能电池在全球⾃然环境不断恶化,化⽯燃料⽇趋减少的情况下,可再⽣能源正变得越来越重要。

普遍认为,太阳能——是最丰富和取之不尽的能源,是⼀种很有前途的能源危机的解决⽅案。

太阳能电池被⽤来吸收太阳能并产⽣电⼒并且避免产⽣环境污染。

⽬前,晶体硅(传统或晶圆为基础的硅)crystalline silicon (conventional or wafer-based Si)太阳能电池占主导地位的太阳能市场的市场份额⼏乎90%。

薄膜为基础的太阳能电池只占约10%的市场份额,但预计将迅速增长。

1、特点:第⼀代太阳能电池,单晶硅(c-Si)或太阳能电池,传统的太阳能电池,是由晶体硅做成的。

晶体硅太阳能电池包括基于单晶硅太阳能电池(单晶硅)和多晶硅(多晶硅)半导体材料。

对于太阳能电池,硅具有许多优点,包括⽆限量,⽆毒性,长期稳定,成熟的⽣产,⾼效率。

晶硅分为单晶硅和多晶硅,两者的实验室转换效率能达到20%以上,量产的话也在18%左右,单晶硅可能到20%;优势是转换效率⾼,单⽚组件容量⼤,同等规模占地⼩。

缺点是⽣产⼯艺较复杂,不能弯曲、重量⼤,弱光性差,⾼温下发电量下降等等。

薄膜转换效率量产6-8%;CIGS铜铟镓硒,实验室20%,量产应该有13%以上,GaAs砷化镓,实验室的⾼效率能达50%,量产能达到20-30%,还有碲化镉电池,基本⽆量产。

所谓薄膜技术就是在真空⾼温的环境下,将可吸收光的元素沉积/溅射在衬底上。

如果衬底是柔性的,那么就可做成柔性太阳能组件。

如果衬底是玻璃的,在制作过程中有⼀道⼯序是激光划刻,可以加密激光化刻的密度,从⽽做成透光组件。

优点⽣产⼯艺简单,弱光性好,组件可以做成透光的。

缺点是能量产的⾮晶硅转换效率差,单⽚组件容量⼩,同等规模占地⼤。

2、市场占有情况我们得从从⽬前的情况来看,尤其是经过了2012-2013的光伏产业低迷期,晶硅电池占据着全球市场90%的份额,薄膜仅仅10%的占有率。

非晶硅薄膜太阳能电池的优点

非晶硅薄膜太阳能电池的优点

非晶硅薄膜太阳能电池的优点:2009-01-13 20:29非晶硅太阳能电池之所以受到人们的关注和重视,是因为它具有如下诸多的优点:1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um 的可见光波段,它的吸收系数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右, 用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素.2. 非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0 eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高.3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右.4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化.5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多:中国电子报:薄膜技术日趋成熟非晶硅电池主导市场来源:中国电子报发稿时间: 2009-02-10 15:52薄膜电池技术具有提供最低的每瓦组件成本的优势,将有望成为第一个达到电网等价点的太阳能技术。

由于原材料短缺,在单晶硅和多晶硅太阳能电池的发展速度受到限制的情况下,新型薄膜太阳能电池发展尤为迅速。

有资料显示,美国薄膜电池的产量已经超过了多晶硅和单晶硅电池的产量。

薄膜技术会越来越成熟,在未来的市场份额中将大比例提升。

据行业分析公司NanoMarkets预测,薄膜太阳能电池2015年的发电量将达到26GW,销售额将超过200亿美元,太阳能电池发电量的一半以上将来自薄膜太阳能电池。

预计在未来薄膜电池市场中非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三种电池将分别占到薄膜光伏市场的60%、20%和20%。

新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释

新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释

新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释1.引言1.1 概述晶硅太阳能电池和薄膜太阳能电池是目前研究和应用最广泛的两种太阳能电池技术。

随着对可再生能源需求的日益增长,这两种太阳能电池的研究和发展在近年来获得了巨大的关注。

晶硅太阳能电池是一种基于单晶硅或多晶硅材料制造的太阳能电池。

其工作原理是利用太阳光照射在硅材料上时会产生光生电流,进而转化为电能。

晶硅太阳能电池具有高转换效率、较长的寿命和良好的稳定性等特点,适用于各种规模的太阳能发电系统,从小型家庭系统到大型商业系统。

而薄膜太阳能电池是一种利用非晶态硅、铜铟镓硫等材料制造的太阳能电池。

相比于晶硅太阳能电池,薄膜太阳能电池可以实现更低的制作成本和更高的柔韧性。

薄膜太阳能电池通常采用卷曲或可弯折的材料制成,可以应用于建筑物外墙、屋顶和其他曲面。

此外,薄膜太阳能电池还具有吸收弱光、高温环境下的较好表现等优势。

研究新型晶硅太阳能电池和薄膜太阳能电池的目的是为了进一步提高太阳能电池的效率、降低制造成本以及拓展其在各个领域的应用。

本文将从工作原理、特点和优势以及应用前景等方面对新型晶硅太阳能电池和薄膜太阳能电池进行详细介绍,并最后对其重要性进行总结以及展望未来的发展方向。

通过深入了解这两种太阳能电池技术,可以为太阳能行业的发展提供有价值的参考。

1.2 文章结构本文将详细介绍新型晶硅太阳能电池和薄膜太阳能电池两种不同类型的太阳能电池。

首先,引言部分将提供对整篇文章的概述,包括对这两种太阳能电池的介绍以及它们的应用前景。

接下来,本文将分别介绍新型晶硅太阳能电池和薄膜太阳能电池的工作原理、特点和优势。

在工作原理部分,将详细解释这两种太阳能电池的工作机制,包括光电转换和能量输出过程。

特点和优势部分将重点介绍新型晶硅太阳能电池和薄膜太阳能电池相比传统太阳能电池的优势和特点,比如转换效率的提高、制造成本的降低等。

在应用前景部分,将探讨这两种太阳能电池在未来的潜在应用领域,比如建筑一体化、电动汽车等。

晶硅与薄膜对比

晶硅与薄膜对比
总结
晶硅技术在能效方面具有优势,而薄膜技术则具 有更大的优化潜力和灵活性。
应用领域对比
晶硅技术
广泛应用于光伏、半导体器件等领域,是当前主流的 光伏技术之一。
薄膜技术
适用于特定应用领域,如柔性光伏、穿戴设备等,具 有更广泛的应用前景。
总结
晶硅技术在光伏和半导体领域占据主导地位,而薄膜 技术则在一些特定领域具有优势和应用前景。
2000年代
晶体硅光伏发电技术不断升级 和优化,效率不断提高,成本
不断降低。
晶硅技术应用领域
01
02
03
光伏电站
晶硅技术广泛应用于大型 光伏电站建设,为电网提 供清洁能源。
分布式电源
晶硅技术也可用于分布式 光伏发电系统,为家庭、 企业等提供自用电力。
移动能源
晶硅技术还可应用于移动 电源领域,如太阳能充电 器、太阳能灯具等。
薄膜技术未来展望
高柔性
薄膜太阳能电池具有轻薄、可弯曲的特性,未来有望在可穿戴设 备、汽车、建筑等领域得到广泛应用。
低成本
薄膜太阳能电池的制造成本相对较低,未来有望通过进一步技术创 新和规模化生产降低成本。
高光电转换效率
新型薄膜太阳能电池的研究取得不断突破,未来有望实现更高的光 电转换效率。
晶硅与薄膜技术融合发展
1 2 3
互补性
晶硅和薄膜太阳能技术各有优缺点,未来有望通 过技术融合实现优势互补,提高整体性能。
集成化
晶硅和薄膜太阳能电池可以集成在同一组件中, 形成复合型太阳能电池,以充分利用两种技术的 优点。
智能化
随着物联网和智能化技术的发展,未来晶硅和薄 膜太阳能技术有望实现智能化管理,提高能源利 用效率和可靠性。
早期的薄膜技术主要采用物理气相沉积(PVD)方法,如真空蒸发镀膜和溅射镀膜 等。

单晶硅,多晶硅,薄膜电池的区别

单晶硅,多晶硅,薄膜电池的区别

单晶硅,多晶硅,薄膜电池的区别太阳电池最早问世的是单晶硅太阳电池。

硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可说是取之不尽,用硅来制造太阳电池,原料可谓不缺。

但是提炼它却不容易,所以人们在生产单晶硅太阳电池的同时,又研究了多晶硅太阳电池和非晶硅太阳电池,至今商业规模生产的太阳电池,还没有跳出硅的系列。

其实可供制造太阳电池的半导体材料很多,随着材料工业的发展、太阳电池的品种将越来越多。

目前已进行研究和试制的太阳电池,除硅系列外,还有硫化镉、砷化镓、铜铟硒等许多类型的太阳电池,举不胜举,以下介绍几种较常见的太阳电池。

单晶硅太阳电池单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。

这种太阳电池以高纯的单晶硅棒为原料,纯度要求99.999%。

为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。

有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。

将单晶硅棒切成片,一般片厚约0.3毫米。

硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。

加工太阳电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。

扩散是在石英管制成的高温扩散炉中进行。

这样就在硅片上形成P/FONT>N结。

然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳电池的单体片就制成了。

单体片经过抽查检验,即可按所需要的规格组装成太阳电池组件(太阳电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。

用户根据系统设计,可将太阳电池组件组成各种大小不同的太阳电池方阵,亦称太阳电池阵列。

目前单晶硅太阳电池的光电转换效率为15%左右,实验室成果也有20%以上的。

用于宇宙空间站的还有高达50%以上的太阳能电池板。

单晶硅、多晶硅和非晶硅薄膜的区别

单晶硅、多晶硅和非晶硅薄膜的区别

作为目前整条产业链的核心,硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。

◇单晶硅、多晶硅和非晶硅薄膜的区别:
单晶硅、多晶硅和非晶硅就发电能效及价格依次由高到低,如不考虑价格,单晶硅最好。

非晶硅低效、易老化,但低价。

多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。

被称为“微电子大厦的基石”。

单晶硅
单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。

其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。

单晶硅建设项目具有巨大的市场和广阔的发展空间。

单晶硅电池具有电池转换效率高,稳定性好,但是成本较高。

单晶硅电池早在20多年前就已突破光电转换效率20%以上的技术关口。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。

在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比晶硅组件和薄膜组件的介绍晶硅组件是目前市场上应用最广泛的光伏组件,其核心材料是单晶硅或多晶硅。

而薄膜组件则使用的是非晶硅、铜铟镓硫等材料。

晶硅组件因其高转换效率和耐用性而受到青睐,但其制造成本相对较高;而薄膜组件制造成本则相对较低,但故障率较高。

差异晶硅组件和薄膜组件在材料、制造工艺、外观等方面都存在差异。

在光电转换效率上,晶硅组件普遍高于薄膜组件,但薄膜组件相比较而言,具有更好的低光性能,适用于低光弱光环境下的发电。

在制作材料和成本方面,晶硅组件的主要原料是硅,制造过程较为复杂,成本相对较高。

而薄膜组件采用的是非硅材料,制作工艺较为简单,制造成本相对较低。

在外观方面,晶硅组件外形尺寸固定,一般为长方形硅片,而薄膜组件可以弯曲、可切割形状多样。

发电效果对比晶硅组件和薄膜组件的发电效果差异不仅取决于材料和成本等方面的差异,还与光照强度、温度、光谱等多方面因素有关。

在充分阳光下并且温度适宜的情况下,晶硅组件的发电效果要优于薄膜组件。

但是在低光弱光环境下,如阴天、雾天、傍晚等情况下,薄膜组件由于其优异的低光性能,相比晶硅组件会有更高的发电效率。

此外,在多晶硅和单晶硅的选择上,多晶硅的发电效率相对较低,但成本相对较低,而单晶硅则恰好相反。

应用场景根据差异和发电效率的对比可以看到,晶硅组件在充分阳光下、高温环境下、尺寸有限的场景下表现更优,例如大型光伏电站、户用光伏系统等。

而薄膜组件则在温度低、散热良好、尺寸较大的场景下表现更好,比如在北方偏远地区、适用于建筑一体化光伏、太阳能车棚等场合。

因此,在选择光伏组件时应根据实际场景做出合适的选择。

总结根据本文对晶硅组件和薄膜组件的介绍、差异和发电效果的对比,可以看到二者各自有着优点和不足之处。

在实际应用中,应根据光照强度、温度、尺寸等多方面因素做出合适选择,才能让太阳能发电更加高效、经济、环保。

(完整版)(整理)硅基太阳能电池的发展及应用

(完整版)(整理)硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。

关键词:硅基太阳能电池转换效率1引言二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。

传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。

随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。

特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速.中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】.目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类)太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。

这样形成的光生载流子由于热运动,向各个方向迁移。

光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。

因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。

这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

图1典型的晶体硅太阳电池结构图【6】由于太阳能能源有如此优越的特性,因此,大力发展可再生能源成为了当今世界的热门研究领域,从长远角度来看,在各种可再生能源技术光伏发电自20世纪90年代后半期进入了快速发展时期,最近10年和最近5年的太阳电池的年均增长率都达到了爆发性的水平.我国太阳能光伏产业的发展在世界光伏市场的拉动下快速发展起来。

硅基薄膜电池的种类

硅基薄膜电池的种类

硅基薄膜电池的种类1.非晶硅薄膜太阳能电池:非晶硅薄膜太阳能电池是利用非晶硅材料制成的薄膜电池。

非晶硅材料具有较高的吸收系数,可以吸收较宽波长范围的太阳能辐射。

这种电池的制造工艺简单、成本低,而且可以实现大面积生产,因此具有很大的潜力。

2.微晶硅薄膜太阳能电池:微晶硅薄膜太阳能电池在非晶硅的基础上加入一定比例的晶体硅材料,通过控制制造工艺,可使得薄膜中形成大约10-30纳米的微晶硅颗粒。

微晶硅的晶体结构比非晶硅更有序,因此具有更好的光吸收和电子传输性能,提高了电池的效率。

此外,微晶硅材料还具有较高的稳定性和较低的光衰减率。

3.多结薄膜太阳能电池:多结薄膜太阳能电池是通过堆叠多层不同材料的薄膜形成的。

常见的多结薄膜电池包括硅薄膜太阳能电池与硒化镉薄膜太阳能电池的结合。

通过优化不同材料的能带结构和光学特性,可以实现更高的光吸收和电荷分离效率,提高电池的转化效率。

4.染料敏化薄膜太阳能电池:染料敏化薄膜太阳能电池是利用染料分子吸收光子并将其转化为电子的原理制成的电池。

染料敏化层通常由半导体纳米颗粒组成,染料分子通过与纳米颗粒的接触来实现电荷的分离。

这种电池具有制造成本低、制作工艺简单、使用灵活等优势,适用于各种类型的表面。

在硅基薄膜太阳能电池的研究和应用中,不同类型的电池有着各自的优缺点。

因此,未来的发展趋势将是通过对材料、结构和制造工艺的改进,提高硅基薄膜太阳能电池的光电转换效率,降低制造成本,实现工业化生产。

同时,还需要在电池的稳定性和环境适应性等方面进行进一步研究,以满足不同应用场景的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅基薄膜电池Vs晶硅电池的五大优势
一、材料省,成本低。

硅基薄膜电池主要原材料是玻璃和多种气体(硅烷、硼烷等),使用少于1 微米厚度的非晶硅吸收太阳光,而常规晶硅技术使用近200微米厚实的晶体,硅用量是普通晶硅电池的1/100,大大降低了材料成本;且便于采用玻璃、不锈钢等廉价原材料作为衬底,不会受到原料短缺的限制;工艺集成度高,适宜大规模自动化生产,由此也将极大降低成本。

二、弱光性好,发电量多。

非晶微晶叠层结构设计可使光谱响应从可见光扩展到红外线区域,较晶体硅具有更加宽频的光谱能量吸收效应,使电池在弱光环境或散射光、阴、云、雨天环境条件下,也能发电。

视地区光照条件差异,比晶硅电池在相同功率的装机容量情况下可多发出5~17%的电量。

同时叠层设计较传统非晶硅单接电池大大提高了光电转化效率,目前国际上可以达到10%左右。

共创光伏利用自主知识产权研制的新一代非晶/微晶硅叠层薄膜太阳能电池的光电转化效率已经可以达到10~12%的水平,是同类产品国际上具有最高光电转换效率的太阳能电池商业产品。

三、高温适应性好。

薄膜电池还具有相比晶硅电池更低(仅为晶硅的一半)的耐高温衰减系数、所以更适合于高温、沙漠及潮湿地区严苛条件下的应用环境特性,表现出耐高温,耐潮湿的品质稳定性。

四、能源回收期短。

太阳能电池实现薄膜化后工艺后,薄膜电池的材料制备和电池同时形成,因此节省了许多流程工序,确保了品质稳定和一致性,并极大地节省昂贵的半导体材料。

同时薄膜太阳能电池采用低温工艺技术,不仅有利于节能降耗,而且便于使用廉价衬底(玻璃,不锈钢等)。

使得薄膜电池能量回收期最短,约1年,而晶体硅电池则要2.5~3年。

五、应用范围广
薄膜太阳能电池根据需要制作成不同的透光率,代替玻璃幕墙,既有漂亮的外观、能发电,又能很好地阻挡外部红外线进入和内部热能散失,而且基本不受安装角度局限,发电功率受阴影影响较小。

由于弱光效应,以及对安装角度要求不强,既适合于强光,直射光,也适合散射光和反射光,在金太阳示范工程和光电建筑一体化项目应用上较晶体硅具有无可比拟的潜力和优越性。

除上述特点外,硅基薄膜电池相对CIGS和CdTe等化合薄膜太阳能电池,不存在原材料稀缺(CIGS需要铟,为稀缺金属),也没有毒性污染(CdTe中有镉,为有毒物质)等缺陷。

因此,虽然硅基薄膜的转换效率相比CIGS和CdTe 略低,但其制造成本低,易于操作,目前产业化程度最高。

光伏辅料网:
一站式太阳能光伏原材料采购平台。

相关文档
最新文档