探索规律经典题
探索规律(人教版)含答案.doc
探索规律(人教版)一、单选题(共8道,每道12分)1.一列数为2,5,8,11,14,…,那么第100个数为( )A.298B.299C.300D.301答案:B解题思路:试题难度:三颗星知识点:数的规律2.一列数为4,8,16,32,…,那么第10个数为( )A.1024B.2014C.2024D.2048答案:D解题思路:试题难度:三颗星知识点:数的规律3.观察下面的一列数:2,6,12,20,…,依次规律,则第20个数是( )A.420B.410C.400D.380答案:A解题思路:试题难度:三颗星知识点:数的规律4.给定一列按规律排列的数:,,,,…,则这列数的第6个数是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:数的规律5.给定一列按规律排列的数:根据前4个数的规律,第9个数是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:数的规律6.计算器为我们探索一些用笔算不太方便的数字规律提供了极大的方便,比如奇妙的数字塔:;我们发现上面这些数字结果呈现规律性,那么不用计算器你发现:的值为( ) A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:式的规律7.观察下列一组算式:;;;…,按照上述规律,可表示为( ) A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:式的规律8.观察下列一组算式:;;;;…,按照上述规律,第15个算式可表示为( ) A. B.C. D.答案:C解题思路:。
中考数学:探索规律型问题(图形类)含答案
中考数学:探索规律型问题(图形类)一、选择题1. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50B.64C.68D.72【答案】D。
【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。
故选D。
2. 小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.2016【答案】D。
【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解:∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数。
故选D。
3.边长为a的等边三角形,记为第1个等边三角形。
取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。
取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。
取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。
则第6个正六边形的边长是【】A .511a 32⎛⎫⨯ ⎪⎝⎭B . 511a 23⎛⎫⨯ ⎪⎝⎭C . 611a 32⎛⎫⨯ ⎪⎝⎭D . 611a 23⎛⎫⨯ ⎪⎝⎭【答案】A 。
中考规律探索型问题及答案
规律探索型问题1. 如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此 规律,图A 6比图A 2多出“树枝”D. 124答案C2. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有 个小圆. 用含 n 的代数式表示答案(1)4n n ++或24n n ++3. 观察下列算式:① 1 × 3 - 22= 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1③ 3 × 5 - 42= 15 - 16 = -1 ④ ……1请你按以上规律写出第4个算式; 2把这个规律用含字母的式子表示出来;3你认为2中所写出的式子一定成立吗并说明理由.答案解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+--- 1=-.第1个图形第 2 个图形第3个图形 第 4 个图形4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个;答案155. 先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 答案110066. 观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题: 1若n 为正整数,请你猜想)1(1+n n = ;2证明你猜想的结论; 3求和:211⨯+321⨯+431⨯+…+201020091⨯ .答案 1111n n -+ 2证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n .3原式=1-12+12-31+31-41+…+20091-20101 =12009120102010-=. 7. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设12...n S S S S =+++,则S=_________ 用含n 的代数式表示,其中n 为正整数.答案122++n nn .22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++ =21[1](1)n n ++∴S=1(1)12+⨯+1(1)23+⨯+1(1)34+⨯+…+1(1)(1)n n ++122++=n n n .接下去利用拆项法111(1)1n n n n =-++即可求和.8. 如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.1表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;2用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;3求第n 行各数之和.解164,8,15;22(1)1n -+,2n ,21n -;3第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.9.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为A .52012﹣1 B .52013﹣1 C . D .解析设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013,因此,5S ﹣S=52013﹣1,S=答案选C .10.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 . 答案122+k k11. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________ 答案-201212.在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形;答案100.13、如图,第1个图有2个相同的小正方形,第1个图有2个相同的小正方形,第2个图有6个相同的小正方形,第3个图有12个相同的小正方形,第4个图有20个相同的小正方形,……,按此规律,那么第n 个图有 个相同的小正方形;(1) 2 3 4 解析:因为()()()()1445420,1334312,122326,111212+⨯=⨯=+⨯=⨯=+⨯=⨯=+⨯=⨯=,故第n 个图有n n +2个小正方形 .答案n n +2或nn+114.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .故答案为:4n ﹣2或2+4n ﹣1 答案4n ﹣2或2+4n ﹣115.在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 11,1,A 223,27,那么点nA 的纵坐标是_ _____.答案123-⎪⎭⎫⎝⎛n 16.观察下列等式: 第1个等式:a 1==21×1﹣31; 第2个等式:a 2==21×31﹣51; 第3个等式:a 3==21× 51﹣71; 第4个等式:a 4==21×71﹣91; …请解答下列问题:1按以上规律列出第5个等式:a 5= = ;2用含有n 的代数式表示第n 个等式:a n = = n 为正整数; 3求a 1+a 2+a 3+a 4+…+a 100的值. 解答: 解:根据观察知答案分别为:1; ;2;;3.y xy=kx+bOB 3B 2 B 1 A 3 A 2A 117.右图中每一个小方格的面积为1,则可根据面积计算得到如下算式: ()127531-+⋅⋅⋅++++n = .()是正整数表示,用n n解答:当2=n 时:()224122131==-⨯+=+当3=n 时:()23913231531==-⨯++=++当4=n 时:()24161425317531==-⨯+++=+++猜想:()127531-+⋅⋅⋅++++n =2n18.一组数据为:234,2,4,8,x x x x --观察其规律,推断第n 个数据应为 .答案11(1)2n n n x +--19. 小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其颗数3,6,9,12,···成为三角形数,类似地,图2中的4,8,12,16,···称为正方形数.下列数中既是三角形数又是正方形数的是答案:D20.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为解析:都是轴对称图形,每一排的个数都是偶数,分别是2,4,6,…6,4,2,故第六个图形五角星个数可列式为:2+4+6+8+10+12+10+8+6+4+2=72.答案D21.根据排列规律,在横线上填上合适的代数式:x,-3x2,5x3, -7x4 ,9x5,… ,表示第n代数式.22.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中平行四边形的个数是解析图形①中1=1×1+0,图形②中5=2×2+1,图形③中11=3×3+2,……,依次类推,∴第⑩个图形中平行四边形的个数是10×10+9=109解答D.23.如图12,已知A1,A2,A3,…A n,…是x轴上的点,且OA1=A1A2=A2A3=…=A n-1A n…=1,分别过点A1,A2,A3,…A n,…作x轴的垂线交反比例函数y=1xx>0的图象于点B1,B2,B3,…B n,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=.解析由OA1=A1A2=A2A3=…=A n-1A n…=1,可得P1B2=P2B3=P3B4=…=P n B n+1=1,以及B11,1,B22,12,B33,13,…,B n n,1n,B n+1n+1,11n+,所以S1+S2+S3+…+S n=12B1P1·P1B2+1 2B2P2·P2B3+…12B n P n·P n B n+1=12B1P1+B2P2+…B n P n=121-12+12-13+…+1n-11n+=1 2 1-11n+=2(1)nn+.答案2(1)nn+yx O A1A2A3B1B2B3P1P2图1210题图24. 同样大小的黑色棋子按如图所示的规律摆放:① 第5个图形有多少颗黑色棋子 ② 第几个图形有2013颗棋子说明理由;解析第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n 个图需棋子3n+1枚. 答案118;2第670个图形25、如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上 A .1 B .2 C .3 D .5 答案:D26、将1、错误!、错误!、错误!按右侧方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则4,2与21,2表示的两数之积是 . A .1 B .2 C .2错误! D .6答案:D27、下列图形都是由同样大小的正方形按一定的规律组成,其中,第①个图形中一共有1个正方形,第②个图形中一共有5个正方形,第③个图形中一共有14个正方形,……则第⑦个图形中正方形的个数为A 、49B 、 100C 、140D 、91 答案:C第1个第2个 第3个 第4个134111122663263323第1排第2排第3排第4排第5排……28、如图,已知直线l :y =x ,过点A 0,1作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为A 、0,64B 、0,128C 、0,256D 、0,512答案: C29、如图,直线x y 33=,点1A 坐标为1,0,过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行 下去,点n A 的横坐标为A .1)332(-n B .23()3n C .32()3n D .132()3n答案:A第29题图30.如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,S 2012=A .201023 B .201223 C .402423 D.402523答案:D31.观察下列图形:若图形1中阴影部分的面积为1,图形2中阴影部分的面积为43,图形3中阴影部分的面积为169,图形4中阴影部分的面积为6427,…,则第n 个图形中阴影部分的面积用字母表示为⑷⑶⑵⑴A .n 43B .n)43(C .1)43(-nD .1)43(+n答案:CA1第7题图第31题32.下列图形都是由同样大小的等边三角形按一定的规律组成,其中,第①个图形中一共有3根小棒,第②个图形中一共有9根小棒,第③个图形中一共有18根小棒,……,则第⑥个图形中小棒的根数为① ② ③A .60B .63C .69D .72 答案B33.已知a ≠0,12S a =,212S S =,322S S =,…,201220112S S =, 则2012S = 用含a 的代数式表示. 答案:1a34、如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n +1的面积记为S n ,则S n = ▲答案:33121n n ++ 35、设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++,若12...n S S S S =则S =_________ 用含n 的代数式表示,其中n 为正整数. 答案: )1()2(2++n n n……36、如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2……,按此规律继续下去,可得到△A 5B 5C 5,则其面积为S 5=_________. 第n 次操作得到△A n B n C n ,则△A n B n C n 的面积S n = .答案:195 19n37、在∠A 0°<∠A <90°的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = 用含n 的式子表示.答案:22.5;12+1(12)n -+38. 下图中的实心点个数1,5,12,22,…,被称为五角形数,若按此规律继续下去,则第5个五角形数是 .答案:35第38题 5 12 1 22第39题 D 2D 3E 2E 3E 1D 1A BC 39.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S △ABC 用含n 的代数式表示.答案:40. 一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 .用含字母n 的代数式表示,n 为正整数.答案:8,())1(2111+-++n n41、人们经常利用图形的规律来计算一些数的和、如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别是1,3,5,7,9,11,13,15,17…,它们有下面的规律:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52;…第1题1请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形;2请你按照上述规律,计算第n条黑折线与第n﹣1条黑折线所围成的图形面积;3请你在边长为1的网格图2中画出下列算式所表示的图形1+8=32;1+8+16=52;1+8+16+24=72;1+8+16+24+32=92.解答:解:11+3+5+7+9+11+13=72.算式表示的意义如图1.2第n条黑折线与第n﹣1条黑折线所围成的图形面积为2n﹣1.3算式表示的意义如图2,3等.。
探索规律(人教版)含答案精品文档8页
探索规律(人教版)一、单选题(共8道,每道12分)1.一列数为2,5,8,11,14,…,那么第100个数为( )A.298B.299C.300D.301答案:B解题思路:试题难度:三颗星知识点:数的规律2.一列数为4,8,16,32,…,那么第10个数为( )A.1024B.2019C.2024D.2048答案:D解题思路:试题难度:三颗星知识点:数的规律3.观察下面的一列数:2,6,12,20,…,依次规律,则第20个数是( )A.420B.410C.400D.380答案:A解题思路:试题难度:三颗星知识点:数的规律4.给定一列按规律排列的数:,,,,…,则这列数的第6个数是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:数的规律5.给定一列按规律排列的数:根据前4个数的规律,第9个数是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:数的规律6.计算器为我们探索一些用笔算不太方便的数字规律提供了极大的方便,比如奇妙的数字塔:;我们发现上面这些数字结果呈现规律性,那么不用计算器你发现:的值为( ) A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:式的规律7.观察下列一组算式:;;;…,按照上述规律,可表示为( ) A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:式的规律8.观察下列一组算式:;;;;…,按照上述规律,第15个算式可表示为( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:式的规律。
六年级数学探索规律题练习卷(含解析)
小学生规律探索题(二)1.如图,摆一个△用3根小棒,摆2个△用5根小棒,摆3个△用7根小棒.照这样,摆5个△用多少根小棒?用21根小棒可以摆多少△?2.现有若干圆环,它的外直径5厘米,环宽0.5厘米,将它们(如图)扣在一起,拉紧后测其长度.(1)根据规律,则2个圆环拉紧后的长度是多少厘米?10个圆环拉紧后的长度是多少厘米?(2)若拉紧后的长度是77厘米,它由多少个环扣成的?(3)设环的个数为a,拉紧后总长为S,请你用一个关系式表示你发现的规律。
3.甲种茶叶每千克40元,乙种茶叶每千克24元,按3:2的比例混合后共80千克,求混合后的茶叶每千克至少要卖多少元?4.某省原来用电收费标准统一为每度电0.65元.但由于当前物价上涨,省物价局决定,从2012年6月1日起,全省5.“学雷锋见行动”活动中,六年级部分学生为社区服务,其中男生人数和女生人数比是2:3.后来又有3名男生参加,有3名女生有事离开,这时男生人数是女生的75%.原来参加社区服务的男、女生各有多少人?6.(2014•荔波县模拟)有A、B两个容器,如图先把A装满水,然后倒入B中,B中水的深度是多少厘米?7.一件商品打九折后,现在的价格是990元,仍可获利10%.这件商品的成本价是多少元?这件商品的原来的价格是多少元?8.一个边长为8厘米的正方体,从如图示挖掉一侧面为正方形(边长为2厘米)的长方体,求剩余部分的表面积.元?(2)小文乘出租车从家到外婆家,共付费22.6元,小文家到外婆家相距多少千米?10.张华中心小学为了增强学生体质打算买60个足球,现有三个超市可以选择,三个超市足球的价格都是25元,但各规律探索题参考答案与试题解析一.填空题(共2小题)1.如图,摆一个△用3根小棒,摆2个△用5根小棒,摆3个△用7根小棒.照这样,摆5个△用11根小棒,用21根小棒可以摆10△.2.现有若干圆环,它的外直径5厘米,环宽0.5厘米,将它们(如图)扣在一起,拉紧后测其长度.(1)根据规律,则2个圆环拉紧后的长度是9厘米,10个圆环拉紧后的长度是41厘米.(2)若拉紧后的长度是77厘米,它由19个环扣成的.(3)设环的个数为a,拉紧后总长为S,请你用一个关系式表示你发现的规律.S=4a+1.二.解答题(共7小题)3.甲种茶叶每千克40元,乙种茶叶每千克24元,按3:2的比例混合后共80千克,求混合后的茶叶每千克至少要卖由题意可知:混合后甲种茶叶的重量占总重的,乙种茶叶的重量占总重量的,把茶叶总重(×=48×=324.某省原来用电收费标准统一为每度电0.65元.但由于当前物价上涨,省物价局决定,从2012年6月1日起,全省李华家6月用电量为500度,则李华家6月份的电费一共是多少元?5.“学雷锋见行动”活动中,六年级部分学生为社区服务,其中男生人数和女生人数比是2:3.后来又有3名男生参加,V=sh解:×=此题是考查圆柱、圆锥的体积计算,可利用它们的体积公式解答,同时不要漏了多少元?8.一个边长为8厘米的正方体,从如图示挖掉一侧面为正方形(边长为2厘米)的长方体,求剩余部分的表面积.(1)、张老师从学校到相距5千米的教育局取文件并立即回到学校,他应该怎样坐车比较合算?需付出租车车费多少元?(2)小文乘出租车从家到外婆家,共付费22.6元,小文家到外婆家相距多少千米?10、张华中心小学为了增强学生体质打算买60个足球,现有三个超市可以选择,三个超市足球的价格都是25元,但。
初中数学专题-探索规律练习及答案
初中数学专题-探索规律题型一:递增关系(等差、等比)例1:在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是 个;若菱形A n B n C n Dn 的四个顶点坐标分别为(-2n ,0),(0, n ),(2n ,0),(0,-n )(n 为正整数),则菱形A nB nC nD n 能覆盖的单位格点正方形的个数为 (用含有n 的式子表示). 48 n n 442-例2:一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).例3:一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):第1行 1 第2行 3 5 第3行 7 9 11 13……则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .29;12-n ;322-+n n.例4:小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:挪动珠子数(颗) 2 3 4 5 6 … 所得分数(分)511192941…按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示). 8; 21n n +- 例5:观察下列等式: 1=1,2+3+4=9, 3+4+5+6+7=25, 4+5+6+7+8+9+10=49,……照此规律,第5个等式为 .xy8-8 -4 4 OABCD题型二:比例线段、相似例1:如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△211B D C 的面积为1S ,△322B D C 的面积为2S ,…,△1n n n B D C +的面积为n S ,则2S =_____;n S =_________(用含n 的式子表示).233,n例2:如图,P 为△ABC 的边BC 上的任意一点,设BC=a ,当B 1、C 1分别为AB 、AC 的中点时,B 1C 1=a 21, 当B 2、C 2分别为BB 1、CC 1的中点时,B 2C 2=a 43,当B 3、C 3分别为BB 2、CC 2的中点时,B 3C 3=a 87,当B 4、C 4分别为BB 3、CC 3的中点时,B 4C 4=a 1615,当B 5、C 5分别为BB 4、CC 4的中点时,B 5C 5=______, ……当B n 、C n 分别为BB n-1、CC n-1的中点时,则B n C n = ;设△ABC 中BC 边上的高为h ,则△PB n C n 的面积为______(用含a 、h 的式子表示)a 3231, a nn 212-, ah n n 12212+- 例3:如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b ,E 为边AD 上的任意一点,EF ∥AB ,且EF 交BC 于点F .若E 为边AD 上的中点,则EF = (用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则EF = (用含有n ,a ,b 的式子表示).2a b+ (1)b n an +-1,点B 1 、C 1分别是AB 、AC 的中点,则线段B 1C 1的长是_______;如图2,点B 1 、B 2 ,C 1 、C 2分别是AB 、AC 的三等分点,则线段B 1C 1 + B 2C 2的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的C 4B 4C 3C 2C 1B 3B 2B 1BCAP(第12题图)图3图2图1B 1C C 2B 2B n -1C n-1Bn A B 2C 2A BCB 1C 1C 1B 1CBA (n+1)等分点,则线段B 1C 1 + B 2C 2+……+ B n C n 的值是 ______.1,2a a ,12na例5:如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点, (1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ; (2)若CE =1n CB ,CF =1n CD ,则图中阴影部分的面积是 (用含nn 是正整数).32,1+n n 例6:如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为__________;面积小于2011的阴影三角形共有__________个.12;6题型三:图形的边角关系例1: 如图,正方形OA 1B 1C 1的边长为2,以O 为圆心、OA 1为半径作弧A 1C 1交OB 1于点B 2,设弧A 1C 1与边A 1B 1、B 1C 1围成的阴影部分面积为1S ;然后以OB 2为对角线作正方形OA 2B 2C 2,又以O 为圆心、OA 2为半径作弧A 2C 2交OB 2于点B 3,设弧A 2C 2与边A 2B 2、B 2C 2围成的阴影部分面积为2S ;…,按此规律继续作下去,设弧n n A C 与边n n A B 、n n B C 围成的阴影部分面积为n S .则=1S ,=n S . 4π-,3122n n π---.例2:如图1,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ,BO 1 23 4 5B 1 B 2 B 3B 441A正方形1111D C B A 的面积为 ;再把正方形1111D C B A 的各边延长一倍得到正方形2222D C B A (如图2),如此进行下去,正方形n n n n D C B A 的面积为 .(用含有n 的式子表示,n 为正整数)5,5题型四:数学归纳法例1:如图,在ABC ∆中,α=∠A ,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1A ∠= .BC A 1∠的平分线与CD A 1∠的平分线交于点2A ,得2A ∠,……,BC A 2009∠的平分线与CD A 2009∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .2α, 20102α例2:规定:用{}m 表示大于m 的最小整数,例如{25}=3,{5}=6,{-1.3}=-1等;用[]m 表示不大于m 的最大整数,例如[27]=3,[4]=4,[-1.5]= -2,如果整数..x 满足关系式:{}[]1232=+x x ,则=x __________. 2例3:如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .212332n n --…B 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD B AD第一次折叠 第二次折叠 第三次折叠例4:对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示); 112220112011A B A B A B +++L 的值为 .()20122011,11+n n 例5:如图平面内有公共端点的五条射线,,,,,OE OD OC OB OA 从射线OA 开始,在射线上写出数 字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线 上;“2011”在射线 上. OC ;OB例6:某种数字化的信息传输中,先将信息转化为由数字0和1组成的数字串,并对数字串进行加 密后再传输.现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0都变成01. 我 们用0A 表示没有经过加密的数字串.这样对0A 进行一次加密就得到一个新的数字串1A ,对1A 再进行 一次加密又得到一个新的数字串2A ,依此类推,…. 例如0A :10,则1A :1001. 若已知2A :100101101001,0A : ;若数字串0A 共有4个数字,则数字串2A 中相邻两个数字相等的数对至少..有 对.101,4例7:在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 . B ;C例8:在平面直角坐标系xOy 中, 正方形A 1B 1C 1O 、A 2B 2C 2B 1、 A 3B 3C 3B 2, …,按右图所示的方式放置. 点A 1、A 2、A 3, …和 B 1、B 2、… 分别在直线y =kx +b 和x 轴上. 已知C 1(1, -1),C 2(23,27-), 则点A 3的坐标是 ;点A n 的坐标是 .()11299(,);5()4,()4422n n --⨯-例9:如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的A DC B数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .10;6. 例10:符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…,利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅=g g g g .21n+;5151题型五:解析式及坐标例1:在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3C 3D 3……每个正方形四条边上的整点的个数.按此规律推算出正方形A 10B 10C 10D 10四条边上的整点共有 个.80例2:如图,在平面直角坐标系xOy 中,A (-3,0),B (0,1),形状相同的抛物线C n (n =1,2,3,4,…)的顶点在直线AB 上,其对称轴与x 轴的交点的横坐标依次为2,3,5,8,12,…,根据上述规律,抛物线C 2的顶点坐标为________;抛物线C 8的顶点坐标为________.(3,2) ⎪⎭⎫ ⎝⎛358,55 例3:如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).938,0/ 例4:如图,在平面直角坐标系xOy 中,A 1是以O 为圆心,2为半径的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;A 2是以原点O 为 圆心,3为半径的圆与过点(0,-2)且平行于x 轴的直线l 2 A 3是以原点O 为圆心,4为半径的圆与过点(0,3)且平行于x 轴的直线l 3的一个交点;A 4是以原点O 为圆心,5为半径的圆与过点(0,-4)且平行于x 轴的直线l 4的一个交点;……,且点1A 、2A 、3A 、4A 、…都在y 轴右侧,按照这样的规律进行下去,点A 6的坐标为 ,点A n 的坐标为 (用含n 的式子表示,n 是正整数).(13,6-),1-1-154321A4A2A 1A 3O x yl 2l 4l 1l 3(12+n ,n n ⋅-+1)1()。
初中数学《探索规律》专题训练(含答案)
探索规律一 、选择题(本大题共5小题)1.给定一列按规律排列的数:11111,,,,3579它的第10个数是( )A.115 B.117 C.119 D.1212.观察下面几组数:1,3,5,7,9,11,13,15,… 2,5,8,11,14,17,20,23,… 7,13,19,25,31,37,43,49,…这三组数具有共同的特点.现在有上述特点的一组数,并知道第一个数是3,第三个数是11.则其第n 个数为( )A.85n -B.22n +C. 41n -D.225n +3.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若21010b ba a+=⨯符合前面式子的规律,则a b +的值为A .179B .140C .109D .2104.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,其中a ,b ,c 的值分别为( )A 、20,29,30B 、18,30,26C 、18,20,265.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.26n+ D.8n+ C.44n+ B.86n二、填空题(本大题共21小题)6.如图所示,请说出第n个图形中笑脸的个数7.观察下列等式:22⨯=-,226575705⨯=-,5664604⨯=-,22⨯=-,223941401485250222⨯=-…8397907请你把发现的规律用字母表示出来:m n=8.根据下列图形的排列规律,第2008个图形是 (填序号即可).(① ;② ;③ ;④ .)……;9.观察下列等式:第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16第五行 11=36-25……按照上述规律,第n 行的等式为 .10.观察算式:2222211;132;1353;1357164;13579255=+=++=+++==++++==用代数式表示这个规律(n 为正整数)()1357921n ++++++-=____________11.已知数列a 、22a -、33a 、44a -,......则第n 个单项式为12.公元32r a a≈+得到无理数的近似值,其中r 取正整数,且a 取尽可能大的正整数,131212≈+=⨯______ .13.下面是一个三角形数阵:1------------------------==第1行 2 3 --------------------第2行 4 5 6------------------第3行 7 8 9 10------------第4行 ……根据该数阵的规律,第8行第2个数是14.填在下面三个田字格内的数有相同的规律,根据此规律,C = .15.已知y x 5=+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 .CBA 5567532053116.柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头, 第二层有34⨯听罐头, 第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n (n 为正整数)层有 听罐头(用含n 的式子表示)17.某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图(1);第2次把第1次铺的完全围起来,如图(2)所示;第3次把第2次铺的完全围起来,如图(3)……依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块数为______________18.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).19.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.20.222213321,351541,573561,796381⨯==-⨯==-⨯==-⨯==-,猜想:第n…… 第1幅 第2幅第3幅第n 幅个等式(n 为正整数)应为21.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________22.将连续的自然数1至36按如图的方式排成一个长方形阵列,用一个长方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9个数的和为 .23.如图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为,则= .(用n 的代数式表示)24.如图(1)所示的是一个三角形,分别连接这个三角形三边的中点得到图(2),再分别连接图(2)中间的小三角形三边的中点,得到图(3),按此方法继续连接,请你根据每个图中三角形的个数的规律完成下列问题.s ss(1)将下表填写完整;(2)在第n 个图形中有 个三角形.(用含n 的式子表示)25.已知212212+=⨯,334433442233⨯=+⨯=+,,……若1010+=⨯bab a (a ,b 都是正整数),则a +b 的值是____________26.如图所示,下列每个图形都是由若干枚棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n ()2n ≥枚棋子,每个图案中棋子总数为s ,则s 与n 之间的关系可以表示为 .三 、解答题(本大题共1小题)27.请你观察、思考下列计算过程2211121,11;11112321,111;==== .探索规律答案解析一 、选择题 1.C 2.C 3.C 4.D 5.A二 、填空题6.2n7.2222m n m n +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭8.③9.()22211n n n +=+- 10.2n 11.()11n n na --12.103 13.30 14.10815.2032;解:当x <4时,原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032.16.2(32)n n ++ 17.86n +18.8,20n n n ⎧⎨⎩是奇数是偶数19.7,2n-120.()()()2212121n n n -⨯+=-21.)4()2(2++n n n 或4)2()2(22-++n n22.9a23.2(1)n n +;观察法,由图知边长为1的正方形要火柴4根,边长为2的正方形要火柴12根,边长为3的正方形要火柴24根,以此类推答案是2(1)n n +24.(1)13,17 (2)43n - 25.1926.()41s n =-三 、解答题27.111111111。
中考规律探索题及答案
探索规律题类型一数字规律1、下面是按一定规律排列的一列数:,那么第n个数是.解析∵分子分别为1、3、5、7,…,∴第n个数的分子是2n﹣1。
?∵4﹣3=1=12,7﹣3=4=22,12﹣3=9=32,19﹣3=16=42,…,∴第n个数的分母为n2+3。
∴第n个数是。
2、观察下列等式:,,,,,,。
试猜想,的个位数字是_____ 。
解析本题主要考查规律探索。
观察等式:,,,,,可得,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为,又因为,所以的个位数字与的个位数字相同为。
故本题正确答案为。
考点规律探索。
3、古希腊数学家把数1,3,6,10,15,21,叫做三角形数,它有一定的规律性,若把第一个三角形数记为,第二个三角形数记为,第n个三角形数记为,则.答案解:,═,,═,═,…,,则,因此,本题正确答案是:.解析根据三角形数得到,,,,,即三角形数为从1到它的顺号数之间所有整数的和,即、,然后计算可得.4、按一定规律排列的一列数:,,,,,,,,请你仔细观察,按照此规律对应的数字应为_____。
答案解析本题主要考查规律探索。
将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。
故本题正确答案为。
考点规律探索。
5、如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的,一般地,用含有m,n的代数式表示y,即.?答案解:观察,发现规律:,,,?,因此,本题正确答案是:63;解析观察给定图形,发现右下的数字=右上数字(左下数字,依此规律即可得出结论.6、观察下列数据:,,,,,,它们是按一定规律排列的,依照此规律,第个数据是_____。
答案解析本题主要考查规律探索。
由数据,,,,,,可观察到,第奇数个数据为负数,第偶数个数据为正数,所以数据中带有这个因式,将化成,则这组数据变成,,,,,,由此可观察出,每一个分数的分子都是分母的平方再加,所以这组数据中第个分数为,将代入可得出分数。
找规律试题几道经典题目含答案
数学试题分类汇编一一找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有 8个小圆圈,第100个图中有 ___________ 个小圆圈.(1) (2) (3)2、找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 _______ 个菱形,第n 幅图中有 个菱形.C.::> <沐〉<3:«「> …二•…123n3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 ________ 枚(用含n 的代数式表示)4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为 ________________•••••第2个图 第3个图L3 42 4 6 苦3 6 9 1343 12 Id---1821 C71第1个图5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个 2 2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3 3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4 4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1 0 10的正方形图案,则其中完整的圆共有个--:l6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子______________ 枚(用含有n的代数式表示,并写成最简形式).0^0 O • • O O • • • O O O OO O O OO • • • OO O O O O7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第 334个图形需 ______ 根火柴棒。
run fuxq 厂ajb? ic )8将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排, 从左到右第m 个数,如(4 ,2)表示实数9,则表示实数17的有序实数对是O OO-2 3 -4 5 -6 7 -8 9 -1011、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,一 4101 3□ 2 5 9 口 8第一排 第二排 第三排 第四排9、如图 2,用n 表示等边三角形边上的小圆圈,f (n )表示这个三角形中小圆圈的总数,那么 f (n )和n 的关系是10、观察图4的三角形数阵, 则第 50行的最后一个数是( )第n 个图案中白色正方形的个数为12、观察下列各式:13=1213 23 = 32 13 23 32 = 6213 23 33 4亠102猜想:13 23 33 ||II|| 103 二 _____________ .答案解析:1解析:n=1时,m=5 n 再每增加一个数时,m 就增加3个数.解答:根据所给的具体数据,发现:8=5+3, 1仁5+3X 2, 14=5+3X 3,….以此类推,第 n 个圈中,m=5+3( n-1 ) =3n+2.2解析:分析可得:第1幅图中有1X2-1=1个,第2幅图中有2X 2-1=3个,第3幅图中有3X2-1=5个,…, 故第n 幅图中共有2n-1个3解析:在4的基础上,依次多3个,得到第n 个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n 个图中有4+3 (n-1) =3n+1 .当n=6时,即原 式=19 .故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解. 解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以a=15+3=18 .表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大 1,所b=24+25-20+1=30 .表四中截取的是两行三列中的 6个数字:18是3的6倍,则c 应是4的7倍,即28. 故选D.第一个认真观察表格,熟知各个数字之间的关系:第一列是 1 , 2, 3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10X10的正方形图案,则其中完整的圆共有102+ (10-1 )2=181 个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10X10的正方形图案中,完整的圆共有102+ (10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚; 第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(n+2)2-n2=4 (n+1).故第n个图案的白色棋子数为(n+2)2-n2=4 (n+1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着编号”或序号”曾加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6X1=18根;搭第3个图形需12+6X2=24根;搭第n个图形需12+6 (n-1)=6n+6根.解答:解:搭第334个图形需6X334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6 排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.一 1 29解析:根据题意分析可得:第n行有n个小圆圈.故f (n)和n的关系是?(n)= -(n +n).(n —l)xn10解析:根据题意可得:第n 行有n 个数;且第n 行第一个数的绝对值为-—+1,最后一个数的(n —1)X71绝对值为 —2— +n ;奇数为正,偶数为负;故第50行的最后一个数是1275 .奇数为正,偶数为负, 第50行的最后一个数是1275第一个图中白色正方形的个数为 3X 3-1 ; 第二个图中白色正方形的个数为 3X5-2 第三个图中白色正方形的个数为 3X 7-3 ;当其为第n 个时,白色正方形的个数为 3 (2n+1) -n=5n+312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是 1+2+3+..+10=5 X 11=55,则原式=552.解答:解:根据分析最后的底数是1+2+3+..+10=5 X 11=55,则原 式=552. 故答案552解答:解:第n 行第一个数的绝对值为 (n —ljxn""2+1 , 最后一个数的绝对值为(n —ljxn3 +n ,。
中考试题精选 探索规律(含解答)-
探索规律型问题【解题指导】探索数、式、符号的变化规律;探究几何问题的结论——探索图形规律. 1、(2004浙江省嘉善县)用边长为1cm 的小正方形搭如下的塔状图形,则第n 次所搭图形的周长是 ___________cm (用含n 的代数式表示).2、(2004年泰州市)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中小黑点的个数为y .图⑴ 填表:⑵ 当n =8时,y =__________.⑶ 根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y ),其中1≤n ≤5.⑷ 请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,现在你能够写出该函数的解析式吗?【探索与交流】1、(金华市)观察一列数:3,8,13,18,23,28……依此规律,在此数列中比2000大的最小整数是_______________. 2、(舟山市)古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 _____ . 3、一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按····· · · · · ·· · ······· · ·· · · · · · · · · · ·· ·· · · · · · ·· · · ·第1次 第2次 第3次 第4次 ······照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的_____________A .31,32,64;B .31,62,63;C .31,32,33;D .31,45,46 4、(2004江苏省徐州市)下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写 下表:图形 ① ② ③ 正方形的个数 8 图形的周长18(2)推测第n 个图形中,正方形的个数为________,周长为_______(都用含n 的代数式表示).(3)这些图形中,任意一个图形的周长与它所含正方形个数之间的函数关系式为______________________________.5、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4……请你将猜想到的规律用自然数n (n ≥1)表示出来 .6、一个由数字1和0组成的2005位的数码,其排列规律是101101110101101110101101110……,其中“0”的个数为____________. 7、(扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=⨯+⨯+⨯+⨯,那么将二进制数2)1111(转换成十进制形式是数_______ .A 、8B 、15C 、20D 、308、观察下列算式:,221=, 422=,823=,1624=,3225=,6426=12827= ,25628=通过观察,用你所发现的规律写出98的末位数字是 .9、研究下列算式:1=12; 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52;…用代数式表示此规律(n 为正整数)1+3+5+7+……+(2n-1)=______________________.用文字语言表述是:____________________________________.10、观察下面几个算式,你发现了什么规律: 1+2+1=4; 1+2+3+2+1=9;1+2+3+4+3+2+1=16; 1+2+3+4+5+4+3+2+1=25;……利用上面的规律,你能不能迅速算出1+2+3+……+99+100+99+……+3+2+1=_____11、(山西省)联欢会上,小红按照4个红气球、3个黄气球、2个绿气球的顺序把气球串起来装饰会场,第56个气球的颜色是 .12、(大连市)借助计算器可以求得2222222243,4433,444333,44443333++++……,仔细观察上面几道题的计算结果,试猜想2220032003444+333=L L个个_______________;13、将一边长为16厘米的正方形纸片,剪成四个大小一样的小正方形,然后将其中的一个再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去,剪6次一共剪出多少个小正方形?所剪得正方形个数S和所剪次数n有什么关系?用数学表达式表示为.14、(山东省)下面是按照一定规律画出的一列“树型”图:……经观察发现:图(2)比图(1)多2个“树枝”,图(3)比(2)多5个“树枝”,图(4)比(3)多10个“树枝”,照此规律,图(7)比(6)多出 _ 个“树枝”.15、(资阳市)如图,已知四边形ABCD是梯形(标注的数字为边长),按图中所示的规律,用2003个这样的梯形镶嵌而成的四边形的周长是___________.1211DCBA图5……16、(2004年十堰市)有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.21B.41C.81D.16117、(南昌市)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第四个图案中有白色地砖_________块;(2)第n个图案中有白色地砖___________块.18、(宁夏)一组线段AB和CD把正方……第10题图第三个第二个第一个A C AD CADBADC形分成形状相同、面积相等的四部分.现给出四种分法,如图所示.请你从中找出线段AB、CD的位置及关系存在的规律.符合这种规律的线段共有多少组?(不再添加辅助线和其它字母)19、(吉林)如图所示,用用样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围);……20、(黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.n=1答案1、4n;2(1)21;(2)57;(3)略;(4)y=n2-n+1;1、2003;2、47;3、B;4、(1)13、28;18、38;(2)5n+3,10n+8;(3)C=2n+2;5、n2+n=n(n+1);6、668;7、B;8、8;9、n2;10、1002;11、红;12、55…5(2003个);13、19个;14、80个;15、6011;16、B;17、(1)18;(2)4n+2;18、AB ⊥CD,AB、CD交于正方形的中心;无数组;19、(1)n+3,n+2;(2)y=n2+5n+6;20、图(2)成立;图(3)不成立;过点P作BC的平行线,转化为图(1);图(3)中结论:h1+h2-h3=h。
小学数学奥数训练:探索规律专项练习试卷及答案(50道解答题有详细答案解析)
小学数学奥数训练:探索规律专项练习试卷及答案(50道解答题有详细答案解析)1、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?2、动脑筋,探索规律。
1.2×2.1= 11.2×2.11=111.2×2.111= 1111.2×2.1111=11111.2×2.11111=你发现了什么规律?3、按照规律接着画出第4幅图。
第10幅图中一共有( )个点。
4、用火柴棒摆出图形。
摆第1个图形要4根火柴棒。
那么摆第5个图形要多少根火柴棒?5、一张桌子坐4人,两张桌子并起来坐6人,三张桌子并起来坐8人,…照这样计算,10张桌子并成一排可坐多少人?如果一共有26人,需要并多少张桌子?6、…(2)如果有1001根火柴可以摆几个三角形?7、观察:÷3= ﹣3,÷4= ﹣4,请再写出两个数,使它们的商等于它们的差.8、已知1+3=4=22, 1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52,…(1)仿照上例,计算:1+3+5+7+ (99)(2)根据上述规律,请你用自然数n(n≥1)表示一般规律.9、下列图案由边长相等的黑、白两色小正方形按一定规律拼接而成。
照这样画下去,第10个图形中分别有多少个黑色小正方形和白色小正方形?你能解释其中的道理吗?10、有一个挂钟,每小时敲一次钟,几点敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟敲完?11、观察点子图,找一找有什么规律,想一想,第8个方框里有______个点,第20个方框内呢?12、图(1)是一个三角形,分别连接这个三角形三边的中点得到图(2),再分别连接图(2)中间的小三角形三边的中点,得到图(3).按这样的方法继续下去,第100个图形有多少个小三角形?13、用三条边都是l厘米的三角形拼图形,按如下规律拼下去.想一想:用29个这样的三角形拼成的图形是什么图形?14、(2012•成都)已知一串分数:,,,,,,,,,…(1)是此串分数中的第多少个分数?(2)第115个分数是多少?15、(2013•长沙)有这样一串数、、、、、、、、、…(1)第407个分数是多少?(2)从开始,前407个分数的和是多少?16、(2011•海港区)判断推理.三角形个数 1个 2个 3个 4个…小棒的根数 3根 5根 7根 9根…观察图形和表格,如果要摆100个三角形,需要多少根小棒?要摆n个三角形,需要多少根小棒?17、观察下图,按规律填表。
中考数学复习《探索规律问题》经典题型及测试题(含答案)
中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。
中考数学探索规律试题及答案
中考数学专题三 探索型试题(时间:90分 满分:100分) 一、选择题(每题3分,共21分)1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( ).2.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n3.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 …输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是 ( ) A.618 B.638 C.658 D.6784.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )A.25B. 66 C . 91 D. 1205.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2B .4n cm 2C .41-n cm 2D .n )41( cm 26.如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积.然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积.用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是( )A .B .C .D .7.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的(第18A 1A 2 A 3A 4(第1题图) B (1)(2)(3)“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图3-1、图3-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图3-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{1923234=+=+y x y x 类似地,图3-2所示的算筹图我们可以表述为 ( )A .2114327x y x y +=⎧⎨+=⎩,.B .2114322x y x y +=⎧⎨+=⎩,.C .3219423x y x y +=⎧⎨+=⎩,.D .264327x y x y +=⎧⎨+=⎩,.二、填空题(每题4分,共28分)8.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,….根据你发现的规律,第n(n ≥1的整数 个式子是____.9.观察下列各式:11111112,23,34, (334455)+=+=+= 请你将发现的规律用含自然数n(n ≥1)的等式表示出来 .10.如图4,∠AOB=45°,过OA 上到点O 的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4….观察图中的规律,求出第10个黑色梯形的面积S 10= . 11.下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”.12.如图,把一个面积为1的正方形等分成两个面积为21矩形,接着把面积为21的矩形等分成两个面积为41的矩形,再把面积为41的矩形分成两个面积为81的矩形,如此进行下去,是利用图形揭示的规律计算:=+++++++25611281641321161814121 .xy AB MO 1 O 2O 3 132116181412图3-2图3-1F图12-313.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)L 根据这个规律探索可得,第100个点的坐标为____________.14.如图,在直角坐标系中,一直线l经过点M 与x 轴,y 轴分别交于A 、B 两点,且MA =MB ,则△ABO 的内切圆⊙O1的半径1r = ;若⊙O2与⊙O1、l 、y 轴分别相切,⊙O3与⊙O2、l 、y 轴分别相切,…,按此规律,则⊙O2009的半径r 2009= . 二、解答题(共51分)15.(8分).已知△ABC 内接于⊙O ,过点A 作直线EF.(1)如图①,AB 是直径,要使EF 是⊙O 的切线,还要添加的条件是(只需要写出三种情况)① ,或② ,或③ .(2)如图②,AB 为非直径的弦,∠EAB=∠B,试证明E F 是⊙O 的切线.16.(10分)在如图12-1至图12-3中,△ABC 的面积为a .(1)如图12-1, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图12-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图12-2的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图12-3).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).B图12-1图12-2发现像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12-3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.应用 去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图12-4).求这两次扩展的区域(即阴影部分)面积共为多少m 2?17.(10分)已知等边△OAB 的边长为a ,以AB 边上的高OA 1 为边,按逆时针方向作等边△OA 1B 1,A 1B 1与OB 相交于点A 2. (1)求线段OA 2的长;(2)若再以OA 2为边按逆时针方向作等边△OA 2B 2, A 2B 2与OB 1相交于点A 3,按此作法进行下去,得到 △OA 3B 3,△OA 4B 4,┉,△OA n B n ,(如图), 求△OA 6B 6,的周长.18.(10分)、如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点. ⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________;图12-DE AB CF HM图③图②图①BMP P E ED DB C B C A A N M P E D C A ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由.19.(13分)、操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:(1)线段BM 、MN 、NC 之间的关系,并加以证明.(2)若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.中考数学专题三 探索型试题答案 1.B 2.A 3.C 4.C 5.C 6.A 7.A 8.n n na 1)1(+- 9.21)1(21++=++n n n n 10.76 解析:阴影部分的面积=上+下 ,上=4n+1 ,下=4n+3 (n ≥0的整数)当n=9时,上=37,下=39 ∴S 10=37+39=76 11.80.图(2)比图(1)多:2=21 ; 图(3)比图(2)多:22+1=22+2;图(4)比图(3)多:23+21; 图(5)比图(4)多:24+22;图(6)比图(5)多:25+23; 图(7)比图(6)多:26+2412.256255解析:=+++++++256112816413211618141211-2562552561=. 13.(14,8)解析:从两方面考虑:①从每一列坐标个数分析: 第一列:1个;第二列2个;第三列3个;第四列5个;……,第十三列有13个.1至13列共有:91122131=⨯+. ②横坐标是偶数时上升,横坐标是奇数时下降.第100个数横坐标是14,应上升,纵坐标应是第9个数,坐标应为(14,8). 14.131-=r 20082009313-=r 解析:如图13-1 tan ∠MOA=331=, ∴∠MOA=300 ∴∠BAO=300∴OM=AM=2 ∴AB=4,OB=2 ,OA=32 ∴322)3224(1⨯=++r ∴131-=r如图13-2在Rt △O 1O 2M 中, ∠O 1O 2M=300∴O 1O 2=2O 1M ∴)(22121r r r r -=+ ∴1231r r = 同理:2331r r = ∴123)31(r r = … ∴)13()31()31(2008120082009-==r r 15.解析:(1)①∠CAE=∠B,②A B ⊥EF,③∠BAC+∠CAE=900④∠C=∠FAB ⑤∠EAB=∠FAB(2)连结AO,并延长交⊙O 于H ,连结HC,∵AH 是⊙O 的直径,∴∠H+∠HAC=900. ∵∠H=∠B,∠EAC=∠B ,∴∠H=∠CAE∴∠EAC+∠HAC=900,∴HA ⊥EF ∴EF 是⊙O 的切线. 16. 探索(1)a (2)2a理由:∵CD =BC ,AE =CA ,BF =AB∴由(2)得 S △ECD =2a ,S △F AE =2a ,S △DBF =2a ,∴S 3=6a .(3)6a ; 7.(72-7)×10=420(平方米);或⨯⨯+⨯6610610=420(平方米). 18.解:(1)∵△ABC 是等边三角形 ∴AB =BC ,∠ABE =∠BCD =60°∵BE =CD ∴△ABE ≌△BCD ∴∠BAE =∠CBD ∴∠APD =∠ABP +∠BAE =∠ABP +∠CBD =∠ABE =60° (2)90°,108° (3)能.如图,点E 、D 分别是正n 边形ABCM …中以C 点为顶点的相邻两边上的点,且BE =CD ,BD 与AE 交于点P ,则∠APD 的度数为nn ︒-180)2(19、解:BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连结DM 1∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°, ∵∠BDC=1200 BD=DC ∴∠DBC =∠DCB =30°∴∠ABD =∠ACD =90°∴∠DCM=900∵BD =CD △∴Rt △BDM ≌Rt △CDM 1∴∠MDB =∠M 1DC DM =DM 1∴∠MDM 1=(120°-∠MDB )+∠M 1DC =120° 又∵∠MDN =60°∴∠M 1DN =∠MDN =60° ∴△MDN ≌△M 1DN ∴MN =NM 1=NC +CM 1=NC +MB (2) CN -BM =MN证明:如图,在CN 上截取 CM 1=BM ,连结DM 1 ∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°,∵∠BDC=1200BD=DC ∴∠DBC =∠DCB =30° ∴∠DBM =∠DCM 1=90° ∵BD =CD∴Rt △BDM ≌Rt △CDM 1∴∠MDB =∠M 1DC DM =DM 1 ∵∠BDM +∠BDN =60°∴∠CDM 1+∠BDN =60°第26题M 1N MD C B A17∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°∴∠M1DN=∠MDN∵ND=ND∴△MDN≌△M1DN∴MN=NM1=NC-CM1=NC-MB.M1NMD CBA。
找规律试题几道经典题目(含答案)--2012116
数学试题分类汇编——找规律姓名:___________ 成绩:_______1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3) 2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○ ○ ○ ○ ○ ○ 7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,1 2 3n … … 第1个图 第2个图 第3个图 …从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。
规律探索题(含答案)
专题练习〔一〕[规律探索题]1 .[2021烟台]如图ZT1-1所示,以下图形都是由相同的玫瑰花根据一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,那么n的值为〔〕图ZT1 -1A.28B.29C.30D.312 .观察以下等式:71 = 7,72= 49,73= 343,74= 2401,75= 16807,76= 117649, ••那么方t算71+72+73+…+7202°的结果的个位数字是〔〕A.9B.7C.6D.03 .[2021自贡]填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值为〔〕函03 而_巾[JI H I[stel [Tbal EH图ZT1-2A.180B.182C.184D.1864 .[2021重庆A卷]以下图形都是由同样大小的菱形根据一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形第③个图形中一共有13个菱形,…按此规律排列下去,第⑨个图形中菱形的个数为〔〕8.[2021遵义]按一定规律排列的一列数依次为:-,1,----,…按此规律,这列数中的第A.73B.81C.91 D.109oo <>o oo oo o ①② 图 ZT1-35 .请你计算:(1 -x)(1 +x),(1 -x)(1 +x+x 2),(1 -x)(1 +x+x 2+x 3), …猜测(1-x)(1 A.1-x n +1 B.1+x n+1C.1-x nD.1 +x n6 .图ZT1 -4中的图形都是由同样大小的棋子按一定的规律组成的 子,第③个图形一共有16颗棋子,…那么第⑥个图形中棋子的颗数为图 ZT1-4A.51B.70C.76D.81审 OOOOO④+x+x 2+…+x n )的结果是()淇中第①个图形有1颗棋子,第②个图形一共有6颗棋 7 .[2021贺州]如图ZT1-5,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF,再以对角线AE 为边作第 三个正方形 AEGH,依此下去,第n 个正方形的面积为〔〕图 ZT1-5n-1B.2C.()n nD.2 100个数是 //9.[2021 郴州] a i=--,a2= -,a a=-—,a4=—,a s=--,…那么a s= 10.[2021潍坊]如图ZT1-6,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…根据此规律,第n个图中正方形和等边三角形的个数之和为个.图ZT1-611.观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律第8个式子是12.[2021巴中]观察以下各式:-=2 -,-=3 -,-=4 -,…请你将所发现的规律用含自然数n(n>1的代数式表达出来13 .图ZT1-7是将正三角形按一定规律排列的,那么第五个图形中正三角形的个数是图ZT1-714 .观察以下等式:42-12=3X5;52-22=3";62-32=3X9;72-42=3X11;…那么第n〔n是正整数〕个等式为15 .[2021天门]如图ZT1-8,在平面直角坐标系中,AABC的顶点坐标为A(-1,1),B(0,-2),C(1,0).点P(0,2)绕点A旋转180得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…按此作法进行下去,那么点P2021的坐标为.图ZT1-816 .[2021贵港]如图ZT1-9,直线1为y= -x,过点A i 〔1,0〕作A i Bj x轴,与直线l交于点B1,以原点O为圆心,OB i长为半径画弧交x轴于点A2;再作A2B2,x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…按此作法进行下去,那么点A n的坐标为.图ZT1-917 .[2021安顺]正方形A1B1C1O,A2B2c2C1A3B3c3c2,…按如图ZT1-10所示的方式放置.点A1,A2A3…和点61,62,63, ♦•分别〕在直线y=x+ 1和x轴上,那么点Bn的坐标是.〔n为正整数图ZT1 -10参考答案1 .C [解析]第1个图形有〔4X1〕朵,第2个图形有〔4X2〕朵,第3个图形有〔4X3〕朵,…,第n个图形有4n朵,所以由4n= 120得n=30.2 .D3 .C [解析]观察各正方形中的4 个数可知,1 + 14 = 3X5,3+32=5X7,5+58 = 7X9,故11+m= (11 + 2)X(11+4),解得m=184.4 .C [解析]整个图形可以看作是由两局部组成,各自的变化规律我们可以用一个表格来呈现5 .A [解析]利用多项式乘多项式法那么计算,归纳总结得到一般性规律,即可得到结果.观察可知,第一个式子的结果是:1-x2,第二个式子的结果是:1-x3,第三个式子的结果是:1-x4,…第n个式子的结果是:1-x n+1.6 .C [解析]通过观察图形得到第①个图形中棋子的颗数为1=1+5X0;第②个图形中棋子的颗数为1+5X1=6;第③个图形中棋子的颗数为1 + 5+10=1+50=16;…所以第⑥个图形中棋子的颗数为1+一二),然后把n=6代入计算即可.7.B8 .一[解析]分别寻找分子、分母蕴含的规律,第n个数可以表示为——,当n=100时,第100个数是一.9 .—[解析]由前5 项可得a n= (-1)n,当n= 8 时,a8= (-1)8 =-.10 .(9n+3)[解析]由图形及数字规律可知,第n个图中正方形的个数为5n+1,等边三角形的个数为4n+ 2,所以其和为5n+1 + 4n+2=9n+3.11 .-128a8[解析]根据单项式可知n为双数时a的前面要加上负号,而a的系数为2n-1,a的指数为n.第8个式子为-27a8=-128a8.12 .—=(n+1) —[解析]观察所给出的二次根式,确定变化规律:左边被开方数由两项组成,第一项为序号,第二项为序号加2的倒数;右边也为两局部,根号外为序号加1,根号内为序号加2的倒数的算术平方根,即一=(n+1)—.13.485 [解析]由图可以看出:第一个图形中有5个正三角形,第二个图形中有5X3+2=17(个)正三角形,第三个图形中有17X3+2= 53(4")正三角形,由此得出第四个图形中有53X3+2=161(个)正三角形,第五个图形中有161 X3+2=485(个)正三角形.14 .(n+3)2-n2=3N2n+3)[解析]确定规律,写出一般式.42-12= 3 X5;52-22= 3 X7;6 2-32= 3 X9;72-42= 3 X11;,第n 个式子为:(n+3)2-n2=3N2n+3).15 .(-2,0)[解析]根据旋转可得:P1(-2,0),P2(2,-4),P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2),故6 次旋转为一个循环,2021毋=336……1,故P2021(-2,0).16 .(2n-1,0)[解析]由点A1坐标为(1,0),过点A1作x轴的垂线交直线y= -x于点B1,可知B1点的坐标为(1, 一).以原点O为圆心,OB1长为半径画弧与x轴交于点A2,所以OA2=OB I,所以OA2=一)=2,因此我A2的坐标为(2,0),同理,可求得B2的坐标为(2,2 一),点A3的坐标为(4,0),B3(4,4 一)……所以点A n的坐标为(2n-1,0).17 .(2n-1,2,[解析]当x=0时,y=x+ 1=1,.,.点A I的坐标为(0,1);.四边形A1B1C1O为正方形,,点B I的坐标为(1,1).当x=1时,y=x+ 1=2,.••点A2的坐标为(1,2).二•四边形A2B2c2C1为正方形,,点B2的坐标为(3,2).同理,可得点A3的坐标为(3,4),点B3的坐标为7,4), ••点A n的坐标为(2n-1-1,2n-1),点B n的坐标为(2n-1,2n-1).故答案为(2n-1,2n-1).。
探索规律题中考试题
2.我们知道,由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分,如图2-(1). 探索下列问题:⑴在图2-(2)给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;⑵一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.①请你在图2-(3)中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”、“=”、“>”连续).②请你在图2-(4)中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S 1与S2的数量关系式(用“<”、“=”、“>”连续).③是否存在一条直线,将一个任意的平面图形(如图2-(5))分割成面积相等的两部分?请简略说出理由.(“<”、“=”、“>”连续).3.正方形通过剪切可以拼成三角形,方法如图3-⑴.仿图3-⑴所示的方法,解答下列问题:⑴如图3-⑵,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形;⑵如图3-⑶,对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.4.阅读材料:多边形边上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图4甲给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.请你按照上述方法将图4乙中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n边形.5.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为_______________.6.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么,37的个位数字是_______________,320的个位数字是_______________.8.读一读,想一想,做一做:⑴国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图⑴甲是一个4×4的小方格棋盘,图中的“皇后Q”能控①在图⑴乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.②如图⑴丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相不受对方控制(在图⑴丙中的某四个小方格中标出字母Q即可).⑵现有足够的2×2,3×3的正方形和2×3的矩形图片A、B、C(如图⑵),现从中各选取若干个图片拼成不同的图形.请你在下面给出的方格纸中,按下列要求分别画出一种拼法示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1.拼出的图形,要求每两个图片之间既无缝隙,也不重叠.画图必须保留拼图的痕迹).9.观察下面一列数,按某种规律在横线上填入适当的数,并说明你的理由._______________,,…你的理由是_______________.10.如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图,则第n个图形中需用黑色瓷砖_______________块(用含n的代数式表示).11.观察下面的点阵图和相应的等式,探究其中的规律:⑴在④和⑤后面的横线上分别写出相应的等式;①1=12;②1+3=22;③1+3+5=32;④_______________;⑤_______________;……⑵通过猜想写出与第n个点阵相对应的等式.12.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…猜想:第n个等式(n为正整数)应为_______________.14.如图,是用火柴棍摆出的一系列三角形图案.按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为_______________根.15.如图⑴,已知:m∥n,A、B为直线n上两点,C、P为直线m上两点.⑴请写出图⑴中面积相等的各对三角形:_______________;⑵如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_______与△ABC的面积相等.理由是:____________.解决问题:如图⑵,五边形ABCDE是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图⑶所示的形状,但承包土地与开垦荒地的分界小路(即图⑶中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积⑴写出设计方案,并在图⑶中画出相应的图形;⑵说明方案设计理由.16.阅读以下材料并填空.平面上有n个点(n≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?⑴分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……,发现:⑵归纳:考察点的个数n和可连成直线的条数Sn⑶推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2,即.⑷结论:.试探究以下问题:平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?⑴分析:当仅有三个点时,可作___________个三角形;当有4个点时,可作__________个三角形;当有5个点时,可作_________个三角形;…,发现:(填下表)⑵归纳:考察点的个数n和可作出的三角形的个数Sn⑶推理:18.请你观察思考下列计算过程:∵112=121,∴;同样,∵1112=12312,∴;…由此猜想=_______________.19.则a+b=_______________.21.观察下列各式:1×3=12+2×1,2×4=22+2×2,3×5=32+2×3,……请你将猜想到的规律用自然数n(n≥1)表示出来:_______________.22.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_______________条折痕.如果对折n 次,可以得到_______________条折痕.参考答案1.⑴依次为11,10,9,8,7⑵S1=n2+(12-n)〔n2-( n --1)2〕=-n2+ 25n --12①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110,∴S1:S2=34:110=17:55②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0.解得n1=2, n2=21(舍去).∴当n=4时,S1=S2.∴这样的n值是存在的2.⑴⑵①S1<S2,S1=S2,S1>S2②S1<S2,S1=S2,S1>S2⑶存在.对于任意一条直线l, 在直线l从平面图形的一侧向另一侧平移的过程中,当图形被直线l分割后,直线l两侧图形的面积为S1、S2.两侧图形的面积由S1<S2(或S1>S2)的情形,逐渐变为S1>S2(或S1<S2)的情形,在这个平移过程中,一定会存在S1=S2的时刻.因此,一定存在一条直线,将一个任意的平面图形分成面积相等的两部分3.本题有多种拼法,下面提供几例作为参考.⑴⑵4.⑴连结六边形一个顶点和其它各顶点,进行正确分割,得出结论4个⑵连结六边形边上一点(顶点除外)和各顶点,进行正确分割,得出结论5个⑶连结六边形内一点和各顶点,进行正确分割,得出结论6个推广至n边形,写出分割后得到的小三角形数目分别为n-2,n-1,n5.4(n+1)6.7和17.把2001年记为第一年,设到第n年年底这个镇的苗木面积达到5万亩.根据题意,得化简,得n2+7n-120=0.解得n1=8,n2= -15(不合题意,舍去).到2008年年底这个镇的苗木面积达到5万亩8.⑴①(2,3)表示“皇后Q”的位置在棋盘中的第2列、第3行,棋盘中不受该“皇后Q”控制的四个位置是(1,1)、(3,1)、(4,2)、(4,4)②答案如图(1)⑵答案如图(2)(答案不唯一)9..理由:比如第一个为,后面一个数是前面一个数的分子、分母都加1所得的数10.4(n+1)11.⑴④1+3+5+7=42⑤1+3+5+7+9=52⑵1+3+5+…+(2n-1)=n212.10n-913.⑴n+3,n+2⑵y=(n+3)(n+2)=n2+5n+6⑶当y=506时,n2+5n+6=506,即n2+5n-500=0.解得n1=20, n2=-25(舍去)⑷白瓷砖块数是n(n+1)=20×(20+1)=420,黑瓷砖块数是506-420=86. 共需86×4+420×3=1604(元)⑸n(n+1)=( n2+5n+6)-n(n+1). 化简得,n2-3n-6=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精编初中数学探索规律经典应用题汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧对解答数字推理问题大有帮助。
1.快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
2.推导规律时往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。
3.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。
要抓题目里的变量找数学规律的题目,都会涉及到一个或者几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第个图形中需要黑色瓷砖块(用含的代数式表示).(海南省2006年初中毕业升考试数学科试题(课改区))这一题的关键是求第个图形中需要几块黑色瓷砖?解析:在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。
它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。
所以,第n个图形中一共有4+(n-1)×3块黑瓷砖。
云南省2006年课改实验区高中(中专)招生统一考试也出有类似的题目:“观察图(l)至(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为m,则,m= (用含n 的代数式表示).”二、要善于比较“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是。
”解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。
序列号:1,2,3,4,5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n项是n2-1,第100项是1002-1。
如果题目比较复杂,或者包含的变量比较多。
解题的时候,不但考虑已知数的序列号,还要考虑其他因素。
譬如,日照市2005年中等学校招生考试数学试题“已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102 ;…………由此规律知,第⑤个等式是.”解析:这个题目,在给出的等式中,左边的加数个数在变化,加数的底数在变化,右边的和也在变化。
所以,需要进行比较的因素也比较多。
就左边而言,从上到下进行比较,发现加数个数依次增加一个。
所以,第⑤个等式应该有5个加数;从左向右比较加数的底数,发现它们呈自然数排列。
所以,第⑤个等式的左边是13+23+33+43+53。
再来看等式的右边,指数没有变化,变化的是底数。
等式的左边也是指数没有变化,变化的是底数。
比较等式两边的底数,发现和的底数与加数的底数和相等。
所以,第⑤个等式右边的底数是(1+2+3+4+5),和为152。
三、要善于寻找事物的循环节有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。
譬如,玉林市2005年中考数学试题:“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个。
”这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。
每个循环节里有3个实心球。
我们只要知道2004包含有多少个循环节,就容易计算出实心球的个数。
因为2004÷10=200(余4)。
所以,2004个球里有200个循环节,还余4个球。
200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。
所以,一共有602个实心球。
四、要抓住题目中隐藏的不变量有些题目,虽然形式发生了变化,但是本质并没有改变。
我们只要在观察形式变化的过程中,始终注意寻找它的不变量,就可以揭示出事物的本质规律。
例如,2006年芜湖市(课改实验区)初中毕业学业考试题“请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:。
”在这三个图形中,白色的三角形是等边三角形,里边镶嵌着三个黑色三角形。
从左向右观察,其中上边两个黑色三角形按照顺时针的方向发生了旋转,但是形状没有发生变化,当然黑色三角形的高也没有发生变化。
左起第一个图形里黑色三角形高的和是等边三角形里一点到三边的距离和,最后一个图形里,三个黑色三角形高的和是等边三角形的高。
所以,等边三角形里任意一点到三边的距离和等于它的高。
六、要进行计算尝试找规律,当然是找数学规律。
而数学规律,多数是函数的解析式。
函数的解析式里常常包含着数学运算。
因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子。
所以,从运算入手,尝试着做一些计算,也是解答找规律题的好途径。
例如,汉川市2006年中考试卷数学“观察下列各式:0,x1,x2,2x3,3x4,5x5,8x6,……。
试按此规律写出的第10个式子是。
”这一题,包含有两个变量,一个是各项的指数,一个是各项的系数。
容易看出各项的指数等于它……图③图②图①的序列号减1,而系数的变化规律就不那么容易发现啦。
然而,如果我们把系数抽出来,尝试做一些简单的计算,就不难发现系数的变化规律。
系数排列情况:0,1,1,2,3,5,8,……。
从左至右观察系数的排列,依次求相邻两项的和,你会发现,这个和正好是后一项。
也就是说原数列相邻两项的系数和等于后面一项的系数。
使用这个规律,不难推出原数列第8项的系数是5+8=13,第9项的系数是8+13=21,第10项的系数是13+21=34。
所以,原数列第10项是34x9。
2012年探索规律1.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有________个点.2. (2010年安徽中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )A )495B )497C )501D )5033.(2010年浙江省)阅读材料,寻找共同存在的规律:有一个运算程序a ⊕b = n , 可以使:(a+c )⊕b= n+c ,a ⊕(b+c )=n -2c , 如果1⊕1=2,那么2010⊕2010 =________.4.(2010重庆市)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A .图①B .图②C .图③D .图④5.(2010年四川省)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.6.(2010年福建省)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 6727.(2010日照市)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 (A )15 (B )25 (C )55 (D )12258.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯= 1121212021)1011(01232=⨯+⨯+⨯+⨯=按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 9.(2010〃汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2),2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20.读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程); (2) 1×2+2×3+3×4+···+n ×(n +1) = _________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________.10.(2010〃汕头)如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________. 第6题图11.(2007四川)一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________. 12.(2007山东威海)观察下列等式:223941401⨯=-,224852502⨯=-,225664604⨯=-,226575705⨯=-,228397907⨯=-…请你把发现的规律用字母表示出来:n m ∙ .13.(2007湖北武汉)下列图案是由边长为单位长度的小正方形按一定的规律拼接而成。