随机变量及其分布考点总结
随机变量及其分布知识点整理 推荐
随机变量及其分布知识点整理以及高考训练一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+= 两点分布如果随机变量X 的分布列为 X1P 1-p p则称X 服从两点分布。
二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。
()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响. 四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ “相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生. n 次独立重复试验的公式:n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为()(1),0,1,2,...,.(1)k k n k k k n kn n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,X 01… k … nP00nn C p q111n n C p q -…k k n kn C p q - …n n n C p q此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率. 六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n2221122(())(())(())..n n DX x E X p x E X p x E X p X DX X =-+-+⋅⋅⋅+-则称为随机变量的方差并称为随机变量的标准差例题练习11年山东数学高考红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.12年山东数学高考先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.13年山东数学高考甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果互相独立.(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望.13年天津数学高考一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.13年北京数学高考下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
随机变量及其分布方法总结经典习题及解答
随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X、Y等或希腊字母ξ、η等表示。
2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。
解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。
2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。
概率论与随机过程考点总结
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()( 2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差两个随机变量Y X ,:EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数两个随机变量Y X ,:DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关;独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k kk kzp z E z g!)0()(k g p k k =)1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程;简记为{}T t t X ∈),(;含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性;另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的;当t 固定时,),(e t X 是随机变量;当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道;分类:根据参数集T 和状态空间I 是否可列,分四类; 也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等; 2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性;随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族;随机过程的有限维分布函数族是随机过程概率特征的完整描述;在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代;1均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值; 2方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度; 3协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =4相关函数)]()([),(t X s X E t s R X = 3和4表示随机过程在时刻s ,t 时的线性相关程度;5互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数;)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数;若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关; 3.复随机过程 t t t jY X Z += 均值函数tt Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程1二阶距过程:实或复随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E 二阶距存在,则称该随机过程为二阶距过程;2正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程;其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== 3独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程; 进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程;4马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程;5正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,)()(),(21n t X t X t X 是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程; 6维纳过程:是正态过程的一种特殊情形;设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程;另外:①它是一个Markov 过程;因此该过程的当前值就是做出其未来预测中所需的全部信息;②维纳过程具有独立增量;该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率;③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加; 7平稳过程:严狭义平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及Tt t t n ∈,,,21 ,Tt t t n ∈+++τττ,,,21 ,)()(),(21n t X t X t X 与)()(),(21τττ+++n t X t X t X 有相同的联合分布,则称{}T t t X ∈),(是严狭义平稳过程;广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关;则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程;第三章 泊松过程一.泊松过程的定义两种定义方法1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程;①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度;2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程;①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性; 二.基本性质1,数字特征 ()[()][()]X m t E X t t D X t λ=== (1)(,)(1)X s t s t R s t t s s tλλλλ+<⎧=⎨+≥⎩(,)(,)()()min(,)X X X X B s t R s t m s m t s t λ=-= 推导过程要非常熟悉2,n T 表示第1n -事件A发生到第n 次事件发生的时间间隔,{},1n T n ≥是时间序列,随机变量n T 服从参数为λ的指数分布;概率密度为,0()0,0t e t f t t λλ-⎧≥=⎨<⎩,分布函数1,0()0,0n t T e t F t t λ-⎧-≥=⎨<⎩均值为1n ET λ=证明过程也要很熟悉 到达时间的分布 略 三.非齐次泊松过程 到达强度是t 的函数①(0)0X =;②独立增量过程;③{}{}()()1()()()()2()P X t h X t t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 不具有平稳增量性;均值函数0()[()]()tX m t E X t s ds λ==⎰定理:{}(),0X t t ≥是具有均值为0()()tX m t s ds λ=⎰的非齐次泊松过程,则有 四.复合泊松过程设{}(),0N t t ≥是强度为λ的泊松过程,{},1,2,k Y k =是一列独立同分布的随机变量,且与{}(),0N t t ≥独立,令()1()N t kk X t Y==∑ 则称{}(),0X t t ≥为复合泊松过程;重要结论:{}(),0X t t ≥是独立增量过程;若21()E Y <∞,则1[()]()E X t tE Y λ=,21[()]()D X t tE Y λ=第四章 马尔可夫链泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程;时间和状态都离散的马尔可夫过程称为马尔可夫链;马尔可夫过程的特性:马尔可夫性或无后效性;即:在过程时刻0t 所处的状态为已知的条件下,过程在时刻0t t >所处状态的条件分布与过程在时刻0t 之前所处的状态无关;也就是说,将来只与现在有关,而与过去无关;表示为{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P一.马尔可夫链的概念及转移概率1.定义:设随机过程{},∈n X n T ,对任意的整数∈n T 和任意的011,,,n i i i I +∈,条件概率满足{}{}11001111,,,n n n n n n n n P X i X i X i X i P X i X i ++++=======,则称{},∈n X n T 为马尔可夫链;马尔可夫链的统计特性完全由条件概率{}11n n n n P X i X i ++==所决定;2.转移概率 {}1n n P X j X i +==相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到j 的概率;记为()ij p n ;则()ij p n {}1n n P X j X i +===称为马尔可夫链在时刻n 的一步转移概率;若齐次马尔可夫链,则()ij p n 与n 无关,记为ij p ;[],1,2,ij P p i j II =∈= 称为系统的一步转移矩阵;性质:每个元素0ij p ≥,每行的和为1;3.n 步转移概率()n ij p ={}m n m P X j X i +== ;()()[],1,2,n n ij P p i j II =∈=称为n步转移矩阵;重要性质:①()()()n l n l ij ik kj k Ip p p -∈=∑ 称为C K -方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性;掌握证明方法:{}{}{}{}{}{}{}{}{}()()()()(),,,,,,,()()m m n n ijm nm m m m l m n k Tm m m l m n m m l k Tm m l m n l l l n l kj ik ik kj k Ik IP X i X j p P X j X i P X i P X i X k X j P X i P X i X k X j P X i X k P X i X k P X i p m l p m p p ++++∈+++∈+--∈∈==================⋅====+⋅=⋅∑∑∑∑②()n n P P = 说明n 步转移概率矩阵是一步转移概率矩阵的n 次乘方;4.{},∈n X n T 是马尔可夫链,称{}0j p P X j ==为初始概率,即0时刻状态为j 的概率;称{}()j n p n P X j ==为绝对概率,即n 时刻状态为j 的概率;{}12(0),,T P p p =为初始概率向量,{}12()(),(),T P n p n p n =为绝对概率向量;定理:①()()n j i ij i Ip n p p ∈=∑矩阵形式:()()(0)T T n P n P P =②()(1)j i ij i Ip n p n p ∈=-∑定理:{}111122,,,n n n n i iii i i IP X i X i X i p p p -∈====∑ 说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定; 二.马尔可夫链的状态分类1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即{}():0n ii d GC D n p ⋅⋅=>;若1d >,则称该状态是周期的;若1d =,则称该状态是非周期的;2.首中概率:()n ij f 表示由i 出发经n 步首次到达j 的概率; 3.()1n ij ij n f f ∞==∑表示由i 出发经终于迟早要到达j 的概率;4.如果1ii f =,则状态i 是常返态;如果1ii f <,状态i 是非常返滑过态;5.()1n i ii n nf μ∞==∑表示由i 出发再返回到i 的平均返回时间;若i μ<∞,则称i 是正常返态;若i μ=∞,则称i 是零常返态;非周期的正常返态是遍历状态; 6.状态i 是常返充要条件是()0iin n p∞==∞∑;状态i 是非常返充要条件是()11iin n iip f ∞==-∑; 7.称状态i 与j 互通,,i j i j j i ↔→→即且;如果i j ↔,则他们同为常返态或非常返态,;若i ,j 同为常返态,则他们同为正常返态或零常返态,且i ,j 有相同的周期;8.状态i 是遍历状态的充要条件是()1lim 0n iin ip μ→∞=>;一个不可约的、非周期的、有限状态的马尔可夫链是遍历的;9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态; 三.状态空间的分解1.设C 是状态空间I 的一个闭集,如果对任意的状态i C ∈,状态j C ∉,都有0ij p =即从i 出发经一步转移不能到达j ,则称C 为闭集;如果C 的状态互通,则称C 是不可约的;如果状态空间不可约,则马尔可夫链{},∈n X n T 不可约;或者说除了C 之外没有其他闭集,则称马尔可夫链{},∈n X n T 不可约;2.C 为闭集的充要条件是:对任意的状态i C ∈,状态j C ∉,都有()0ijn p =;所以闭集的意思是自C 的内部不能到达C 的外部;意味着一旦质点进入闭集C 中,它将永远留在C 中运动;如果1ii p =,则状态i 为吸收的;等价于单点{}i 为闭集;3.马尔可夫链的分解定理:任一马尔可夫链的状态空间I ,必可唯一地分解成有限个互不相交的子集12,,,nD C C C 的和,①每一个n C 都是常返态组成的不可约闭集;②n C 中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且1ij f =;③D 是由全体非常返态组成; 分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合D ,常返态组成一个闭集C ;闭集C 又可按互通关系分为若干个互不相交的基本常返闭集12,,nC C C ; 含义:一个马尔可夫链如果从D 中某个非常返态出发,它或者一直停留在D 中,或某一时刻进入某个基本常返闭集n C ,一旦进入就永不离开;一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集n C ,永远在该闭集n C 中运动;4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合;性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间12n I D C C C =++++,D 是非常返集合,12,,n C C C 是正常返集合;不可约有限马尔可夫链只有正常返态;四.()n ij p 的渐近性质与平稳分布 1.为什么要研究转移概率()n ij p 的遍历性研究()n ij p 当n →∞时的极限性质,即{}0n P X j X i ==的极限分布,包含两个问题:一是()lim n ij n p →∞是否存在;二是如果存在,是否与初始状态有关;这一类问题称作遍历性定理;如果对,i j I ∈,存在不依赖于i 的极限()lim n ijn p →∞0j p =>,则称马尔可夫链具有遍历性; 一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链; 具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数n 充分大时,转移到状态j 的概率都近似等于j p ,这时可以用j p 作为()n ij p 的近似值;2.研究平稳分布有什么意义判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论()lim n ij n p →∞来解决,但求极限时困难的;所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链;一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布()lim n ij n p →∞=1,jj I μ∈;3.{},0≥n X n 是齐次马尔可夫链,状态空间为I ,一步转移概率为ij p ,概率分布{},j j I π∈称为马尔可夫链的平稳分布,满足1j i iji Ijj Ip πππ∈∈==∑∑4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布1,jj I μ∈; 推论:有限状态的不可约非周期马尔可夫链必存在平稳分布;5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态;6.对有限马尔可夫链,如果存在正整数k ,使()0k ij p >,即k 步转移矩阵中没有零元素,则该链是遍历的;第六章 平稳随机过程一.定义第一章严平稳过程:有限维分布函数沿时间轴平移时不发生变化;宽平稳过程:满足三个条件:二阶矩过程2[()]E X t <∞;均值为常数[()]E X t =常数;相关函数只与时间差有关,即(,)()()()X X R t t E X t X t R τττ⎡⎤-=-=⎣⎦;宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程; 二.联合平稳过程及相关函数的性质1.定义:设{}(),X t t T ∈和{}(),X t t T ∈是两个平稳过程,若它们的互相关函数()()E X t Y t τ⎡⎤-⎣⎦及()()E Y t X t τ⎡⎤-⎣⎦仅与时间差τ有关,而与起点t 无关,则称()X t 和()Y t 是联合平稳随机过程;即,(,)()()()XY XY R t t E X t Y t R τττ⎡⎤-=-=⎣⎦ (,)()()()YX YX R t t E Y t X t R τττ⎡⎤-=-=⎣⎦当然,当两个平稳过程联合平稳时,其和也是平稳过程;2.相关函数的性质:①(0)0X R ≥;②()()X X R R ττ≥,对于实平稳过程,()X R τ是偶函数;③()(0)X X R R τ≤④非负定;⑤若()X t 是周期的,则相关函数()X R τ也是周期的,且周期相同;⑥如果()X t 是不含周期分量的非周期过程,()X t 与()X t τ+相互独立,则||()lim X X X R m m ττ→∞=;联合平稳过程()X t 和()Y t 的互相关函数,()(0)(0)XY X Y R R R τ≤,()(0)(0)YX X Y R R R τ≤;()()XY YX R R ττ-=;()X t 和()Y t 是实联合平稳过程时,则,()()XY YX R R ττ-=;三.随机分析 略四.平稳过程的各态历经性 1.时间均值1()..()2TTT X t l i mX t dt T-→∞=⎰时间相关函数1()()..()()2TTT X t X t l i mX t X t dt Tττ-→∞-=-⎰2.如果()[()]()X X t E X t m t ==以概率1成立,则称均方连续的平稳过程的均值有各态历经性;如果()()[()()]()X X t X t E X t X t R τττ-=-= 以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性;如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的;一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明[()]E X t 与[()()]E X t X t τ-必定与t 无关,即各态历经过程必是平稳过程;3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均; 只在一定条件下的平稳过程,才具有各态历经性;4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是第七章 平稳过程的谱分析 一.平稳过程的谱密度 推导过程:随机过程{}(),X t t -∞<<∞为均方连续过程,作截尾处理(),()0,T X t t TX t t T ⎧≤⎪=⎨>⎪⎩,由于()T X t 均方可积,所以存在FT,得(,)()()Tj tj t T TF T X t edt X t e dt ωωω∞---∞-==⎰⎰,利用paserval 定理及IFT 定义得2221()()(,)2TT TX t dt X t dt F T d ωωπ∞∞-∞--∞==⎰⎰⎰该式两边都是随机变量,取平均值,这时不仅要对时间区间[,]T T -取,还要取概率意义下的统计平均,即 定义221()2lim TTT E X t dt Tψ-→∞⎡⎤=⎢⎥⎣⎦⎰为{}(),X t t -∞<<∞平均功率;21()(,)2limX T s E F T T ωω→∞⎡⎤=⎣⎦为{}(),X t t -∞<<∞功率谱密度,简称谱密度; 可以推出当{}(),X t t -∞<<∞是均方连续平稳过程时,有 21()2X s d ψωωπ∞-∞=⎰说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分;2.平稳过程的谱密度和相关函数构成FT 对;若平稳随机序列{},0,1,2,n X n =±±,则其谱密度和相关函数构成FT 对二.谱密度的性质1.①()X s ω是()X R τ的FT;()()j X X s R e d ωτωττ∞--∞=⎰如果{}(),X t t -∞<<∞是均方连续的实平稳过程,有()()X X R R ττ=-,()X s ω是也实的非负偶函数,则②()X s ω是ω的有理分式,分母无实根;2.谱密度的物理含义,()X s ω是一个频率函数,从频率域来描绘()X t 统计规律的数字特征,而()X t 是各种频率简谐波的叠加,()X s ω就反映了各种频率成分所具有的能量大小;3.计算 可以按照定义计算,也可以利用常用的变换对()1t δ↔ 12()πδω↔ 2220a ae a a τω-↔>+22τω↔-00()()j X X R e s ωττωω⋅↔- ()()j T X X R T s e ωτω+↔⋅001,sin 0,ωωωτωωπτ⎧<⎪↔⎨≥⎪⎩等 三.窄带过程及白噪声过程的功率谱密度1.窄带随机过程:随机过程的谱密度限制在很窄的一段频率范围内;2.白噪声过程:设{}(),X t t -∞<<∞为实值平稳过程,若它的均值为零,且谱密度在所有的频率范围内为非零的常数,即0()X s N ω=,则称{}(),X t t -∞<<∞为白噪声过程; 是平稳过程;其相关函数为0()()X R N τδτ=;表明在任意两个时刻1t 和2t ,1()X t 和2()X t 不相关,即白噪声随时间的变换起伏极快,而过程的功率谱极宽,对不同输入频率的信号都有可能产生干扰;四.联合平稳过程的互谱密度互谱密度没有明确的物理意义,引入它主要是为了能在频率域上描述两个平稳过程的相关性;1.互谱密度与互相关函数成FT对关系 2.性质()()XY XY s s ωω= ()XY s ω的实部是ω的偶函数,虚部是ω的奇函数,()YX s ω也是; 2()()()XY X Y s s s ωωω≤;若()X t 和()Y t 相互正交,有()0XY R τ=,则()()0XY YX s s ωω== ;五.平稳过程通过线性系统1.系统的频率响应函数()H ω也可以写成()H j ω一般是一个复值函数,是系统单位脉冲响应的FT;2.系统输入()X t 为实平稳随机过程,则输出()Y t 也是实平稳随机过程;即输出过程的均值为常数,相关函数是时间差的函数;且有()()()()()()Y XY X R R h R h h ττττττ=*-=**-说明输出过程的相关函数可以通过两次卷积产生;()()()XY X R R h τττ=*的应用:给系统一个白噪声过程()X t ,可以从实测的互相关资料估计线性系统的未知脉冲响应;因为0()()X R N τδτ=,00()()()()()()XY X R R h N u h u du N h τττδττ∞-∞=*=-=⎰,从而3.输入输出谱密度之间的关系 2()()()Y X s H s ωωω=2()()()H H H ωωω=称为系统的频率增益因子或频率传输函数;有时,采用时域卷积的方法计算输出的相关函数比较烦琐,可以先计算输出过程的谱密度,然后反FT 计算出相关函数;2()()()()()X Y X Y R s H s R τωωωτ→=→另外()()()XY X R R h τττ=*,所以()()()XY X s H s ωωω= ,()()()YX X s H s ωωω= 补充:排队轮平均间隔时间=总时间/到达顾客总数 平均服务时间=服务时间总和/顾客总数平均到达率=到达顾客总数/总时间 平均服务率=顾客总数/服务时间总和一.当顾客到达符合泊松过程时,顾客相继到达的间隔时间T 必服从负指数分布;对于泊松分布,λ表示单位时间平均到达的顾客数,所以1λ表示顾客相继到达的平均间隔时间;服务时间符合负指数分布时,设它的概率密度函数和分布函数分别为()(){}[]1tttt t tf t e F t P T t e dt d e e μμμμμμ----==≤==-=-⎰⎰ 其中μ表示单位时间能够服务完的顾客数,为服务率;而1μ表示一个顾客的平均服务时间; 二.排队模型的求解把系统中的顾客数称为系统的状态;若系统中有n 个顾客,则称系统的状态是n ;瞬态和稳态:考虑在t 时刻系统的状态为n 的概率,它是随时刻t 而变化的,用()n P t 表示,称为系统的瞬态;求瞬态解是很不容易的,求出也很难利用;因此我们常用稳态概率n P ,表示系统中有n 个顾客的概率; 各运行指标:1队长:把系统中的顾客数称为队长,它的期望值记作s L ,也叫平均队长,即系统中的平均顾客数;而把系统中排队等待服务的顾客数称为排队长队列长,它的期望值记作q L ,也叫平均排队长,即系统中的排队的平均顾客数; 显然有 队长=排队长+正被服务的顾客数;2逗留时间:一个顾客从到达排队系统到服务完毕离去的总停留时间称为逗留时间,它的期望值记作s W ;一个顾客在系统中排队等待的时间称为等待时间,它的期望值记作q W ;逗留时间=等待时间+服务时间;3忙期:从顾客到达空闲服务机构起,到服务台再次变为空闲为止; 4顾客损失率:由于服务能力不足而造成顾客损失的比率;5服务强度服务机构利用率:指服务设备工作时间占总时间的比例; 三.几种典型的排队模型1.//1//M M ∞∞:单服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,λρμ=服务强度; 状态转移图 , 稳态概率方程 得 系统中无顾客的01P ρ=- 系统中有n 个顾客的概率0(1)n n n P P ρρρ=-=且必有s q L L uλ=+qq L W λ=1s q W W μ=+2.//1//M M N ∞:单服务台,系统容量为N 说明若到了系统最大容量,顾客将不能进入系统,顾客源无限;λ到达率,μ服务率,λρμ=服务强度;☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆状态转移图 , 稳态概率方程 得 系统中无顾客的0111N P ρρ+-=- 系统中有n 个顾客的概率0n n P P ρ= 3.//1//M M m ∞:单服务台,系统容量无限,顾客源m;λ到达率,μ服务率;状态转移图 , 稳态概率方程 得 系统中无顾☆客的001!()!()mii P m m i λμ==-∑系统中有n 个顾客的概率0!()()!n n m P P m n λμ=-1n m ≤≤0(1)s L m P μλ=--;00()(1)(1)q s P L m L P λμλ+-=-=--01(1)s m W P μλ=--1q s W W μ=-4. ////M M c ∞∞:多服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,c λρμ=服务强度; 状态转移图 , 稳态概率方程 得☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆系统中无顾客的110011!!1k c c k P k c λλμμρ--=⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦∑系统中有n 个顾客的概率001()!1()!nn n n c P n c n P P n c c cλμλμ-⎧≤⎪⎪=⎨⎪>⎪⎩。
随机变量及其分布总结
随机变量及其分布1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥. 当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()(P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.②独立重复试验的概率公式p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n k n n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.知识结构公式:()(),()0.()P AB P B A P A P A => 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X )i i X x p ==,则称表为随机变量的概率分布,简称的分布列.性质:①0,1,2,...;i p i n ≥= ②1 1.n i i p ==∑⑵两点分布则称X 服从两点分布,并称(1)p P X ==为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k k n k n P X k C p p -==-我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n 次;① 等概率性:在每次试验中事件发生的概率均相等.② 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,于是得到随机变量X其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是总体中的个体总数、N 中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值则称()1122i i n n E X x p x p x p x p =+++++为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.⑵离散型随机变量的方差则称21()(())n ii i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. ()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.。
高考复习 第十二章 随机变量及其分布
★热 点 考 点 题 型 探 析★
考点一:离散型随机变量及其分布列的计算
题型1. 离散型随机变量的取值
[例1]写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即
★重 难 点 突 破★
1.重点:了解随机变量、离散型随机变量、连续型随机变量及离散型随机变量的分布列的意义,
2.难点:会求某些简单的离散型随机变量的分布列;掌握离散型随机变量的分布列的两个基本性质及简单运用。
3.重难点:.
解:设考生甲、乙正确完成实验操作的题数分别为 、 ,
则 取值分别为1,2,3; 取值分别为0,1,2,3。…………………………………2分
, , 。
∴考生甲正确完成题数的概率分布列为
1
2
3
2.(广东省五校2008年高三上期末联考)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:
现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数 的分布列和数学期望.
P(ξ=0)= P(ξ=1)=
P(ξ=2)= P(ξ=3)=
∴ξ的分布列为:
ξ
0
1
23Βιβλιοθήκη 【名师指引】求离散型随机变量分布列时,应明确随机变量可能取哪些值,然后计算其相应的概率填入相应的表中即可。
【新题导练】
1.(安徽省淮南市2008届高三第一次模拟考试)某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.分别写出甲、乙两考生正确完成题数的概率分布列;
2023考研概率统计全考点精讲-第二讲 随机变量及其分布
第二讲 随机变量及其分布【考试要求】1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.(数一了解,数三掌握)泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为λ的指数分布()λE 的概率密度为()e ,00,0x x f x x λλ−⎧>=⎨≤⎩.5.会求随机变量函数的分布.考点:随机变量与分布函数1.随机变量:设试验E 的样本空间为Ω,如果对于每一个样本点Ω∈ω,都有一个实数)(ωX 与之对应,则称定义在Ω上的单值实值函数)(ωX 为随机变量,简记为X . 通常用,,X Y Z 等表示随机变量.【注】随机变量的等式和不等式可表示随机事件. 2.分布函数(1)定义:设X 是一个随机变量,x 是任意实数,称(){}()F x P X x x =≤−∞<<+∞为X 的分布函数.(2)基本性质①单调不减,即若12x x <,则12()()F x F x ≤;②lim ()0x F x →−∞=,lim ()1x F x →+∞=; ③()F x 是右连续,即(0)()F x F x +=.【注】这三条性质是一个函数作为某随机变量的分布函数的充分必要条件. (3)其他性质(用分布函数()F x 求概率)①)()(}{a F b F b X a P −=≤<; ②)0(}{−=<a F a X P ;③)0()(}{−−==a F a F a X P ;④)0()0(}{−−−=<≤a F b F b X a P ; ⑤)()0(}{a F b F b X a P −−=<<; ⑥{}()(0)P a X b F b F a ≤≤=−−. 【注】分布函数在处连续.【例1】 下述函数中,可以作为某个随机变量的分布函数的是( ) (A ) ()211F x x =+ (B )()x x F sin = (C ) ()11arctan π2F x x =+ (D ) ()1e ,020,0xx F x x −⎧−>⎪=⎨⎪≤⎩【例2】 设随机变量X 的分布函数为()00πsin 02π12,x F x A x,x ,x ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则A _____=,6P X ______π⎧⎫<=⎨⎬⎩⎭.【例3】 已知随机变量X 的分布函数为()0,11,18,111,1x x F x ax b x x <−⎧⎪⎪=−⎪=⎨⎪+−<<⎪≥⎪⎩,且()F x a {}0P X a ⇔=={}114P X ==,则_____,_____a b ==. 【例4】 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥−<≤<=−1,110,210,0)(x e x x x F x,则{}1P X ==( )(A )0 (B )21(C )121−−e (D )11e −−考点:离散型随机变量及其分布1.离散型随机变量定义:若随机变量X 所有可能取值是有限或可列无限个,则称X 为离散型随机变量.2.分布律(1)定义:设离散型随机变量X 的所有可能取值为()12i x i ,,=,且X 取ix 的概率为i p ,则称{}()12i i P X x p i ,,===为离散型随机变量X 的分布律.X(2)基本性质:①0,1,2,i p i ≥=;②11ii p∞==∑.【注】这两条性质也是一个数列可以作为某随机变量分布律的充分必要条件. 3.离散型随机变量的分布函数若离散型随机变量X 的分布律为{}()12i i P X x p i ,,===,则X 的分布函数为(){}{}()i i i i x xx xF x P X x P X x p x ≤≤=≤===−∞<<+∞∑∑.若123x x x <<<,则()111212230,,,x x p x x x F x p p x x x <⎧⎪≤<⎪=⎨+≤<⎪⎪⎩. 【注】若已知X 的分布函数()F x (阶梯函数),则X 的分布律为{}()()0i i i P X x F x F x ==−−,12i ,,=.【例1】 (1)做n 次伯努利实验,已知每次成功的概率均为()10<<p p ,令X 表示n 次试验中成功的次数,求X 的分布律.(2)做伯努利试验,已知每次成功的概率均为()10<<p p ,令X 表示直到第一次成功为止所进行的实验次数,求X 的分布律.【例2】 设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X 表示3个球中新球个数,求X 的分布律与分布函数.考点:连续型随机变量及其分布1.连续型随机变量及其概率密度(1)定义:设随机变量X 的分布函数为()F x ,若存在非负可积函数()f x ,使得对于任意实数x ,有()()xF x f t dt −∞=⎰,则称X 为连续型随机变量,()f x 称为X 的概率密度函数,简称概率密度(简写为.f .d .p ).【注】①只有存在概率密度的随机变量才能称为连续型随机变量,分布函数连续的随机变量不一定是连续型随机变量.②存在既非连续型又非离散型的随机变量.③(),()()0()F x x F x f x x F x '⎧=⎨⎩为的可导点,为的不可导点. (2)概率密度的基本性质:①()0f x ≥;②()1f x dx +∞−∞=⎰.【注】这两条性质是一个函数可以作为概率密度函数的充分必要条件.(3)连续型随机变量的其他性质: ①)(x F 处处连续.②对()+∞∞−∈∀,a ,有{}.0==a X P ③若()f x 在x 处连续,则有()()F x f x '=. ④对于任意的实数()1212x ,x x x ≤,有{}()()211221()x x P x X x F x F x f x dx <≤=−=⎰.【例1】 设随机变量X 的概率密度为()x f ,则下列函数中必为某随机变量的概率密度的是( )(A )()x f 2 (B )()x f 2 (C )()x f −1 (D )()x f −1【例2】 设随机变量X 的概率密度为()cos ,||20,||2A x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,求(1)常数A ; (2)X 的分布函数为()x F . 【例3】 设随机变量X 的概率密度为()1||,||10,x x f x else −<⎧=⎨⎩,则______412=⎭⎬⎫⎩⎨⎧<<−X P .考点:常见分布1.常见的离散型随机变量 (1) 0-1分布若随机变量X 的分布律为{}()()110101kk P X k p p ,k ,p −==−=<<,则称X 服从0-1分布,记为),1(~p B X .(2) 二项分布若随机变量的分布律为{}C (1),0,1,2,k k n kn P X k p p k n −==−=,其中01p <<,则称X 服从二项分布,记为~(,)X B n p .(3) 几何分布若随机变量X 的分布律为{}1(1)k P X k p p −==−⋅,1,2,3k =,其中01p <<,则称X 服从参数为p 的几何分布,记为()~X G p .(4) 超几何分布(从未考过)若随机变量X 的分布律为{}C C C k n kM N MnNP X k −−==,其中N k ∈,且{}{}n M k N n M ,min ,0max ≤≤−+,则称X 服从超几何分布.【注】:此公式的数学模型为:设N 件产品中含M 件次品,现从中任取n 件产品,则所取的n 件产品恰有k 件次品的概率.(5) 泊松分布 ①定义若随机变量X 的分布律为{}e !kP X k k λλ−==,0,1,2,k =,其中0λ>,则称X 服从参数为λ的泊松分布,记为~()X P λ.X②泊松定理(数一了解;数三掌握)设0λ>是一个常数,n 是任意正整数,若lim n n np λ→∞=,则对于任意的非负整数k ,有()e lim 1.!nk n kkknn n C p p k λλ−−→∞−=【例1】 设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,若{}519P X ≥=,则{}1_______P Y ≥=. 【例2】 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为1e,则这段时间内至少有两辆汽车通过的概率为___________. 2.常见的连续型随机变量 (1) 均匀分布若X 的概率密度为1,()0,a xb f x b a⎧<<⎪=−⎨⎪⎩其它,则称X 在()a,b 上服从均匀分布,记为()~,X U a b ,其分布函数为0,(),1,x a x aF x a x b b a x b<⎧⎪−⎪=≤<⎨−⎪⎪≥⎩. (2) 指数分布若X 的概率密度为e ,0()0,0x x f x x λλ−⎧>=⎨≤⎩,其中0λ>,则称X 服从参数为λ的指数分布,记为()XE λ,其分布函数为1e ,0()0,0x x F x x λ−⎧−≥=⎨<⎩.(3) 正态分布若随机变量X的概率密度为22()2()()x f x x μσ−−=−∞<<+∞,其中0σ>,μ与σ均为常数,则称X 服从参数为,μσ的正态分布,记为2~(,)X N μσ,其分布函数为22()2()d ()t xF x t x μσ−−=−∞<<+∞⎰.特别地,当0,1μσ==,即~(0,1)X N ,称X 服从标准正态分布,其概率密度为22(),x x x ϕ−=−∞<<+∞,分布函数22()d t xx t −Φ=⎰,x −∞<<+∞.【注】(1)指数分布的无记忆性:若()~X E λ,则对任意的0,0s t >>,有{}{}|.P X s t X s P X t >+>=>【例3】 设随机变量()6,1~U X ,则方程012=++Xy y 有实根的概率为____.【例4】 设随机变量()~2,5X U ,现对X 进行三次独立重复观测,求至少有两次观测值大于3的概率.【例5】 设随机变量Y 服从参数为12λ=的指数分布,求关于未知量x 的方程2230x Yx Y ++−=没有实根的概率.【例6】 设随机变量的概率密度函数为()221e ()x x f x k x −+−=−∞<<+∞X则常数=_______k .【例7】 设随机变量()22,X N σ且{}240.3P X <<=,则{}0_______P X <=.【例8】 设随机变量()2,X N μσ,则概率{}P X μσ−<的值随着σ的增大而( )(A )增大 (B )减小 (C )保持不变 (D )无法确定考点:随机变量函数的分布1.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,函数()g x 连续,则随机变量()Y g X =的分布律为{}(),1,2,i k k i g x y P Y y p k ====∑.做法:找到Y 全部可能的取值,算出相应值的概率.【例1】 设随机变量X 在()1,2−上服从均匀分布,1,01,0X Y X −<⎧=⎨≥⎩,求Y 的分布律.【例2】(课后作业)设随机变量X 的概率分布为,求常数和的概率分布. 2.连续型随机变量函数的分布情形一:Y 为离散型. 做法:找到Y 全部可能的取值,算出相应值的概率. 情形二:Y 为连续型.(1)分布函数法(代数法和几何法)先求出()Y g X =的分布函数()Y F y ,即()(){}()()Y g x y F y P g X y f x dx ≤=≤=⎰,再对()YF y 求导得到Y 的概率密度()Y f y .(2)公式法 若()y g x =在X 的取值区间内有连续导数()g x ',且()0g x '>或者()0g x '<,则()Y g X =是连续型随机变量,且其概率密度为{}(1,2,)3k c P X k k ===c sin()2Y X π=()()()',0,X Y f h y h y y f y αβ⎧<<⎡⎤⎪⎣⎦=⎨⎪⎩其他其中(),αβ为()y g x =的值域,()h y 是()g x 的反函数.情形三:Y 既非连续型又非离散型 做法:分布函数法求其分布函数.【例3】 设随机变量X 服从()0,2上的均匀分布,则随机变量2Y X =在()0,4内的概率密度()Y f y _______=.【例4】 设随机变量X 的概率密度为()22,00,x x f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度()Y f y .。
随机变量及其分布知识点总结资料讲解.doc
圆梦教育中心 随机变量及其分布知识点整理一、离散型随机 量的分布列一 般 地 , 离 散 型 随 机 量 X 可 能 取 的x 1 , x 2 , , x i ,, x n , X 取 每 一 个 x i (i1,2, , n) 的 概 率P( Xx i ) p i , 称以下表格Xx 1 x 2 ⋯ x i ⋯ x n Pp 1p 2⋯p i⋯p n随机 量 X 的概率分布列, 称X 的分布列 .离散型随机 量的分布列具有下述两个性 :( 1) P i ≥ 0, i1,2, , n ( 2) p 1 p 2 p n 11.两点分布如果随机 量X 的分布列X1P 1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率 .2.超几何分布 一般地,在含有M 件次品的 N 件 品中,任取 n 件,其中恰有 X 件次品, 事件X k 生的概率 :P( X k ) C M k C N n k M , k 0,1,2,3,..., mC nN 随机 量 X 的概率分布列如下:X1 ⋯ mPC M 0 C N n 0MC M 1 C N n 1M⋯C M m C N n m MC N nC N nC N n其中 mmin M , n , 且nN , M N , n, M , N N * 。
注:超几何分布的模型是不放回抽 二、条件概率一般地, A,B 两个事件 , 且 P( A)0 ,称P(B | A)P( AB )在事件 A 生的条件下 , 事件 B 生的条件概率 .P( A)0≤ P(B | A) ≤ 1如果 B 和 C 互斥,那么 P[( B U C ) | A] P( B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB) P( A)P( B) ), 称事件 A 与事件B 相互独立。
即 A 、 B 相互独立P( AB) P( A) P(B)一般地,如果事件A ,A , ⋯,A n 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概率的 ,12即 P( A 1A 2... A n ) P( A 1 ) P( A 2 )...P( A n ) .注: (1) 互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响.四、 n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在 n 次独立重复试验中,记A i是“第i次试验的结果” ,显然, P( A1 A2A n ) P( A1 )P( A2 )P( A n )“相同条件下”等价于各次试验的结果不会受其他试验的影响注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.n次独立重复试验的公式:一般地,在 n次独立重复中,事件 A生的次数 X,在每次中事件 A生的概率 p,那么在 n次独立重复中,事件 A 恰好生 k次的概率P( X k ) C n k p k (1 p)n k C n k p k q n k , k 0,1,2,..., n.(其中 q 1 p) ,而称p为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为p,则P( X k ) C n k p k (1 p)n k, k 0,1,2, ,nX01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0此时称随机变量X 服从二项分布,记作X ~ B(n, p) ,并称p为成功概率.六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 E( X ) x1 p1 x2 p2x i p i x n p n为X 的数学期望或均值,简称为期望 . 它反映了离散型随机变量取值的平均水平 .1.若Y aX b ,其中a,b常数,则Y 也是变量Y ax1 b ax2 b ⋯ax i b ⋯ax n bP p1 p2⋯p ⋯pi n则 EY aE( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1 p 0 (1 p)p 3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 DX ( x1 E (X )) 2 p1 ( x2 E( X )) 2 p2 (x n E ( X 并称DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X ) p(1 p)2.若X ~ B(n, p),则D ( X )np(1 p)3.D ( aX b)a2 D ( X )即若 X 服从两点分布,则E( X )p。
高中数学知识点总结:随机变量及其分布
高中数学知识点总结:随机变量及其分布随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
随机变量及其分布列概念公式总结
随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量.随机变量常用字母X , Y,,,…表示.2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值x i(i=1,2,…)的概率为,则称表为随机变量ξ的概率分布,简称ξ的分布列4。
分布列的两个性质:(1)P i≥0,i=1,2,...; (2)P1+P2+ (1)5。
求离散型随机变量的概率分布的步骤:(1)确定随机变量的所有可能的值xi(2)求出各取值的概率p(=xi )=pi(3)画出表格6.两点分布列:7超几何分布列:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品数,则事件{X=k}发生的概率为,其中,且.称分布列为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ0 1 …k …nP ……称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数。
9.离散型随机变量的均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称……为ξ的均值或数学期望,简称期望.10.离散型随机变量的均值或数学期望的性质:(1)若服从两点分布,则p.(2)若ξ~B(n,p),则np.(3),c为常数(4)ξ~N(,),则(5)11.方差:对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么,=++…++…称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.12。
高中数学必修知识点随机变量及其分布
高中数学必修知识点随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x nX 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
随机变量及其分布知识点总结
随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。
在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。
本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。
一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。
随机变量的取值可以是离散的或连续的。
离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。
二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。
概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。
概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。
三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。
离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。
1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。
离散分布的概率质量函数通常用 $g_X(x)$ 表示。
例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。
连续分布的概率质量函数通常用 $f_X(x)$ 表示。
例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。
离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。
期望的概率质量函数通常用$f_X(x)$ 表示。
随机变量及其分布知识点整理.docx
一、离散型随机量的分布列一般地,离散型随机量X 可能取的x1 , x2 , , x i , , x n,X取每一个x i (i 1,2,, n) 的概率P( X x i ) p i,称以下表格X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n随机量X 的概率分布列,称X 的分布列 .离散型随机量的分布列具有下述两个性:( 1)P i≥0, i1,2, , n (2) p1p2p n11.两点分布如果随机量X 的分布列X01P1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率.2.超几何分布一般地,在含有 M件次品的 N件品中,任取 n 件,其中恰有X 件次品,事件X k 生的概率:P( X k)C M k C N n k M, k0,1,2,3,..., mC N n随机量 X 的概率分布列如下:X01⋯mC0C n 0C1C n 1C m C n mP M N M M N M⋯M N MC N n C N n C N n其中 m min M , n ,且n N, M N ,n,M , N N *。
注:超几何分布的模型是不放回抽二、条件概率一般地, A,B 两个事件 , 且P( A)P( AB)0 ,称 P( B | A)在事件 A 生的条件下 , 事件 B 生的条P( A)件概率 .0 ≤ P(B | A) ≤ 1如果 B 和 C互斥,那么P[( B U C ) | A] P(B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB)P( A) P(B) ), 称事件A 与事件B 相互独立。
即 A 、 B 相互独立 P( AB)P( A) P(B)一般地,如果事件 A ,A, ⋯,An 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概12率的 ,即 P( A 1A 2... A n ) P( A 1 )P( A 2 )...P( A n ) .注: (1) 互斥事件 :指同一次 中的两个事件不可能同 生;(2) 相互独立事件 :指在不同 下的两个事件互不影响. 四、 n 次独立重复一般地,在相同条件下,重复做的n 次 称 n 次独立重复 .在 n 次独立重复 中,A i 是“第 i 次 的 果” , 然, P( A 1 A 2A n ) P( A 1 ) P( A 2 ) P( A n )“相同条件下”等价于各次 的 果不会受其他 的影响注 : 独立重复 模型 足以下三方面特征第一:每次 是在同 条件下 行;第二:各次 中的事件是相互独立的;第三:每次 都只有两种 果,即事件要么 生,要么不 生.n 次独立重复 的公式:一般地,在 次独立重复 中, 事件生的次数X ,在每次 中事件 生的概率,那么在 次nAApn独立重复 中,事件恰好 生 k 次的概率AP( Xk) C n k p k (1 p)n kC n k p k q n k , k 0,1,2,..., n.(其中 q1 p) ,而称 p 成功概率 .五、二 分布一般地,在 n 次独立重复 中,用X 表示事件 A 生的次数, 每次 中事件A 生的概率p ,P( Xk) C n k p k (1 p)n k , k 0,1,2, , nX1⋯ k ⋯nPC n 0 p 0q n C n 1 p 1q n 1 ⋯ C n k p k q n k ⋯C n n p n q 0此 称随机 量 X 服从二 分布, 作 X ~ B(n, p) ,并称 p 成功概率 .六、离散随机 量的均 (数学期望)一般地,随机 量 X 的概率分布列X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n则称 E( X ) x1 p1x2 p2x i p i x n p n为 X 的数学期望或均值,简称为期望. 它反映了离散型随机变量取值的平均水平. 1.若Y aX b ,其中a,b常数,则Y也是变量Y ax 1 b ax 2 b ⋯ ax i b ⋯ ax n bP p1p2⋯p⋯pni则EY aE ( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1p0 (1p)p即若 X 服从两点分布,则E( X )p3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n则称 DX(x1E( X )) 2 p1 (x2E( X ))2 p2( x n E( X )) 2 p n为随机变量 X的方差.并称 DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X )p(1p) 2.若X ~ B(n, p),则D ( X ) np(1p) 3.D (aX b)a2 D( X )。
概率与统计的随机变量与分布知识点总结
概率与统计的随机变量与分布知识点总结概率与统计是一门研究随机事件发生规律的学科,其中重要的概念就是随机变量与分布。
随机变量是数学模型中用来描述随机现象结果的变量,而分布则是描述随机变量可能取值的概率规律。
下面将对概率与统计中的随机变量与分布的知识点进行总结。
一、随机变量的基础知识随机变量是对随机事件结果的数学描述,它可以是离散型或连续型的。
离散型随机变量的取值有限或可数,比如掷硬币的结果(正面或反面),而连续型随机变量的取值是一个区间或者实数集合,比如人的身高、温度等。
随机变量的概率分布函数(Probability Distribution Function,PDF)描述随机变量的取值及其对应的概率。
对于离散型随机变量,概率分布函数通常表示为概率质量函数(Probability Mass Function,PMF),记作P(X=x);对于连续型随机变量,概率分布函数通常表示为概率密度函数(Probability Density Function,PDF),记作f(x)。
二、常见的随机变量与概率分布1. 二项分布(Binomial Distribution)二项分布描述了一系列独立重复试验中成功次数的概率分布。
每次试验只有两个可能结果,成功和失败。
例如,抛掷硬币的结果(正面或反面)符合二项分布。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n是试验次数,p是单次试验的成功概率,k是成功次数。
2. 正态分布(Normal Distribution)正态分布是最常见的连续型随机变量分布,也称为高斯分布。
它具有钟形曲线的概率密度函数,对称分布在均值周围。
正态分布的概率密度函数为:f(x) = (1/√(2πσ^2)) * exp(-(x-μ)^2/(2σ^2))其中,μ是均值,σ是标准差。
3. 泊松分布(Poisson Distribution)泊松分布描述了一个固定时间或空间单位内随机事件发生的次数的概率分布。
概率与统计中的随机变量及其分布知识点总结
概率与统计中的随机变量及其分布知识点总结在概率与统计学中,随机变量是一种具有概率分布的变量,它可以用来描述不确定性的现象和事件。
随机变量的理论是概率论的核心内容之一,掌握随机变量及其分布知识点对于理解概率与统计学的基本原理及应用具有重要意义。
本文将对概率与统计中的随机变量及其分布进行知识点总结。
一、随机变量的概念与分类随机变量(Random Variable)是指对于随机试验结果的数值描述。
随机变量可以分为离散型随机变量和连续型随机变量两类。
1. 离散型随机变量离散型随机变量(Discrete Random Variable)的取值为有限个或可数个。
常见的离散型随机变量有伯努利随机变量、二项分布随机变量、泊松随机变量等。
2. 连续型随机变量连续型随机变量(Continuous Random Variable)的取值可以是任意的实数。
通常用于表示测量结果或特定区间内的变化。
常见的连续型随机变量有均匀分布随机变量、正态分布随机变量等。
二、随机变量的分布函数与概率函数随机变量的分布函数和概率函数是描述随机变量的重要工具。
1. 分布函数分布函数(Distribution Function)是随机变量取值小于或等于某个值的概率,通常记作F(x),其中x为随机变量的取值。
分布函数的性质包括:非递减性、右连续性、左极限性质。
2. 概率函数(密度函数)概率函数(Probability Density Function)用于描述连续型随机变量的概率分布情况,通常记作f(x),其中x为随机变量的取值。
概率函数的性质包括:非负性、归一性。
三、常见的随机变量及其分布在概率与统计学中,有一些常见的随机变量及其分布是被广泛应用的。
1. 伯努利随机变量伯努利随机变量(Bernoulli Random Variable)是最简单的离散型随机变量,它只有两个取值,通常用来描述成功或失败的情况。
2. 二项分布随机变量二项分布随机变量(Binomial Random Variable)描述了n个独立的伯努利试验中成功的次数,其中n为试验次数,p为单次成功的概率。
随机变量及其分布总结
随机变量及其分布总结一、随机变量随机变量(Random Variable)是概率论中的重要概念,它是表示一个随机实验的可能结果及这些结果发生的概率的指标,是随机现象中的重要解释指标。
随机变量由它的取值所确定,特点是:(1)它是一类不能确定的数,因此不能被直接测量,但是可以用概率来描述它;(2)它表示了实验结果的取值;(3)它可以表示有一定规律的实验结果,也可以表示没有规律的实验结果;(4)它用其取值及概率分布表示一个随机实验的结果,即实验结果的不确定性;(5)它可以用来描述随机实验中各可能结果对概率的影响,从而探究随机现象的规律性。
二、随机变量的分类根据随机变量的取值类型,随机变量可分为定型随机变量和随机变量。
(1)定型随机变量定型随机变量也称为离散型随机变量,它会取值完全可以确定的一组可数的取值。
其具体分类包括:(a)伽玛分布(Gamma Distribution):它是一种对数正态分布,可用来模拟某些自然现象,如系统失效时间的分布。
(b)指数分布(Exponential Distribution):这是一种特殊的定型随机变量,它可以用来模拟服从指数分布的概率分布函数或者指数函数,常用来描述生存分析中系统的衰减过程。
(c)伯努利分布(Bernoulli Distribution):这是一种概率分布,它是一种若干独立实验中,某个事件出现的概率。
(d)泊松分布(Poisson Distribution):它是描述某一时间段内发生的事件的概率分布,可用来模拟客流量等自然现象中的随机变量。
(2)随机变量随机变量又称为连续型随机变量,它的取值范围是无限的,其取值受随机实验影响,其取值不能确定,但可以描述它的概率分布。
具体分类包括:(a)正态分布(Normal Distribution):正态分布具有非常广泛的应用,它可用来描述许多现实世界中的现象,如智力、体重等。
(b)卡方分布(Chi-square Distribution):卡方分布是在实验设计中非常常见的概率分布,它包含了有关实验结果的统计量,如样本均值、样本方差等。
概率论与数理统计随机变量及其分布小结
3
本讲内容
01 知识点归纳 02 教学要求和学习建议
02 教学要求和学习建议
(1)理解随机变量及其分布函数的概念,掌握其性质。
(2)理解离散型随机变量及其分布律的概念和性质; 熟练掌握二项分布、泊松分布等常用分布及其应用。 (3)理解连续型随机变量及其概率密度的概念和性质; 熟练掌握正态分布、指数分布和均匀分布及其应用。 (4)会利用分布律、概率密度及分布函数计算有关事 件的概率。 (5)会求简单的随机变量函数的概率分布。
概率论与数理统计
第2章 随机变量及其分布 本章小结
本讲内容
01 知识点归纳 02 教学要求和学习建议
01 知识点归纳
随机变量及其分布
分布函数 离散型随机变量
连续型随机变量
分布律 常用分布 概率密度 常用分布
二项分布 泊松分布 几何分布 超几何分布
正态分布 指数分布 均匀分布
离散型随机变量函数的分布 随机变量函数的分布
5
02 教 离散型随机变量
连续型随机变量
分布律 常用分布 概率密度 常用分布
二项分布
泊松分布
几何分布 超几何分布 正态分布
工具——掌握 使用——熟练 转换——灵活
指数分布
均匀分布
离散型随机变量函数的分布 随机变量函数的分布
连续型随机变量函数的分布
6
概率论与数理统计 学海无涯, 祝你成功!
随机变量及其分布例题和知识点总结
随机变量及其分布例题和知识点总结在概率论与数理统计中,随机变量及其分布是非常重要的概念。
理解和掌握随机变量及其分布对于解决各种概率问题至关重要。
下面,我们将通过一些具体的例题来深入理解相关知识点。
一、随机变量的概念随机变量是指定义在样本空间上的实值函数,它将样本空间中的每个样本点对应到一个实数。
随机变量可以分为离散型随机变量和连续型随机变量。
例如,抛一枚硬币,出现正面记为 1,出现反面记为 0,这里定义的变量就是一个离散型随机变量。
二、离散型随机变量及其分布离散型随机变量的取值是有限个或可列无限个。
常见的离散型随机变量分布有二项分布、泊松分布等。
例题 1:一批产品的次品率为 01,从中有放回地抽取 10 次,每次取一件,求抽到次品数 X 的概率分布。
解:这是一个二项分布问题,其中 n = 10,p = 01。
P(X = k) = C(10, k) × 01^k × 09^(10 k) ,k = 0, 1, 2,, 10知识点:二项分布的概率质量函数为 P(X = k) = C(n, k) × p^k ×(1 p)^(n k) ,其中 n 是试验次数,p 是每次试验成功的概率。
例题 2:某商店每月销售某种商品的数量服从泊松分布,平均每月销售 5 件。
求每月销售 3 件的概率。
解:设每月销售的商品数量为 X,λ = 5P(X = 3) =(e^(-5) × 5^3) / 3!知识点:泊松分布的概率质量函数为 P(X = k) =(e^(λ) × λ^k)/ k! ,其中λ 是平均发生的次数。
三、连续型随机变量及其分布连续型随机变量的取值是连续的区间。
常见的连续型随机变量分布有均匀分布、正态分布等。
例题 3:设随机变量 X 在区间 a, b 上服从均匀分布,求 X 的概率密度函数。
解:概率密度函数 f(x) = 1 /(b a) ,a ≤ x ≤ b ;f(x) = 0 ,其他。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量及其分布考点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x x),2,1( =i x 的概率p x P ==)(ξ.,2,1,01=≥i p 121=++++ i p p p 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.2()p K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001k2.072 2.7063.841 5.024 6.635 7.879 10.828(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________(4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52张随即均分给赵钱孙李四家,A={赵家得到六章草花},B={孙家得到3张草花},计算P(B|A),P(AB)3、从混有5张假钞的20张百元钞票中任取两张,将其中1张在验钞机上检验发现是假钞,求两张都是假钞的概率。
4、有外形相同的球分装在三个盒子,每个盒子10个,其中第一个盒子7球标有字母A ,3个球标有字母B ;第二个盒子中五个红球五个白球;第三个盒子八个红球,两个白球;在如下规则下:先在第一个盒子取一个球,若是A 球,则在第二个盒子取球;如果第一次取出的是B 球,则在第三个盒子中取球,如果第二次取出的球是红球,则称试验成功,求试验成功的概率。
5、在图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是________6、甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率?三、几种分布1. ⑴独立重复试验与二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n ·p ),其中n ,p 为参数,并记p)n b(k;q p C kn k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.2. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得到随机变量ξ的p q p)g(k,= 3,2,1.1=-=k p q 3. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k C C C k)P(ξn ba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 典型例题:1、某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率2、在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的。
假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的。
(1)求蜜蜂落入第二实验区的概率;(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率;(3)记X为落入第一实验区的蜜蜂数,求随机变量X的数学期望EX。
3、A 、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。
每个试验组由4只小白鼠组成,其中两只服用A,两只服用B,然后观察疗效。
若在一个试验组中,服用A有效的小白鼠只数比服用B有效的多,就称该试验组为甲类组。
设每只小白鼠服用A有效的概率为2/3,服用B有效的概率为1/2.(1)求一个试验组为甲类组的概率。
(2)观察3个试验组,用ξ表示3个试验组中甲类组的个数,求ξ分布列4. 某射击运动员每次射击击中目标的概率为p(0<p<1)。
他有10发子弹,现对某一目标连续射击,每次打一发子弹,直到击中目标,或子弹打光为止。
求他射击次数的分布列。
5、、由180只集成电路组成的一批产品中,有8只是次品,现从中任抽4只,用ξ表示其中的次品数,试求:(1)抽取的4只中恰好有k只次品的概率;(2)求ξ分布列.二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为 ξ1x 2x …i x …P1p 2p … i p …++++=n n p x p x p x E 2211ξ.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E . 典型例题:1、 如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(Ⅰ)求p ; (Ⅱ)求电流能在M 与N 之间通过的概率;(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望.ξ 0 1 P q pξ 0 1 P q p2、一名小学教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花。