2019-2020年高二数学(理)上学期期末试卷及答案

合集下载

2019-2020学年高二上学期期末考试数学(理)试题及解答

2019-2020学年高二上学期期末考试数学(理)试题及解答

2019-2020学年高二上学期期末考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.命题“若,则”的逆命题为A. 若,则B. 若,则C. 若,则D. 若,则【答案】C【解析】解:根据逆命题的定义可知逆命题为“若,则”故选:C.根据逆命题的定义写出它的逆命题即可.本题考查了逆命题的定义与应用问题,是基础题.2.在等差数列中,,,则A. 8B. 9C. 11D. 12【答案】B【解析】解:在等差数列中,由,得,又,.故选:B.由已知结合等差数列的性质即可求解的值.本题考查等差数列的通项公式,考查等差数列的性质,是基础题.3.在中,角A,B,C的对边分别是边a,b,c,若,,,则A. B. 6 C. 7 D. 8【答案】C【解析】解:,,,,由余弦定理可得:.故选:C.由已知利用三角形内角和定理可求B的值,根据余弦定理可得b的值.本题主要考查了三角形内角和定理,余弦定理在解三角形中的应用,属于基础题.4.已知双曲线的实轴的长度比虚轴的长度大2,焦距为10,则双曲线的方程为A. B. C. D.【答案】B【解析】解:依题意可得,得,所以双曲线的方程为.故选:B.依题意可得,得,即可.本题考查了双曲线的方程,属于基础题.5.在三棱柱中,若,则A. B. C. D.【答案】D【解析】解:如图,;,;.故选:D.可画出三棱柱,结合图形即可求出,这样根据向量加法的平行四边形法则即可求出.考查相等向量、相反向量的概念,向量减法的几何意义,向量加法的平行四边形法则,数形结合的解题方法.6.设,,若“”是“”的充分不必要条件,则的取值范围为A. B. C. D.【答案】C【解析】解:设,,由题意可得,.的取值范围为.故选:C.设,,根据“”的充分不必要条件即可得出.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.设直线l的方向向量为,平面的法向量为,,则使成立的是A. ,1,B. ,1,C. 1,,D. ,1,【答案】B【解析】解:直线l的方向向量为,平面的法向量为,,使成立,,在A中,,故A错误;在B中,,故B成立;在C中,,故C错误;在D中,,故D错误.故选:B.由直线l的方向向量为,平面的法向量为,,使成立,得到,由此能求出结果.本题考查线面平行的判断与求法,考查直线的方向向量、平面的法向量等基础知识,考查运算与求解能力,考查化归与转化思想,是基础题.8.设x,y满足约束条件,则的最小值为A. B. C. D.【答案】C【解析】解:作出x,y满足约束条件对应的平面区域如图:由得,平移直线,由图象可知当直线经过点A时,直线的截距最小,此时z最小,由,解得,此时,故选:C.作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.9.已知点F是抛物线的焦点,点、分别是抛物线上位于第四象限的点,若,则的面积为A. 42B. 30C. 18D. 14【答案】A【解析】解:,,则抛物线的方程为,把代入方程,得舍去,即.,则AB:,即.设直线AB与x轴交于C点,已知,.故选:A.由已知求得p,得到抛物线方程,进一步求得B、A的坐标,得到AB方程,求出AB 与x轴交点C,再由面积公式求解.本题考查抛物线的简单性质,考查数形结合的解题思想方法,是中档题.10.已知在长方体中,,,,E是侧棱的中点,则直线AE与平面所成角的正弦值为A. B. C. D.【答案】B【解析】解:在长方体中,,,,E是侧棱的中点,以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,0,,1,,0,,0,,,0,,1,,设平面的法向量为y,,则,取,得,设直线AE与平面所成角为,则.直线AE与平面所成角的正弦值为.故选:B.以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,利用向量法能求出直线AE与平面所成角的正弦值.本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.11.在直角坐标系xOy中,F是椭圆C:的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF的中点,则椭圆C的离心率为A. B. C. D.【答案】C【解析】解:可令,由,可得,由题意可设,,可得BP的方程为:,时,,,,则AE的方程为:,则,M是线段QF的中点,可得,即,即,可得.故选:C.利用已知条件求出P的坐标,然后求解E的坐标,推出M的坐标,利用中点坐标公式得到双曲线的离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.12.设是数列的前n项和,若,则A. B. C. D.【答案】A【解析】解:当时,,即.当时,,则,即,,从而,即,则..故选:A.利用数列的递推关系式,求出数列的首项以及,求解数列的通项公式,然后求解.本题考查数列的递推关系式的应用,考查转化首项以及计算能力.二、填空题(本大题共4小题,共20.0分)13.设命题p:,,则¬为______ .【答案】,【解析】解:命题p:,,¬为,,故答案为:,根据全称命题的否定方法,根据已知中的原命题,写出其否定形式,可得答案.本题考查的知识点是全称命题,命题的否定,熟练掌握全特称命题的否定方法是解答的关键.14.已知,则的最小值为______.【答案】1【解析】解:,,,当且仅当,即时取等号,故答案为:1根据基本不等式即可求出最小值.本题考查了基本不等式的应用,属于基础题.15.在中,内角A,B,C所对的边分别为a,b,c,若,,,则______.【答案】【解析】解:,由余弦定理可得:,整理可得:,,,,解得:,,,可得:,.故答案为:.由已知利用余弦定理可求,又,可求b,c的值,根据余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可计算得解.本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.16.已知双曲线的左、右焦点分别为、,过的直线交C的右支于A、B两点,,,则C的离心率为______.【答案】【解析】解:可设,,由可得,由双曲线的定义可得,,由双曲线的定义可得,在直角三角形中,可得,即,在直角三角形中,可得,即为,即,可得.故答案为:.可设,,由可得,运用双曲线的定义和勾股定理求得,再由勾股定理和离心率公式,计算可得所求值.本题考查双曲线的定义和性质,主要是离心率的求法,注意运用直角三角形的勾股定理,考查方程思想和运算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知:表示焦点在x轴上的双曲线,q:方程表示一个圆.若p是真命题,求m的取值范围;若是真命题,求m的取值范围.【答案】解:若:表示焦点在x轴上的双曲线为真命题,则,得,得,由得,若方程表示圆,则得,即q:,若是真命题,则p,q都是真命题,则,得,即实数m的取值范围是.【解析】结合双曲线的定义进行求解即可根据复合命题真假关系,得到p,q都是真命题进行求解即可.本题主要考查命题真假的应用,以及复合命题真假关系,求出命题为真命题的等价条件是解决本题的关键.18.已知数列满足,.证明:数列是等比数列;设,求数列的前n项和.【答案】解:证明:数列满足,,可得,即有数列是首项为2,公比为3的等比数列;由可得,即有,数列的前n项和.【解析】对数列的递推式两边加1,结合等比数列的定义,即可得证;由对数的运算性质可得,再由裂项相消求和,化简可得所求和.本题考查等比数列的定义、通项公式和数列的裂项相消求和,考查化简整理的运算能力,属于中档题.19.的内角A,B,C的对边分别为a,b,c,且.Ⅰ求A;Ⅱ若,,求的面积.【答案】解:Ⅰ【方法一】由已知得,,;又,,,由,得;------分【方法二】由已知得,化简得,,由,得;------分Ⅱ由,,得,在中,,由正弦定理,得,------分【解析】Ⅰ【方法一】利用正弦定理与三角形内角和定理,结合题意求得的值,从而求出角A的值;【方法二】利用余弦定理结合题意求得,从而求得A的值;Ⅱ同解法一Ⅱ由同角的三角函数关系求得,再利用三角恒等变换求得,利用正弦定理求得b,计算的面积.本题考查了正弦、余弦定理的应用问题,是中档题.20.如图,在直三棱柱中,,,,,点M在线段上,且.求CM的长;求二面角的大小.【答案】解:为直三棱柱,平面平面,,平面,,,,又,;设,连接BD,,即为二面角的平面角,在中求得,为等腰直角三角形,故.【解析】连接,利用三垂线逆定理可得,而后通过相似三角形或解三角形不难求得CM;连接BD,由三垂线定理可知,即为所求角,求解不难.此题考查了三垂线定理,解三角形,二面角的求法等,难度适中.21.已知动圆C过定点,且与直线相切,圆心C的轨迹为E,求E的轨迹方程;若直线l交E与P,Q两点,且线段PQ的中心点坐标,求.【答案】解:由题设知,点C到点F的距离等于它到直线的距离,所以点C的轨迹是以F为焦点为基准线的抛物线,所以所求E的轨迹方程为.由题意已知,直线l的斜率显然存在,设直线l的斜率为k,,,则有,两式作差得即得,因为线段PQ的中点的坐标为,所以,则直线l的方程为,即,与联立得,得,.【解析】利用动圆C过定点,且与直线:相切,所以点C的轨迹是以F为焦点为基准线的抛物线,即可求动点C的轨迹方程;先利用点差法求出直线的斜率,再利用韦达定理,结合弦长公式,即可求.本题考查轨迹方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题22.已知椭圆C:的离心率为,长半轴长为短轴长的b倍,A,B分别为椭圆C的上、下顶点,点.求椭圆C的方程;若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.【答案】解:由题意知,解得,所以椭圆C的方程为.证明:易知,,则直线MA的方程为,直线MB的方程为.联立,得,于是,,同理可得,,所以直线PN的斜率,直线QN的斜率,因为,所以直线PQ过定点【解析】由题意知,解出即可得出.点易知,,则直线MA的方程为,直线MB的方程为分别与椭圆联立方程组,解得,,可得,,Q坐标可得直线PN,QN的斜率程,即可证明.本题考查了椭圆的标准方程及其性质、直线与椭圆相交、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.。

2019-2020年高二上学期期末考试 数学理 含答案

2019-2020年高二上学期期末考试 数学理 含答案

2019-2020年高二上学期期末考试 数学理 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

) 1.下列命题正确的是A .若a 2>b 2,则a >b B .若1a >1b,则a <bC .若ac >bc ,则a >bD .若a <b , 则a <b2.抛物线28y x =-的焦点坐标是A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)3. 设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22D. ln 24.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词, 然而他的实际效果大哩,原来这句话的等价命题是 A .不拥有的人们不一定幸福 B .不拥有的人们可能幸福 C .拥有的人们不一定幸福 D .不拥有的人们不幸福 5.不等式21≥-xx 的解集为A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞6.下列有关选项正确的...是 A .若q p ∨为真命题,则p q ∧为真命题. B .“5x =”是“2450x x --=”的充要条件.C .命题“若1x <-,则2230x x -->”的否命题为:“若1x <-,则2320x x -+≤”. D .已知命题p :R x ∈∃,使得210x x +-<,则p ⌝:R x ∈∀,使得210x x +-≥7.设0,0.a b >>1133aba b+与的等比中项,则的最小值为 A . 8 B . 4 C . 1D . 148. 如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234e e e e 、、、,其大小 关系为A.1243e e e e <<<B.1234e e e e <<<C.2134e e e e <<<D.2143e e e e <<<9.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 的值是A .1 B.15 C. 75 D. 3510 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A 9B 12C 16D 1711.在正方体111111ABCD A B C D BB ACD -中,与平面的余弦值为A32B33 C 32D3612.已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为A .32 B.12C. 1D. 2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13. 在△ABC 中,若=++=A c bc b a 则,222_14.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .15. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .16 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 三、解答题求函数44313+-=x x y 在区间03⎡⎤⎣⎦,上的最大值与最小值以及增区间和减区间。

2019-2020年高二上学期期末考数学(理)试题 含答案

2019-2020年高二上学期期末考数学(理)试题 含答案

2019-2020年高二上学期期末考数学(理)试题 含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线281x y -=的准线方程是 ( B ) A. 321=x B. 2=y C. 321=y D. 2-=y2.“5,12k k Z αππ=+∈”是“1sin 22α=”的BA.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件3.函数32()39f x x ax x =++-, 已知)x (f 在3x -=时取得极值, 则 a = ( D )A. 2B. 3C. 4D. 54、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( B ).5、已知21,F F 为椭圆)0(12222>>=+b a by a x 的两个焦点,过2F 作椭圆的弦AB ,若BAF 1∆的周长为16,离心率为23,则椭圆的方程为 ( D ) A. 13422=+y x B. 131622=+y x C. 1121622=+y x D. 141622=+y x 6.命题“2000,210x R x x ∃∈-+<”的否定是 ( C )A 、2,210x R x x ∃∈-+≥B 、2,210x R x x ∃∈-+> C 、2,210x R x x ∀∈-+≥ D 、2,210x R x x ∀∈-+<7.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为 B A .32B .2C .52D .38、已知点P 是抛物线x y 22=上的一个动点,则点P 到点)2,0(的距离与P 到该抛物线准线的距离之和的最小值是 ( A ) A.217 B.3 C. 5 D. 29 9.已知函数()y f x =的导函数的图象如图所示, 则()y f x =的图象可能是( D )10.下列命题中正确的是 ( C ) ①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m >0,则20x x m --=有实根”的逆否命题 ④“若123x -是有理数,则x 是无理数”的逆否命题A.①②③④B.②③④C.①③④D.①④11.函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为B(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)12.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的(C )A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件二、填空题(每小题4分,共计16分)13. 曲线31y x x =++1x x y 3++=在点)3,1(处的切线方程A BCD是 .410x y --=14.设圆C 与圆 ()2231x y +-= 外切,与直线0y =相切.则C 的圆心轨迹为 抛物线15.已知(1)2,f '=-则0(12)(1)lim x f x f x→--= 416.已知函数ln 0()2 1 0x x f x x x >⎧=⎨--≤⎩ ,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为_______2三、解答题(共70分)解答题应写出文字说明.证明过程或演算步骤. 17.(10分)求59623-+-=x x x y 的单调区间和极值. 解:()3226953129y x x x x x ''=-+-=-+ (2分)令0y '=,即231290x x -+=,解得31x x ==或 (2分) 当0y '>时,即231290x x -+>,解得13x x <>或,函数59623-+-=x x x y 单调递增; (2分)当0y '<时,即231290x x -+<,解得13x <<,函数59623-+-=x x x y 单调递减; (2分)综上所述,函数59623-+-=x x x y 的单调递增区间是()(),13,-∞+∞或,单调递减区间是()1,3;当1x =时取得极大值1-,当3x =时取得极小 (2分)18.(本题12分)已知双曲线2212y x -=,过点(1,1)P 能否作一条直线l ,与双曲线交于,A B 两点,且点P 是线段AB 的中点?解析:设点()()1122,,,,A x y B x y 且线段AB 的中点为(),M x y .并设经过点P 的直线l 的方程为1(1),y k x -=-即1.y kx k =+-把1.y kx k =+-代入双曲线的方程2212y x -=,得2222(2)2(12)(1)20(20)k x k k x k k ------=-≠. ( *)所以122(1).22x x k k x k +-==- 由题意得2(12)2k k k --=1 解得2k = 而当2k =时方程( *)无解,所以不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.19. (本题12分)已知函数d ax bx x )x (f 23+++=的图象过点P )2,0(, 且在点M ))1(f ,1(--处的切线方程为07y x 6=+-.(1) 求函数)x (f y =的解析式; (2) 求函数)x (f y =的单调区间. 解: (1) 由)x (f 的图象经过P )2,0(,知2d =, 所以,2cx bx x )x (f 23+++=c bx 2x 3)x (f 2++='.即.6)1(f ,1)1(f =-'=-由在))1(f ,1(M --处的切线方程是07y x 6=+-, 知07)1(f 6=+---,⎩⎨⎧-=-=⇒⎩⎨⎧=+-+-=+-∴3c 3b 12c b 16c b 23故所求的解析式是 .2x 3x 3x )x (f 23+--=(2) .3x 6x 3)x (f 2--='令,03x 6x 32=--即.01x 2x 2=-- 解得 .21x ,21x 21+=-= 当;0)x (f ,21x ,21x >'+>-<时或当.0)x (f ,21x 21<'+<<-时故2x 3x 3x )x (f 23+--=在)2,(--∞内是增函数, 在)21,21(+-内是减函数, 在),21(+∞+内是增函数.20. (本题12分)过抛物线焦点F 的直线交抛物线于A 、B 两点,通过点B 平行于抛物线对称轴的直线交抛物线的准线于点D ,求证:三点A 、O 、D 共线. 解析:以抛物线的对称轴为x 轴,它的顶点为原点,建立建立直角坐标系,设抛物线的方程为22(0)y px p =>,当直线AB 的斜率存在时,设AB 的斜率为(0)k k ≠,由题意直线AB 的方程为()2p y k x =-,把()2p y k x =-代入抛物线的方程得2220py y p k--=,设点()()1122,,,,A x y B x y 则2211(0)p y y y =-≠,21,2p p D y ⎛⎫- ⎪⎝⎭,以下可利用斜率相等,或用向量法证明三点共线.21、(本小题满分12分)设a 为实数,函数()22,x f x e x a x =-+∈R 。

2019-2020学年高二上学期期末考试数学试卷(理科)含解答解析

2019-2020学年高二上学期期末考试数学试卷(理科)含解答解析

2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 在一次数学测试中,成绩在区间上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,q是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为A. ¬¬B. ¬C. ¬¬D.【答案】A【解析】解:由题意值¬是“甲测试成绩不优秀”,¬是“乙测试成绩不优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”,则用¬¬表示,故选:A.求出¬,¬,结合或且非的意义进行求解即可.本题主要考查逻辑连接词的应用,结合复合命题之间的关系是解决本题的关键.2. 抛物线的焦点坐标是A. B. C. D.【答案】C【解析】解:在抛物线--,即,,,焦点坐标是,故选:C.先把抛物线的方程化为标准形式,再求出抛物线的焦点坐标.本题考查抛物线的标准方程和简单性质的应用,比较基础.3. 的一个必要不充分条件是A. B. C. D.【答案】D【解析】解:的充要条件为对于A是的充要条件对于B,是的充分不必要条件对于C,的不充分不必要条件对于D,是的一个必要不充分条件故选:D.通过解二次不等式求出的充要条件,通过对四个选项的范围与充要条件的范围间的包含关系的判断,得到的一个必要不充分条件.解决一个命题是另一个命题的什么条件,应该先化简各个命题,再进行判断,判断时常有的方法有:定义法、集合法.4. 已知双曲线C:的离心率为,则C的渐近线方程为A. B. C. D.【答案】D【解析】解:由题意可得,即为,由,可得,即,双曲线的渐近线方程为,即为.故选:D.运用双曲线的离心率公式可得,由a,b,c的关系和双曲线的渐近线方程,计算即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和双曲线的方程,考查运算能力,属于基础题.5. 四面体OABC中,M,N分别是OA,BC的中点,P是MN的三等分点靠近,若,,,则A. B. C. D.【答案】B【解析】解:根据题意得,故选:B.运用平面向量基本定理可解决此问题.本题考查平面向量基本定理的简单应用.6. 点到直线的距离为d,则d的最大值为A. 3B. 4C. 5D. 7【答案】A【解析】解:直线即,令,解得,.可得直线经过定点.则当时,d取得最大值..故选:A.直线即,令,解得直线经过定点则当时,d取得最大值.本题考查了直线经过定点、相互垂直的直线,考查了推理能力与计算能力,属于基础题.7. 如图:在直棱柱中,,,P,Q,M分别是,BC,的中点,则直线PQ与AM所成的角是A.B.C.D.【答案】D【解析】解:以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系.设,则0,,2,,0,,1,.,..直线PQ与AM所成的角是.故选:D.以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系,设,分别求出与的坐标,利用空间向量求解.本题考查异面直线所成角的求法,训练了利用空间向量求解空间角,是基础题.8. 《九章算术商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?答曰:四万六千五百尺”所谓堑堵:就是两底面为直角三角形的直棱柱:如图所示的几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为A. 40B.C. 50D.【答案】B【解析】解:几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,取的中点N,连结MN,BN,,,三棱台的表面积为:梯形梯形梯形.故选:B.取的中点N,连结MN,BN,则三棱台的表面积为梯形梯形梯形.本题考查三棱台的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9. 直线l过椭圆的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若是以OF为底边的等腰三角形,则直线l的斜率为A. B. C. D.【答案】B【解析】解:由,得,,.则,则左焦点.由题意可知,直线l的斜率存在且不等于0,则直线l的方程为.设l与椭圆相交于、,联立,得:.则PQ的中点M的横坐标为.是以OF为底边的等腰三角形,,解得:.故选:B.由椭圆方程求得椭圆的焦点坐标,设出直线方程和椭圆方程联立,由根与系数关系结合中点坐标公式求出M的坐标,由,求得直线l的斜率.本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,是中档题.10. 已知抛物线的焦点为F,准线为l,直线m过点F,且与抛物线在第一、四象限分别交于A,B两点,过A点作l的垂线,垂足为,若,则A. B. C. D. P【答案】C【解析】解:抛物线的焦点为,准线为l:,当直线m的斜率不存在时,,不满足题意;当直线m的斜率存在时,设直线m的方程为,与抛物线联立,得,消去y整理得,,又,,,.故选:C.讨论直线m的斜率不存在时,不满足题意;直线m的斜率存在时,设直线m的方程为,与抛物线联立消去y得的值;利用求出的值,再求的值,从而求得的值.本题考查了直线与抛物线方程的应用问题,也考查了分类讨论思想应用问题,是中档题.11. 已知椭圆C的两个焦点分别是,,短轴的两个端点分别为M,N,左右顶点分别为,,若为等腰直角三角形,点T在椭圆C上,且斜率的取值范围是,那么斜率的取值范围是A. B. C. D.【答案】C【解析】解:设椭圆方程为.由为等腰直角三角形,且,得,解得,.则椭圆C的方程为.则,.设,则,得,,,,又,,解得:.斜率的取值范围是.故选:C.由已知求得椭圆方程,分别求出,的坐标,再由斜率之间的关系列式求解.本题考查椭圆的简单性质,考查运算求解能力及推理运算能力,是中档题.12. 如图:已知双曲线中,,为左右顶点,F为右焦点,B为虚轴的上端点,若在线段BF上不含端点存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率e的取值范围是A.B.C.D.【答案】A【解析】解:由题意,,,则直线BF的方程为,在线段BF上不含端点存在不同的两点,使得构成以线段为斜边的直角三角形,,,,在线段BF上不含端点有且仅有两个不同的点,使得,可得,,,.故选:A.求出直线BF的方程为,利用直线与圆的位置关系,结合,即可求出双曲线离心率e 的取值范围.本题考查双曲线的简单性质,考查离心率,考查直线与圆的位置关系,属于中档题.二、填空题(本大题共4小题,共20.0分)13. “”是假命题,则实数m的取值范围是______.【答案】【解析】解:命题“”是假命题,则命题的否定是:,”是真命题,则,解得:故答案为:.特称命题与其否定的真假性相反,求解全称命题是真命题,求出m的范围即可.本题考查命题的真假判断与应用,考查等价转化思想与运算求解能力,属于基础题.14. 已知,若三向量共面,则实数______.【答案】【解析】解:,不平行,三向量共面,存在实数x,y,使,,解得,,.故答案为:.推导出不平行,由三向量共面,得存在实数x,y,使,列方程组能求出.本题考查的知识点是共线向量与向量及平面向量基本定理等基础知识,考查运算求解能力,是基础题.15. 如图,的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,则CD的长为______.【答案】【解析】解:由条件,知,.所以所以.故答案为:.由已知可得,,利用数量积的性质即可得出.本题考查面面角,考查空间距离的计算,熟练掌握向量的运算和数量积运算是解题的关键.16. 椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点,已知椭圆C,其长轴的长为2a,焦距为2c,若一条光线从椭圆的左焦点出发,第一次回到焦点所经过的路程为5c,则椭圆C的离心率为______.【答案】或或【解析】解:依据椭圆的光线性质,光线从左焦点出发后,有如图所示三种路径:图1中:,则;图2中:,则;图3中,,则.椭圆C的离心率为或或,故答案为:或或.由题意画出图形,分类求解得答案.本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.三、解答题(本大题共6小题,共70.0分)17. 已知命题p:方程表示双曲线;命题q:,若¬是¬的充分不必要条件,求实数k的取值范围.【答案】解:p真:得或,q真:,¬是¬的充分不必要条件,若¬是¬的充分不必要条件,则q是p的充分不必要条件,,则有或,或,即实数k的取值范围是或.【解析】求出命题p,q为真命题的等价条件,结合充分条件和必要条件的定义进行转化即可.本题主要考查充分条件和必要条件的应用,求出p,q为真命题的等价条件以及利用逆否命题的等价性进行转化是解决本题的关键.18. 在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求,的极坐标方程;Ⅱ若直线的极坐标方程为,设与的交点为M,N,求的面积.【答案】解:Ⅰ由于,,:的极坐标方程为,故C:的极坐标方程为:,化简可得.Ⅱ把直线的极坐标方程代入圆:,可得,求得,,,由于圆的半径为1,,的面积为.【解析】Ⅰ由条件根据,求得,的极坐标方程.Ⅱ把直线的极坐标方程代入,求得和的值,结合圆的半径可得,从而求得的面积的值.本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.19. 如图:直三棱柱中,,,,D为棱上的一动点,M,N分别是,的重心,求证:;若点C在上的射影正好为M,求DN与面ABD所成角的正弦值.【答案】证明:有题意知,,,两两互相垂直,以为原点建立空间直角坐系如图所示,则0,,2,,0,,2,设0,,0,,N分别为和,的重心,,,.解:在上的射影为M,面ABD,,又,,得,解得得,或舍,,,设面ABD的法向量为y,,则,取,得1,,设DN与平面ABD所成角为则,与平面ABD所成角的正弦值为.【解析】由,,两两互相垂直,以为原点建立空间直角坐系,利用向量法能证明.求出面ABD的法向量,利用向量法能求出DN与平面ABD所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 设抛物线C:,点,过点P作直线l,若l与C只有一个公共点,求l的方程过C的焦点F,交C与A,B两点,求:弦长;以A,B为直径的圆的方程.【答案】解:若l的斜率不存在,则l:,符合题意;分若l的斜率存在,设斜率为k,则l:;分由,消去y得,由,解得或,直线l的方程为:或;分综上所述,直线l的方程为:或或;分抛物线的焦点为,直线l的方程为:;设,,由,消去x得,;又,;分以AB为直径的圆的半径为;设AB的中点为,则,,圆心为,所求圆的方程为;综上所述,,所求圆的方程为分.【解析】讨论l的斜率不存在和斜率存在时,分别求出直线l的方程即可;写出直线l的方程,与抛物线方程联立求得弦长,再求以AB为直径的圆的方程.本题考查了直线与圆以及抛物线方程的应用问题,是中档题.21. 如图,在等腰梯形CDEF中,CB,DA是梯形的高,,,现将梯形沿CB,DA折起,使且,得一简单组合体ABCDEF如图示,已知M,N分别为AF,BD 的中点.Ⅰ求证:平面BCF;Ⅱ若直线DE与平面ABFE所成角的正切值为,则求平面CDEF与平面ADE所成的锐二面角大小.【答案】证明:Ⅰ连AC,四边形ABCD是矩形,N为BD中点,为AC中点.在中,M为AF中点,故.平面BCF,平面BCF,平面BCF.Ⅱ依题意知,且平面ABFE,在面ABFE上的射影是AE.就是DE与平面ABFE所成的角.故在中:.设且,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,则设分别是平面ADE与平面CDFE的法向量令,即取则平面ADE与平面CDFE所成锐二面角的大小为.运用椭圆的性质,合理地进行等价转化.【解析】连结AC,通过证明,利用直线与平面平行的判定定理证明平面BCF.先由线面垂直的判定定理可证得平面ABFE,可知就是DE与平面ABFE所成的角,解,可得AD及DE的长,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,求出平面ADE与平面CDFE的法向量,代入向量夹角公式,可得答案.本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定与性质,直线与平面平行的判定,线面夹角,是立体几何知识的综合考查,难度较大.22. 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为,离心率.Ⅰ求椭圆E的方程;Ⅱ过点作直线l交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.【答案】解:Ⅰ,所求椭圆E的方程为:分Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,把代入整理得:,分假设存在定点,使得为定值当且仅当,即时,为定值这时分再验证当直线l的倾斜角时的情形,此时取,,存在定点使得对于经过点的任意一条直线l均有恒为定值.【解析】Ⅰ,由此能导出所求椭圆E的方程.Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,由,整理得:,,假设存在定点,使得为定值由此入手能够推导出存在定点,使得对于经过点的任意一条直线l均有恒为定值.本题考查椭圆方程的求法和点M的存在性质的判断解题时要认真审题,注意挖掘题设中的隐含条件,灵活。

2019-2020年高二上学期期末考试理科数学含答案.docx

2019-2020年高二上学期期末考试理科数学含答案.docx

2019-2020 年高二上学期期末考试理科数学含答案注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上第Ⅰ卷(选择题共60 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合要求的) .1.在ABC 中,角 A, B, C 所对的边分别是 a,b, c ,且 a 3b sin A ,则 sin BA.3B. 6C.3D.63332.抛物线 yx 2 焦点坐标是A . ( 1,0)B . ( 1 , 0)C . (0,1 ) D . (0, 1 )44443.“ x 1”是“ x 2x ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.椭圆x 2y 21与双曲线x 2y 2 1有相同的焦点,则 a 的值是4 aa21B .1 或- 2C .1 或1 D . 1A .225.若 A (x,5x,2 x1) , B (1,x 2, x) ,当 AB 取最小值时,x 的值为A .6B .3C .2D . 16.下列命题中为真命题的是①“若 x 2y 2 0 ,则 x, y 不全为零” 的否命题; ②“等腰三角形都相似” 的逆命题; ③“若m1,则不等式x 2 2x m 0 的解集为”的逆否命题。

RA .①B .①③C .②③D .①②③7. 设 a 1 , a 2 , a 3 , a 4 成等比数列,其公比为2,则2a 1 a 2 的值为2a 3 a 4A . 1B .1112C .D .488.设 A 是△ ABC 中的最小角,且cos Aa 1 ,则实数 a 的取值范围是a 1A . a ≥ 3B . a >- 1C .- 1< a ≤ 3D . a > 09.已知方程 ax 2by 2 ab 和ax by c 0(其中 ab0, a b, c 0) ,它们所表示的曲线可能是A .B .C .D .10. 在棱长为 1 的正方体 ABCD — A 1B 1C 1 D 1 中, M 和 N 分别为 A 1B 1 和 BB 1 的中点,那么直线AM 与 CN 所成角的余弦值是2 3 10 2 A .B .C .D .5510511. 正方体 ABCD - A 1 B 1C 1D 1 中, BB 1 与平面 ACD 1 所成角的余弦值为A .23 2 63B .C .D .33312. 椭圆 x2y 21上有两点 P 、Q ,O 为原点,若 OP 、 OQ 斜率之积为1 ,16 4422则 OPOQ为A . 4B. 20C. 64D. 不确定2011—2012 学年度上学期期末模块质量调研试题高二(理)数学2012. 1第II 卷综合题(共90 分)题号二17 18 19 202122总分得分二、填空题 :(本大题共 4 小题,每小题13.已知命题 p : xR , sin x 1 ,则4 分,共 16 分.把正确答案填在题中横线上)p : ____________.x2y21的离心率为 3 ,则两条渐近线的方程为________________. 14.若双曲线2b2a15.等差数列{a n}的前 n 项和为 S n,且a4a2 8 , a3 a526.记T n S n,如果存在正整2n,T n M 都成立.则M的最小值是n数 M,使得对一切正整数.x y 5 016.若不等式组y a表示的平面区域是一个三角形,则 a 的取值范围是_______.0x2三、解答题:(本大题共 6 小题,共 74 分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分12 分)在△ ABC 中,a,b, c分别为角 A,B, C所对的三边,a2(b c)2bc,(I)求角 A;(II)若b c 2,求 b 的值. sin B18.(本小题满分 12 分)设 { a} 是等差数列, {b } 是各项都为正数的等比数列,且a b 1 , b1 b2a2,n n11b3是 a1与 a4的等差中项。

2019-2020年高二上学期期末考试 数学理 含答案

2019-2020年高二上学期期末考试 数学理 含答案

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则()A. B. C. D.2.若,则向量与的夹角为()A. B. C. D.3.若坐标原点到抛物线的准线距离为2,则()A.8 B. C. D.4.下列说法中正确的是()A.命题“函数f(x)在x=x0处有极值,则”的否命题是真命题B.若命题,则;C.若是的充分不必要条件,则是的必要不充分条件;D.方程有唯一解的充要条件是5.一个长方体,其正视图面积为,侧视图面积为,俯视图面积为,则长方体的外接球的表面积为()A.B.C.D.6. 函数的单调递减区间为()A.B.C.D.7.点在圆上移动时,它与定点连线的中点的轨迹方程是()A.B.C.D.8.对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:①中位数为84;②众数为85;③平均数为85;④极差为12.其中,正确说法的序号是( )A. ①②B.③④C. ②④D.①③9.若方程有两个不相等的实根,则的取值范围为()A.B.C.D.10.如图,正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误..的是()A.D1O∥平面A1BC1 B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.二面角M-AC-B等于45°11. 在区间和上分别取一个数,记为, 则方程表示焦点在轴上且离心率小于的椭圆的概率为()A.B.C.D.12.是定义在上的函数, 若存在区间,使函数在上的值域恰为,则称函数是型函数.给出下列说法:①不可能是型函数;②若函数是型函数, 则,;③设函数是型函数, 则的最小值为;④若函数是型函数, 则的最大值为.下列选项正确的是()A.①③B.②③C.②④D.①④2019-2020年高二上学期期末考试数学理含答案二、填空题:本大题共4小题,每小题5分,共20分.13.在等比数列{a n}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15=________.14.已知,过点作一直线与曲线相交且仅有一个公共点,则该直线的倾斜角恰好等于此双曲线渐近线的倾斜角或;类比此思想,已知,过点作一直线与函数的图象相交且仅有一个公共点,则该直线的倾斜角为__________15.已知函数的图象在点处的切线斜率为1,则________________.16.给出如下五个结论:①若为钝角三角形,则②存在区间()使为减函数而<0③函数的图象关于点成中心对称④既有最大、最小值,又是偶函数⑤最小正周期为π其中正确结论的序号是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分) 我校开设了“足球社”、“诗雨文学社”、“旭爱公益社”三个社团,三个社团参加的人数如下表所示:已知“足球社”社团抽取的同学8人.(Ⅰ)求样本容量的值和从“诗雨文学社”社团抽取的同学的人数;(Ⅱ)若从“诗雨文学社”社团抽取的同学中选出2人担任该社团正、副社长的职务,已知“诗雨文学社”社团被抽取的同学中有2名女生,求至少有1名女同学被选为正、副社长的概率.18.(本小题满分10分)已知在等比数列中,,且是和的等差中项.(1)求数列的通项公式;(2)若数列满足,求的前项和.19. (本小题满分12分)已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围.20.(本小题满分12分)某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.(1)若点M ,N ,K 分别是棱HA ,HC ,HF 的中点,点G 是NK 上的任意一点,求证:MG ∥平面ACF ;(2)已知原长方体材料中,AB =2 m ,AD =3 m ,DH =1 m ,根据艺术品加工需要,工程师必须求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t 的值是多少?21.(本小题满分13分) 已知函数和.(1)若函数在区间不单调,求实数的取值范围; (2)当时,不等式恒成立,求实数的最大值. 22.(本小题满分13分)已知椭圆经过点,且离心率为. (1) 求椭圆的标准方程;(2) 若是椭圆内一点,椭圆的内接梯形的对角线与交于点,设直线在轴上的截距为,记,求的表达式(3) 求的最大值.临川一中xx 学年度上学期期末考试高二数学试卷答题卷(理科)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合目要求的.)题 号一二三总 分17 18 19 20 21 22得 分题号123456789101112考号___________________……………………线……………………………………二、填空题(本大题4小题,每小题5分,共20分;把正确答案填在横线上.)13._________________________;14._________________________;15._________________________;16._________________________;三、解答题(本大题共6小题,共70分;解答应写出文字说明、证明过程或演算步骤.)法2:从这6位同学中任选2人,没有女生的有:{C ,D},{C ,E},{C ,F},{D ,E},{D ,F},{E ,F},共6种故至少有1名女同学被选中的概率1-=. .…………10分 18:(1)设等比数列的公比为 ,由是和的等差中项 …….. 5分 (2)21(11)(32)(52)(212)n n S n -∴=++++++⋅⋅⋅+-+.21[135(21)](1222)n n -=+++⋅⋅⋅-++++⋅⋅⋅+.... 10分 19解:(1)若为真:解得或 若为真:则 解得或 若“且”是真命题,则解得或 …… 6分 (2)若为真,则,即 由是的必要不充分条件, 则可得或即或 解得或 ……12分20(1)证明:∵HM =MA ,HN =NC ,HK =KF ,∴MK ∥AF ,MN ∥AC .∵MK ⊄平面ACF ,AF ⊂平面ACF ,∴MK ∥平面ACF , 同理可证MN ∥平面ACF ,∵MN ,MK ⊂平面MNK ,且MK ∩MN =M ,∴平面MNK ∥平面ACF ,又MG ⊂平面MNK ,故MG ∥平面ACF .(2)由程序框图可知a =CF ,b =AC ,c =AF ,∴d =b 2+c 2-a 22bc =AC 2+AF 2-CF 22AC ·AF=cos ∠CAF , ∴e =12bc 1-d 2=12AC ·AF ·sin ∠CAF =S △ACF . 又h =3t e ,∴t =13he =13h ·S △ACF=V 三棱锥HACF . ∵三棱锥HACF 为将长方体ABCDEFGH 切掉4个体积相等的小三棱锥所得,∴V 三棱锥HACF =2×3×1-4×13×12×3×2×1=6-4=2,故t =2.22.(1)椭圆的标准方程为,……………..3分(2)由已知得不垂直于轴(否则由对称性,点在轴上)设直线的方程为,直线的方程为将代入得,设点,由韦达定理得,…………..5分同理设点,由韦达定理得由三点共线A C A C C A C A A C C A y x y x y x y x y x y x 2222)21)(1()21)(1(++-=++-⇒---=---⇒同理由三点共线B D B D D B D B y x y x y x y x 2222++-=++-⇒两式相加结合的方程,得)(24)(2)()(24)(2)()(2)(242)(2)()(2)(242)(2)(D C B A D C B A D C B A B D A C D B B A D C D B C A D B D C B A x x m m x x k x x x x n n x x k x x m kx x m kx x m y x x x k x x n kx x n kx x n y x x x k x x ++++++-=++++++-+++++++++-=+++++++++-利用得,由得,…………..7分由及直线不过点得且 又点到直线的距离是,故32621222323848221)(22--=-⨯-⨯⨯==∆m m m m S m f PAB(且)…..10分 (3)=3225]2)415(4[721)415(472165922222224=-+≤-=+-m m m m m m (也可用导数求解)当且仅当即时,上式等号成立,故的最大值为.…………..13分。

2019-2020年高二上学期期末考试数学理试题 含答案

2019-2020年高二上学期期末考试数学理试题 含答案

2019-2020年高二上学期期末考试数学理试题含答案一、选择题:共8题,每小题3分,共24分。

1.命题“若则”的逆命题是(A)若则(B)若则(C)若则(D)若则【答案】:A2. 已知向量,,则等于(A)(B)(C)(D)【答案】:D3.已知命题,使得:命题,下列命题为真的是(A)(B)(C)(D)【答案】:A4. 已知椭圆的左右焦点为,离心率为,过的直线交于两点,若的周长为,则的方程为(A)(B)(C)(D)【答案】:B5. 在长方体中,(A)(B)(C)(D)【答案】:D6. 已知双曲线2222:1(0,0)x yC a ba b-=>>的离心率为,则的渐近线方程为()。

A、 B、 C、 D、【答案】:C7. 给定两个命题、,若是的必要而不充分条件,则是的()。

A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件【答案】:A8. 已知为坐标原点,为抛物线的焦点,为上一点,若,则的面积为()。

A、 B、 C、 D、【答案】:C二、填空题:共6小题,每题4分,共24分。

9. 命题“”的否定是10. 方程表示焦点在轴上的椭圆,则的取值范围是【答案】:11已知)1,4,1(),4,2,2(),1,5,2(---C B A ,则向量与的夹角为_________.【答案】:12直三棱柱中,,M,N 分别是的中点,,则BM 与AN 所成角的余弦值为_________.【答案】:13已知双曲线的两条渐近线与抛物线的准线分别交于A,B 两点,O 为坐标原点,若双曲线的离心率为2,的面积为,则p 的值为_________.【答案】:214已知3221:,0)1)(1(:<<<--+-x q m x m x p ,若p 是q 的必要不充分条件,则实数m 的取值范围是________.【答案】:三、解答题:本大题共6小题,共52分。

15.(本小题满分8分)已知(1)若,求实数k 的值(2)若,求实数k 的值【答案】:(1)(2)【解析】:(1))16,4,7(3),5,35,2(--=--+-=+k k k k(2)16.(本小题满分8分)求经过点,焦点为的双曲线的标准方程,并求出该双曲线的实轴长,虚轴长,离心率,渐近线方程【答案】:x y e 55,530252±==,, 【解析】:焦点在轴上,且,,带入点即可解得方程为17. (本小题满分8分)已知:函数在内单调递增,函数大于零恒成立,若或为真,且为假,求的取值范围【答案】:【解析】:为真,则,为真则,和一真一假,真假,假真,算出来之后取并集可得答案18.(本小题满分8分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1.【解析】解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱,∴CC 1⊥平面ABC ,AC ⊂平面ABC ,∴CC 1⊥AC∵AC=3,BC=4,AB=5,∴AB 2=AC 2+BC 2,∴AC ⊥CB又C 1C ∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B ,∴AC ⊥BC 1(2)设CB 1∩BC 1=E ,∵C 1CBB 1为平行四边形,∴E 为C 1B 的中点又D 为AB 中点,∴AC 1∥DEDE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC1∥平面CDB 119.(本小题满分10分)设A (x 1,y 1).B (x 2,y 2)两点在抛物线y=2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论;(2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.【答案】:(1)x 1+x 2=0 (2)(,+∞)【解析】(Ⅰ)∵抛物线y=2x 2,即,∴,∴焦点为F(1)直线l 的斜率不存在时,显然有x 1+x 2=0(2)直线l 的斜率存在时,设为k ,截距为b ,即直线l :y=kx+b 由已知得:即l 的斜率存在时,不可能经过焦点F (0,)所以当且仅当x 1+x 2=0时,直线l 经过抛物线的焦点F(II )解:设直线l 的方程为:y=2x+b ′,故有过AB 的直线的方程为,代入抛物线方程有,得由A 、B 是抛物线上不同的两点,于是上述方程的判别式,也就是:,由直线AB 的中点为=则,于是:329321165165=->+='m b 即得l 在y 轴上的截距的取值范围是(,+∞).20.(本小题满分10分)已知点A (0,﹣2),椭圆E :(a >b >0)的离心率为,F 是椭圆E 的右焦点,直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【答案】:(Ⅰ)椭圆E 的方程为;(Ⅱ)△OPQ 的面积最大时直线l 的方程为:.【解答】解:(Ⅰ)设F (c ,0),∵直线AF 的斜率为,∴,解得c=.又,b 2=a 2﹣c 2,解得a=2,b=1.∴椭圆E 的方程为;(Ⅱ)设P (x1,y1),Q (x2,y2).由题意可设直线l 的方程为:y=kx ﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时, ,.∴|PQ|= ==,点O 到直线l 的距离d=.∴S △OPQ==,设>0,则4k2=t2+3, ∴142444442=≤+=+=tt t t S OPQ △,当且仅当t=2,即,解得时取等号. 满足△>0,∴△OPQ 的面积最大时直线l 的方程为:.。

2019-2020年高二上学期期末试题 数学(理) 含答案

2019-2020年高二上学期期末试题 数学(理) 含答案

2019-2020年高二上学期期末试题 数学(理) 含答案数学试卷(理科)出题人:王先师 审题人:杨柳考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷分第Ⅰ卷、第Ⅱ卷和答题卡,共4页。

满分150分,考试用时110分钟。

考试结束后,请将答题卡卷交回,试题卷自己保存。

2.答题前,请您务必将自己的班级、姓名、学号、考号用0.5毫米黑色签字笔填写在答题卡上。

3.作答非选择题必须用0.5毫米的黑色签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

4.保持答题卷清洁、完整,严禁使用涂改液和修正带。

第Ⅰ卷 选择题(共60分)一、 选择题(本大题包括12个小题,每小题5分,共60分,每小题给出的四个选项中只有一项是符合题目要求的,请将正确选项涂在答题卡上)1. 复数ii -+13的共轭复数是 ( ) A. i 21+ B. i 2-1 C. i +2 D.i -22. 抛物线241x y =的准线方程是 ( ) A. 1=x B.1-=x C.1=y D.1-=y3. 双曲线1222=-y ax 的离心率为2,则正数a 的值为 ( )A.3B. 2C. 2D. 14. 已知椭圆)3(13222>=+a y a x 上一动点P 到其两焦点21,F F 的距离之和为4,则实数a 的值是 ( )A. 1B. 2C. 3D. 45. 若函数12+=ax y 的图象与双曲线1422=-y x 的渐近线相切,则实数a 的值为 ( ) A. 1 B. 2 C. 3 D. 46. 已知函数3)(+=x e x f ,则)(x f 在0=x 处切线的方程是 ( )A.04=+-y xB. 04-=+y xC. 044=+-y xD. 044=-+y x7.若抛物线)0(22>=p px y 与直线01=--y x 交于B A ,两点,且8||=AB ,则p 的值为( )A. 2B. 4C. 6D. 88.若函数x ax x f ln )(-=在),2(+∞上单调递增,则实数a 的取值范围是 ( )A. )2,(-∞B. ]2,(-∞C. ),21[+∞D. 1[,)4+∞9. 函数5331)(23+--=x x x x f 的零点的个数是 ( ) A. 0 B. 1 C. 2 D. 3 10. 函数12)(+-=x e x f x 在)1,0[上的最小值是 ( )A. 2B. 1-eC. 2ln 23-D. 2ln 22- 11.=--⎰⎰dx x dx x 10102213 ( ) A. 41π- B. 2 C. 41π+ D. 1-π 12. 若椭圆)0(12222>>=+b a b y a x 的离心率为21,则双曲线12222=-b y a x 的离心率 是( )A. 2B. 25 C. 27 D. 3 第Ⅱ卷 非选择题(共90分)二、选择题(本大题包括4个小题,每小题5分,共20分,把正确答案填在答题卡的指定位置)13. 复数))(1(i a i z -+=表示的点在第四象限,则实数a 的取值范围是_______________;14. 若点),1(m P 为抛物线)0(22>=p px y 上一点,F 是抛物线的焦点,若,2||=PF 则=m ________________;15.函数1)(3++=bx ax x f 在1=x 处有极大值2,则_____=-a b .16.若B A ,是双曲线1322=-y x 上两个动点,且0OA OB ⋅=,则AOB ∆面积的最大值是_______.三、解答题(本大题包括6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)若函数x bx ax x f 42)(23-+=在2-=x 与32=x 处取得极值. (1)求函数)(x f 的解析式(2)求函数)(x f 的单调递增区间. 18.(本小题满分12分)已知椭圆12222=+b y a x )0(>>b a 经过点)1,0(,且离心率22=e (1)求椭圆的标准方程(2)若直线l :)1(-=x k y 与椭圆交于B A ,两点,若0OA OB ⋅=,求直线l 的方程.19.(本小题满分12分)已知函数()2,a f x x a R x=+-∈ (1)当4=a 时,求函数)(x f 的极值. (2)若函数在1=x 处的切线平行于x 轴,求a 的值.20.(本小题满分12分) 已知椭圆13422=+y x ,B A ,分别为其左右顶点,p 是椭圆上异于B A ,的一个动点,设21,k k 分别是直线PB PA ,的斜率.(1)求12k k ⋅的值.(2)若)1,1(M 是椭圆内一定点,过M 的直线l 交椭圆于D C ,两点,若)(21OD OC OM +=,求直线l 的方程. 21.(本小题满分12分)若点)2,1(P ,11(,)A x y ,22(,)B x y 是抛物线px y 22=(0>p )上的不同的三个点,直线AP ,BP 的斜率分别是21,k k ,若021=+k k .(1)求抛物线的方程.(2)求21y y +的值及直线AB 的斜率k. 22.(本小题满分12分) 已知函数1ln )(+-=x x x f(1)求函数)(x f 的单调区间(2)求证:当0>x 时, 1ln 11-≤≤-x x x(3)当*N n ∈时,证明)1ln(131211+>++++n n .。

2019-2020学年高二年级上学期期末考试数学(理)试卷含解答

2019-2020学年高二年级上学期期末考试数学(理)试卷含解答

2019-2020学年高二年级上学期期末考试数学(理)试卷满分:150分 考试时间:120分钟第Ⅰ卷(选择题,共60分)选择题(本大题共12小题,每小题5分,共60分。

在每题给出的四个选项中,只有一个选项符合题目要求。

)1.设集合{}1,0,1,2A =-,{}|22B x x =-≤<,则A B ⋂= ( ) A. {}1,0,1- B. {}1,0- C. {}|10x x -<< D.{|10}x x -≤≤2.已知向量(1,2)a m =-,(,3)b m =-,若a b ⊥,则实数 m 等于( )A. 2-或3B. 2或3-C. 3D. 353.在ABC ∆中,若2a =,b =,30A =︒,则B 为( )A. 60B. 60或120C. 30D. 30或1504.已知命题11:,23xxp x R ⎛⎫⎛⎫∀∈> ⎪ ⎪⎝⎭⎝⎭;命题2000:,10q x R x x ∃∈--=;则下列命题为真命题的是( )A. p q ∧B. p q ∨⌝C. p q ⌝∧D. p q ⌝∧⌝5.阅读右边的程序框图,运行相应的程序,则输出S 的值 为( )A. 10-B. 6C. 14D. 186.若4cos 5α=-, α是第二象限的角,则sin 4πα⎛⎫-= ⎪⎝⎭ ( ) )A. 10-C. 10-D.107.若某多面体的三视图(单位: cm) 如图所示, 则此多面体的体积是( )A .2cm 3B .32m 3C .1cm 3D .31cm 38.抛物线214y x =的准线方程是( ) A. 1y =- B. 2y =- C. 1x =- D. 2x =-9.已知,x y 满足不等式组⎪⎩⎪⎨⎧≥-+≤-≥-04001y x y x x ,则目标函数3z x y =+的最小值是( )A.4B.6C.8D.10 10.已知数列{}n a 是递增的等比数列, 14239,8a a a a +==,则数列{}n a 的前10项和等于( )A.1024B.511C.512D.1023 11.函数3()35f x x x =-+在闭区间[3,0]-上的最大值与最小值的和是( ) A.6 B.8 C.-6 D.-812.过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=︒,则椭圆的离心率为( )A. 2B. 3C. 12D. 13第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分。

2019-2020学年高二上学期期末数学试卷(理科)带答案

2019-2020学年高二上学期期末数学试卷(理科)带答案

2019-2020学年高二上学期期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.635.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z 的最小值为()A.﹣3 B.﹣6 C.3 D.68.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.1210.(5分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为()A.90°B.60°C.45°D.30°11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知,则向量与﹣λ垂直的充要条件是λ=.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.【分析】进而根据焦点在y轴推断出4﹣m>0,m﹣3>0并且m﹣3>4﹣m,求得m的范围.【解答】解:由题意可得:方程表示焦点在y轴上的椭圆,所以4﹣m>0,m﹣3>0并且m﹣3>4﹣m,解得:.故选D.【点评】本题主要考查了椭圆的标准方程,解题时注意看焦点在x轴还是在y轴.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行判断即可.【解答】解:由log(x+2)<0得x+2>1,即x>﹣1,则“x>1”是“log(x+2)<0”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.比较基础.4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.63【分析】由题意可得a3+a5=14,进而可得a1+a7=a3+a5=14,而S7=,代入即可得答案.【解答】解:由题意可得a3+a5=14,由等差数列的性质可得a1+a7=a3+a5=14,故S7====49,故选C【点评】本题考查等差数列的性质和求和公式,属基础题.5.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④【分析】利用四种命题关系写出四个命题,然后判断真假即可.【解答】解:①“若x+y=0,则x,y互为相反数”的逆命题:“若x,y互为相反数,则x+y=0”逆命题正确;②“全等三角形的面积相等”的否命题:“不全等三角形的面积不相等”,三角形的命题公式可知只有三角形的底边与高的乘积相等命题相等,所以否命题不正确;③“若q≤1,则x2+2x+q=0有实根”的逆否命题:“x2+2x+q=0没有实根,则q>1”,因为x2+2x+q=0没有实根,所以4﹣4q<0可得q>1,所以逆否命题正确;④“直角三角形有两个角是锐角”的逆命题:两个角是锐角的三角形是直角三角形,显然不正确.正确命题有①③.故选:C.【点评】本题考查四种命题的关系,命题的真假的判断,基本知识的考查.6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z的最小值为()A.﹣3 B.﹣6 C.3 D.6【分析】先画出可行域,得到角点坐标.再利用z的最大值为12,通过平移直线z=x+y得到最大值点A,求出k值,即可得到答案.【解答】解:可行域如图:由得:A(k,k),目标函数z=x+y在x=k,y=k时取最大值,即直线z=x+y在y轴上的截距z最大,此时,12=k+k,故k=6.∴得B(﹣12,6),目标函数z=x+y在x=﹣12,y=6时取最小值,此时,z的最小值为z=﹣12+6=﹣6,故选B.【点评】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.8.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【分析】在△ABC中,利用二倍角的余弦与正弦定理可将已知cos2=,转化为cosA=,整理即可判断△ABC的形状.【解答】解:在△ABC中,∵cos2=,∴==+∴1+cosA=+1,即cosA=,∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,∴sinAcosC=0,sinA≠0,∴cosC=0,∴C为直角.故选:B.【点评】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用,属于中档题.9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12【分析】由题意可知直线过圆心,可得3m+n=2,从而+=(+),展开后利用基本不等式可求答案.【解答】解:∵直线截得圆的弦长为直径,∴直线mx+ny+2=0过圆心(﹣3,﹣1),即﹣3m﹣n+2=0,∴3m+n=2,∴+=(+)=3+≥3+=6,当且仅当时取等号,由截得,∴+的最小值为6,故选A.【点评】该题考查直线与圆的位置关系、基本不等式的应用,变形+=(+)是解决本题的关键所在.10.(5分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为()A.90°B.60°C.45°D.30°【分析】以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D﹣xyz,利用向量法能求出PB与平面EFD所成角.【解答】解:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D﹣xyz,D为坐标原点.P(0,0,a),B(a,a,0),=(a,a,﹣a),又=(0,,),=0+=0,∴PB⊥DE.由已知DF⊥PB,又DF∩DE=D,∴PB⊥平面EFD,∴PB与平面EFD所成角为90°.故选:A.【点评】本题考查线面角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)【分析】根据三角形重心的性质可得G到B、C两点的距离之和等于20,因此G 的轨迹为以B、C为焦点的椭圆.利用题中数据加以计算可得相应的椭圆方程,注意到点G不能落在x轴上得到答案.【解答】解:设AC、AB边上的中线分别为CD、BE∵BG=BE,CG=CD∴BG+CG=(BE+CD)=20(定值)因此,G的轨迹为以B、C为焦点的椭圆,2a=20,c=4∴a=10,b==,可得椭圆的方程为∵当G点在x轴上时,A、B、C三点共线,不能构成△ABC∴G的纵坐标不能是0,可得△ABC的重心G的轨迹方程为=1(y≠0)故选:D【点评】本题给出三角形两条中线长度之和等于定值,求重心G的轨迹方程.着重考查了三角形重心的性质、椭圆的定义与标准方程和轨迹方程的求法等知识,属于中档题.12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴﹣2,∵M在圆上,∴(x0﹣5)2+y02=r2,∴r2=y02+4<12+4=16,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知,则向量与﹣λ垂直的充要条件是λ=2.【分析】⊥(﹣λ)⇔•(﹣λ)=0,解出即可得出.【解答】解:﹣λ=(﹣3+λ,2,1﹣4λ),∵⊥(﹣λ),∴•(﹣λ)=﹣3(﹣3+λ)+4+1﹣4λ=0,解得λ=2.∴向量与﹣λ垂直的充要条件是λ=2.故答案为:2.【点评】本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.【分析】利用余弦定理,构建方程,根据解此三角形有两解,可得方程有两个不等的正根,从而可求x的取值范围【解答】解:由余弦定理可得:4=c2+x2﹣2cx×cos45°∴c2﹣xc+x2﹣4=0∵解此三角形有两解,∴方程有两个不等的正根∴△=2x2﹣4(x2﹣4)>0,且x2﹣4>0,x>0∴x2﹣8<0,且x2﹣4>0,x>0∴2<x<2故答案为:.【点评】本题重点考查余弦定理的运用,考查解三角形解的个数,解题的关键是利用余弦定理,构建方程,将解此三角形有两解,转化为方程有两个不等的正根.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.【分析】利用点差法,结合M是线段AB的中点,斜率为﹣,即可求出椭圆C 的离心率.【解答】解:设A(x1,y1),B(x2,y2),则①,②,∵M是线段AB的中点,∴=1,=1,∵直线AB的方程是y=﹣(x﹣1)+1,∴y1﹣y2=﹣(x1﹣x2),∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,M是线段AB的中点,∴①②两式相减可得,即,∴a=b,∴=b,∴e==.故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a 的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.【点评】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.【分析】(1)设双曲线方程为x2﹣y2=λ,λ≠0,由双曲线过点(4,﹣),能求出双曲线方程.(2)由点M(3,m)在此双曲线上,得m=.由此能求出•的值.【解答】解:(1)∵双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,∴设双曲线方程为x2﹣y2=λ,λ≠0,∵双曲线过点(4,﹣),∴16﹣10=λ,即λ=6,∴双曲线方程为=1.(2)∵点M(3,m)在此双曲线上,∴=1,解得m=.∴M(3,),或M(3,﹣),∵F 1(﹣2,0),,∴当M(3,)时,=(﹣2﹣3,﹣),=(,﹣),•=﹣12﹣6=0;当M(3,﹣)时,=(﹣2﹣3,),=(,),•=﹣12﹣6+6+9+3=0.故•=0.【点评】本题考查双曲线方程的求法,考查向量的数量积的求法,解题时要认真审题,注意双曲线性质的合理运用.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2019-2020学年高二第一学期期末考试数学试卷(理科)附解答

2019-2020学年高二第一学期期末考试数学试卷(理科)附解答

2019-2020学年高二第一学期期末考试数学试卷(理科)一、选择题:本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.数列1,-3,5,-7,9,……的一个通项公式为( )A. 21n a n =-B. (1)(12)nn a n =-- C. (1)(21)n n a n =-- D. (1)(21)nn a n =-+2.“ 0,2sin x x x ∀>>”的否定是( ) A. 0,2sin x x x ∀>< B. 0,2sin x x x ∀>≤ C. 0000,2sin x x x ∃≤≤ D. 0000,2sin x x x ∃>≤3.在三棱柱111ABC A B C -中,D 是1CC 的中点,F 是1A B 的中点,且DF AC AB αβ=+,则( )A. 1,12αβ==-B. 1,12αβ=-=C. 11,2αβ==-D. 11,2αβ=-=4.在ABC ∆中,A B ∠∠∠、、C 所对的边分别为a b c 、、,若3A π∠=,3a =,2b =,则 B ∠=( )A. 6πB. 4πC. 3πD. 2π5.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A. 1 B. 2 C. 4 D. 86.已知双曲线2222:1x y C a b-=的离心率为53,其左焦点为1(5,0)F =-,则双曲线C 的方程为( )A. 22143x y -=B. 22134x y -=C. 221916x y -=D. 221169x y -= 7.下列命题正确的是( )A. 命题“p q ∧ ”为假命题,则命题p 与命题q 都是假命题;B. 命题“若x y =,则sin sin x y =”的逆否命题为真命题;C. “ 22am bm <”是“ a b <”成立的必要不充分条件;D. 命题“存在0x R ∈,使得 20010x x ++<”的否定是:“对任意x R ∈,均有210x x ++<”.8.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过动点(1,2)P ,法向量为(2,3)n =-的直线的点法式方程为2(1)3(2)0x y --+-=,化简得2340x y -+=,类比上述方法,在空间直角坐标系中,经过点(1,2,1)P -,且法向量为(2,3,1)n =-的直线的点法式方程应为( )A. 2330x y z --+=B. 2350x y z -++=C. 2370x y z ++-=D. 2390x y z +--=9.已知F 是双曲线221412x y -=的左焦点,(1,4)A ,P 是双曲线右支上的动点,则PF PA +的最小值为( )A. 10B. 9C. 8D. 710.已知0,0,1a b a b >>+=则14y a b=+的最小值是( )A. 10B. 9C. 8D. 711.已知1F 、2F 是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,12PF F ∆为等腰三角形,1223F F P π∠=,则C 的离心率为( )A.14 B. 12 C. 13 D. 23 12.如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --, Q OR P --, R OP Q--的平面角为,,αβγ,则( )A. γαβ<<B.αγβ<<C.βαγ<<D.αβγ<< 二、填空题:本题共4小题,每小题4分,共16分。

2019-2020年高二上学期期末数学试卷(理科) 含解析

2019-2020年高二上学期期末数学试卷(理科) 含解析

2019-2020年高二上学期期末数学试卷(理科)含解析一、选择题(本大题共17小题,每小题3分,共51分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算sin240°的值为()A.﹣B.﹣ C.D.2.已知集合M={1,2,3,4},集合N={1,3,5},则M∩N等于()A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}3.下列函数中,奇函数是()A.y=x2 B.y=2x C.y=log2x D.y=2x4.已知角α的终边经过点(﹣4,﹣3),那么tanα等于()A.B.C.﹣ D.﹣5.y=cos(x∈R)的最小正周期是()A.B.2πC.3πD.6π6.已知一个算法,其流程图如图所示,则输出的结果是()A.3 B.9 C.27 D.817.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣ D.﹣8.如果a>b,那么下列不等式中正确的是()A.ac>bc B.﹣a>﹣b C.c﹣a<c﹣b D.9.在平行四边形ABCD中, +等于()A.B.C.D.||10.两条直线x+2y+1=0与2x﹣y+1=0的位置关系是()A.平行B.垂直C.相交且不垂直D.重合11.已知直线的点斜式方程是,那么此直线的倾斜角为()A.B.C. D.12.双曲线的一个焦点坐标是()A.(0,3) B.(3,0) C.(0,1) D.(1,0)13.抛物线y2=﹣8x的焦点坐标是()A.(2,0) B.(﹣2,0)C.(4,0) D.(﹣4,0)14.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是()A.5、3、0.8 B.10、6、0.8 C.5、3、0.6 D.10、6、0.615.等轴双曲线的离心率是()A.1 B.C.2 D.16.已知a∈R,则“a>2”是“a≥1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件17.若焦点在x轴上的椭圆+=1的离心率是,则m等于()A.B.C.D.二、填空题(本大题共5个小题,每小题3分,共15分)18.命题“∃x∈R使x2+2x+1<0”的否定是.19.计算log28+log2的值是.20.直线3x﹣y+1=0在y轴上的截距是.21.函数y=2x在[0,1]上的最小值为.22.等差数列{a n}的前n项和为S n,若S5﹣S4=3,则S9=.三、解答题(本大题共4个小题,第23、24、25题各8分,第26题10分,共34分.解答应写出文字说明、证明过程或演算步骤)23.已知函数y=(sinx+cosx)2(1)求它的最小正周期和最大值;(2)求它的递增区间.24.在正方体ABCD﹣A1B1C1D1中(1)求证:AC⊥BD1(2)求异面直线AC与BC1所成角的大小.25.已知函数(1)求函数f(x)的定义域;(2)证明函数f(x)为奇函数.26.已知抛物线y2=2px的准线的方程为x=﹣1,过点(1,0)作倾斜角为的直线l交该抛物线于两点(x1,y1),B(x2,y2).求(1)p的值;(2)弦长|AB|.2016-2017学年云南省昆明市黄冈实验中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共17小题,每小题3分,共51分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算sin240°的值为()A.﹣B.﹣ C.D.【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式化简可得所给式子的值.【解答】解:sin240°=sin=﹣sin60°=﹣,故选:A.2.已知集合M={1,2,3,4},集合N={1,3,5},则M∩N等于()A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}【考点】交集及其运算.【分析】由题意和交集的运算直接求出M∩N.【解答】解:因为集合M={1,2,3,4},集合N={1,3,5},所以M∩N={1,3},故选:C.3.下列函数中,奇函数是()A.y=x2 B.y=2x C.y=log2x D.y=2x【考点】函数奇偶性的判断.【分析】根据函数奇偶性的定义判断即可.【解答】解:对于A是偶函数,对于B是奇函数,对于C、D是非奇非偶函数,故选:B.4.已知角α的终边经过点(﹣4,﹣3),那么tanα等于()A.B.C.﹣ D.﹣【考点】任意角的三角函数的定义.【分析】直接由正切函数的定义得答案.【解答】解:∵角α的终边经过点(﹣4,﹣3),由正切函数的定义得:tanα=故选:A.5.y=cos(x∈R)的最小正周期是()A.B.2πC.3πD.6π【考点】三角函数的周期性及其求法.【分析】直接利用三角函数的周期公式求函数的最小正周期即可.【解答】解:y=cos(x∈R)∴函数f(x)的最小正周期T=;故选D.6.已知一个算法,其流程图如图所示,则输出的结果是()【考点】程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件a>30,跳出循环,计算输出a的值.【解答】解:由程序框图知:第一次循环a=3×1=3;第二次循环a=3×3=9;第三次循环a=3×9=27;第四次循环a=3×27=81,满足条件a>30,跳出循环,输出a=81.故选:D.7.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣ D.﹣【考点】两角和与差的正弦函数.【分析】由条件利用两角和的正弦公式,求得所给式子的值.【解答】解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=,故选:B.8.如果a>b,那么下列不等式中正确的是()A.ac>bc B.﹣a>﹣b C.c﹣a<c﹣b D.【考点】不等式的基本性质.【分析】根据不等式的基本性质分别判断即可.【解答】解:对于A,c≤0时,不成立,对于B,﹣a<﹣b,对于C,根据不等式的性质,成立,对于D,a,b是负数时,不成立,故选:C.9.在平行四边形ABCD中, +等于()【考点】向量的加法及其几何意义.【分析】利用向量的平行四边形法则即可得出.【解答】解:∵四边形ABCD是平行四边形,∴+=.故选;A.10.两条直线x+2y+1=0与2x﹣y+1=0的位置关系是()A.平行B.垂直C.相交且不垂直D.重合【考点】直线的一般式方程与直线的垂直关系.【分析】由条件根据这两条直线的斜率互为负倒数,可得这两条直线垂直.【解答】解:两条直线x+2y+1=0与2x﹣y+1=0的斜率分别为﹣、2,它们的斜率互为负倒数,故这两条直线垂直,故选:B.11.已知直线的点斜式方程是,那么此直线的倾斜角为()A.B.C. D.【考点】确定直线位置的几何要素.【分析】根据题意得直线的斜率k=﹣,从而得到倾斜角α满足tanα=﹣,结合倾斜角的取值范围,可得α.【解答】解:设直线的倾斜角为α,则tanα=﹣,∵α∈[0,π),∴α=,故选C.12.双曲线的一个焦点坐标是()A.(0,3) B.(3,0) C.(0,1) D.(1,0)【考点】双曲线的简单性质.【分析】据题意,由双曲线的标准方程可得a、b的值,进而由c2=a2+b2,可得c 的值,又可以判断其焦点在x轴上,即可求得其焦点的坐标,分析选项可得答案.【解答】解:根据题意,双曲线的标准方程为,可得a=2,b=,则c=3,且其焦点在x轴上,则其焦点坐标为(3,0),(﹣3,0),故选:B.13.抛物线y2=﹣8x的焦点坐标是()A.(2,0) B.(﹣2,0)C.(4,0) D.(﹣4,0)【考点】抛物线的简单性质.【分析】数形结合,注意抛物线方程中P的几何意义.【解答】解:抛物线y2=﹣8x开口向右,焦点在x轴的负半轴上,P=4,∴=2,故焦点坐标(﹣2,0),答案选B.14.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是()A.5、3、0.8 B.10、6、0.8 C.5、3、0.6 D.10、6、0.6【考点】椭圆的简单性质.【分析】根据题意,将椭圆的方程变形为标准方程,分析可得a、b的值,进而计算可得c的值,结合椭圆的几何性质可得答案.【解答】解:根据题意,椭圆的方程为:25x2+9y2=225,变形可得+=1,则其中a==5,b==3,则有c==4;故椭圆的长轴长2a=10,短轴长2b=6,离心率e==0.8;故选:B.15.等轴双曲线的离心率是()A.1 B.C.2 D.【考点】双曲线的简单性质.【分析】不妨设等轴双曲线的方程为:﹣=1,从而可求得其离心率.【解答】解:设等轴双曲线的方程为:﹣=1,则c=a,∴其离心率e==.故选B.16.已知a∈R,则“a>2”是“a≥1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据集合的包含关系判断即可.【解答】解:∵集合A=(2,+∞)⊊B=[1,+∞),∴“a>2”是“a≥1”的充分不必要条件,故选:A.17.若焦点在x轴上的椭圆+=1的离心率是,则m等于()A.B.C.D.【考点】椭圆的简单性质.【分析】先根据椭圆的标准方程求得a,b,c,再结合椭圆的离心率公式列出关于m的方程,解之即得答案.【解答】解:由题意,则,化简后得m=1.5,故选A二、填空题(本大题共5个小题,每小题3分,共15分)18.命题“∃x∈R使x2+2x+1<0”的否定是∀x∈R,使x2+2x+1≥0.【考点】命题的否定.【分析】根据命题“∃x∈R使x2+2x+1<0”是特称命题,其否定为全称命题,即∀x∈R,使x2+2x+1≥0.从而得到答案.【解答】解:∵命题“∃x∈R使x2+2x+1<0”是特称命题∴否定命题为:∀x∈R,使x2+2x+1≥0故答案为:∀x∈R,使x2+2x+1≥0.19.计算log28+log2的值是2.【考点】对数的运算性质.【分析】直接利用对数的运算性质求解即可.【解答】解:因为==3﹣1=2.故答案为:2.20.直线3x﹣y+1=0在y轴上的截距是.【考点】直线的一般式方程.【分析】由直线x﹣3y+1=0,令x=0,解得y即可得出.【解答】解:由直线x﹣3y+1=0,令x=0,解得y=.∴直线在y轴上的截距是.故答案为:21.函数y=2x在[0,1]上的最小值为1.【考点】函数的最值及其几何意义.【分析】分析函数y=2x在[0,1]上单调性,进而可得答案.【解答】解:函数y=2x在[0,1]上为增函数,故当x=0时,函数取最小值1,故答案为:122.等差数列{a n}的前n项和为S n,若S5﹣S4=3,则S9=27.【考点】等差数列的前n项和.【分析】由数列性质得a5=S5﹣S4=3,由等差数列的通项公式及前n项和公式得S9==9a5,由此能求出结果.【解答】解:∵等差数列{a n}的前n项和为S n,∵S5﹣S4=3,∴a5=S5﹣S4=3,∴S9==9a5=27.故答案为:27.三、解答题(本大题共4个小题,第23、24、25题各8分,第26题10分,共34分.解答应写出文字说明、证明过程或演算步骤)23.已知函数y=(sinx+cosx)2(1)求它的最小正周期和最大值;(2)求它的递增区间.【考点】二倍角的正弦;复合三角函数的单调性.【分析】(1)由条件利用二倍角的正弦公式可得y=1+sin2x,再根据正弦函数的周期性性和最大值得出结论.(2)由条件根据正弦函数的单调性求得f(x)的递增区间.【解答】解:(1)∵y=(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+sin2x,∴函数的最1=2.小正周期为,y最大值=1+(2)由,k∈z,可得要求的递增区间是,k∈z.24.在正方体ABCD﹣A1B1C1D1中(1)求证:AC⊥BD1(2)求异面直线AC与BC1所成角的大小.【考点】直线与平面垂直的性质;异面直线及其所成的角.【分析】(1)根据正方体的性质,结合线面垂直的判定与性质加以证明,可得AC⊥BD1;(2)连结AD1、CD1,可证出四边形ABC1D1是平行四边形,得BC1∥AD1,得∠D1AC(或补角)就是异面直线AC与BC1所成角.等边△AD1C中求出∠D1AC=60°,即得异面直线AC与BC1所成角的大小.【解答】解:(1)∵正方体ABCD﹣A1B1C1D1中,DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1,∵正方形ABCD中,AC⊥BD,DD1∩BD=D,∴AC⊥平面BDD1,∵BD1⊂平面BDD1,∴AC⊥BD1;(2)连结AD1、CD1,∵正方体ABCD﹣A1B1C1D1中,AB C1D1,∴四边形ABC1D1是平行四边形,得BC1∥AD1,由此可得∠D1AC(或补角)就是异面直线AC与BC1所成角.∵△AD1C是等边三角形,∴∠D1AC=60°,即异面直线AC与BC1所成角的大小为60°.25.已知函数(1)求函数f(x)的定义域;(2)证明函数f(x)为奇函数.【考点】函数的定义域及其求法;函数奇偶性的判断.【分析】(1)由lg,得>0,进而求出x的取值范围,得到答案.(2)证明f(﹣x)+f(x)=0,进而证明f(x)=﹣f(﹣x)得出答案【解答】(1)解:∵由lg,得出>0,且1+x≠0∴有(1﹣x)>0且(1+x)>0或者(1﹣x)<0且(1+x)<0∵解得第一个不等式有﹣1<x<1,第二个不等式不存在∴函数的定义域{x|﹣1<x<1}(2)证明∵f(﹣x)+f(x)=lg+lg=lg1=0∴f(x)=﹣f(﹣x)∴函数f(x)为奇函数26.已知抛物线y2=2px的准线的方程为x=﹣1,过点(1,0)作倾斜角为的直线l交该抛物线于两点(x1,y1),B(x2,y2).求(1)p的值;(2)弦长|AB|.【考点】抛物线的应用.【分析】(1)由准线的方程为x=﹣1可求p的值;(2)直线l:y=x﹣1,与y2=4x联立,利用抛物线过焦点的弦长公式|AB|=x1+x2+2=8.可求【解答】解:(1)由准线的方程为x=﹣1,可知:,即p=2(2)易得直线l:y=x﹣1,与y2=4x联立,消去x得y2﹣4y﹣4=0,y1+y2=4,y1y2=﹣4,∴x1+x2=y1+y2+2=6,所以:弦长|AB|=8.2017年2月18日。

2019-2020年高二上学期期末联考数学(理)试题 含答案

2019-2020年高二上学期期末联考数学(理)试题 含答案

2019-2020年高二上学期期末联考数学(理)试题含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共50分)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,若需改动,用橡皮擦擦干净后,再选择其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

参考公式:球的表面积公式:柱体的体积公式:球的体积公式:锥体的体积公式:棱台的体积公式一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线的准线方程是( )2.圆在点处的切线方程为()A.B.C.D.3.若直线与直线平行,则实数的值为()A.B.1 C.1或D.4.长方体有共同顶点的三条棱长分别为1,2,3,这个长方体的顶点都在同一个球面上,则这个球体的表面积为()()A.B.C.D.5.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该几何体的俯视图为()第6题图D 1C 1B 1A 1DC BA6.如图,平行六面体中,则等于( )A .B .C .D .7.设a ,b 是两条直线,α,β是两个平面,则a ⊥b 的一个 充分条件是( )A .a ⊥α,b//β,α⊥βB .a ⊥α,b ⊥β,α//βC .a ⊂α,b//β,α⊥βD .a ⊂α,b ⊥β,α//β8.在下列结论中,正确的是( ) ①为真是为真的充分不必要条件; ②为假是为真的充分不必要条件; ③为真是为假的必要不充分条件; ④为真是为假的必要不充分条件A. ①②B. ①③C. ②④D. ③④9.在长方体中,和与底面所成的角分别为和,则异面直线和所成的角的余弦值为( ) A . B . C . D .10.已知点是椭圆上一点,分别为椭圆的左、右焦点,为的内心,若成立,则的值为 ( ) A. B. C. D.第Ⅰ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分,请把答案填在答题卡上相应位置上. 11.已知直线与关于轴对称,直线的斜率是_____. 12.曲线表示双曲线,则的取值范围为 . 13.已知且与互相垂直,则的值是 .14.是椭圆的上一点,点分别是圆和上的动点,则的最大值为 .15.如图,在长方形中,,,为线段上一动点,现将沿折起,使点在面上的射影在直线上,当从运动到时,则所形成轨迹的长度为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程、演算步骤或推理过程,并答在答题卡相应位置上.15题D EABC F M第17题图C 1B 1A 1CBA16.(本小题满分为13分)已知直线经过点.求解下列问题(最后结果表示为一般式方程) (Ⅰ)若直线的倾斜角的正弦为;求直线的方程; (Ⅱ)若直线与直线垂直,求直线的方程.17.(本小题满分为13分) 直三棱柱中,. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.18.(本小题满分为13分)设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为. (Ⅰ)求点的坐标; (Ⅱ)求圆的标准方程.19.(本大题满分13分)已知命题命题若命题“且”为假命题,“或”是真命题,求实数的取值范围.20.(本小题满分为12分)如图,已知正方形和矩形所在的平面互相垂直,,,点是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求锐二面角的大小;(Ⅲ)试在线段上一点,使得与所成的角是.21.(本小题满分为12分)已知分别是椭圆的左、右焦点,曲线是以坐标原点为顶点,以为焦点的抛物线,自点引直线交曲线于为两个不同的交点,点关于轴的对称点记为.设. (Ⅰ)求曲线的方程; (Ⅱ)证明:;(Ⅲ) 若,求得取值范围.xx 学年(上)高xx 级过程性调研抽测数学(理科)参考答案一、 选择题1~5:BDACC 6~10:BDBCA 二、 填空题11. 12. 13. 14.13 15. 三、 解答题 16.解:(Ⅰ)由题意:设直线的倾斜角为,则…………………………2分即的斜率…………………………4分 直线的方程为:…………6分 (Ⅱ)设所求直线方程为:············9分 又过, ······················12分直线的方程为:················13分17. 解:(Ⅰ)直三棱柱中,,又可知,………………………2分由于, 则由可知,,…………………… 4分则……………………………………………6分 所以有平面 ………………………………7分 (Ⅱ)直三棱柱中,,则,又…………………….9分 由于.....................................................11分 ......................................13分18. 解:(Ⅰ)由题意:设的坐标为,则的中点坐标为..........2分 点关于 对称解得....................................4分即...........................................................6分(利用其他方法求解酌情给分)(Ⅱ)由题意易知过圆的圆心设圆标准方程为:......................8分 则由题中条件可得()()2222320a b r a b ⎧⎪-+-=⎪⎪+=⎨=.....................................10分解得:即圆的标准方程为或.......13分 19. 解:由命题可知: ···········3分 由命题可知:····5分A BC DE FMN A B C DE F M H AB C DEF M P G···································7分是假命题,或”是真命题,所以有为真,为假,或者为假,为真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年度上学期期末考试高二数学(理科)试卷考试时间:120分钟 试题分数:150分 卷Ⅰ一、 选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数3. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为A .2B .3C .5D .74 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨5. 若双曲线22221x y a b-=3A .2± B. 12± C. 222±6. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为A. 22B. 22-C. 12D. 12-7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线12222=-bx a y 的焦点恰好是一个正方形的四个顶点,则抛物线2bx ay =的焦点坐标为A. )0,43(B. )0,123(C. )123,0(D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123,,P P P ,① ② ③若屋顶斜面与水平面所成的角都是α,则A. 123P P P ==B. 123P P P =<C. 123P P P <=D. 123P P P <<9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为A. ]1,0[aB. ]21,0[aC. ]2,0[a bD. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=︒.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥︒,则二面角AB αβ--的大小是 A. 30︒ B.45︒ C. 60︒ D.90︒12. 已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为A . 1312522=-y xB .1351222=-y xC .1512322=-y x D .1125322=-y x 卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13. 正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 . 14. 函数2()ln '(1)54f x x f x x =-+-,则(1)f =________.15.已知b a ρρ,是夹角为60o的两单位向量,向量b c a c ρρρρ⊥⊥,,且||1c =r ,c b a y c b a x ρρρρρρρρ-+-=+-=3,2,则><y x ρρ,cos = .16. 过抛物线22(0)x py p =>的焦点F 作倾斜角为ο45的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)过点(1,1)-作函数3()f x x x =-的切线,求切线方程.18.(本小题满分12分)已知集合{}|(1)(2)0A x ax ax =-+≤,集合{}|24.B x x =-≤≤ 若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=o ,PA ⊥底面ABCD ,且2PA AD AB BC ===,,M N 分别为,PC PB 的中点. (Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角的正弦值.20. (本小题满分12分)已知三棱柱'''C B A ABC -如图所示,四边形''B BCC 为菱形,oBCC 60'=∠,ABC ∆为等边三角形,面⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点.(Ⅰ)求证://EF 面''BC A ;(Ⅱ)求二面角B AA C --'的大小.21. (本小题满分12分)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为2,且椭圆上点到左焦点距离的最小1. (Ⅰ)求1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.22. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>过点,直线(1y k x =-)(0)k ≠与椭圆C 交于不同的两点M N 、,MN 中点为P ,O 为坐标原点,直线OP 斜率为12k-. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 的右顶点为A ,当AMN ∆得面积为3时,求k 的值.Cxyz 2019-2020学年度上学期期末考试高二数学(理科)参考答案一.选择题 CDBAC CDABB DB 二.填空题2π1- 52 322-三.解答题17.解:设切点为3(,)m m m -,则切线方程为32(31)()y m m m x m -+=--,┅┅┅┅┅┅2分 将点(1,1)-带入,解得0m =或32, ┅┅┅┅┅┅┅ 8分 所以切线方程为y x =-或234270x y --= ┅┅┅┅┅┅┅10分18.解:(1)0a >时,21[,]A a a=-,若x B ∈是x A ∈的充分不必要条件,所以212,4a a -≥-≤,104a <≤,检验14a =符合题意;┅┅┅┅┅┅┅4分(2)0a =时,A R =,符合题意;┅┅┅┅┅┅┅8分(3)0a <时,12[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以122,4a a-≥≤-, 102a -≤<,检验12a =-不符合题意.综上11(,]24a ∈-.┅┅┅┅┅┅┅12分19. 解如图,以A 为坐标原点建立空间直角坐标系A xyz -,设1BC =,则1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,,1),(0,2,0)2A PBC MD .(I ) 因为3(2,0,2)(1,,1)2PB DM ⋅=-⋅-u u u r u u u u r 0=,所以.PB DM ⊥(II ) 因为(2,0,2)(0,2,0)PB AD ⋅=-⋅u u u r u u u r0=,所以PB AD ⊥,又因为PB DM ⊥,所以PB ⊥平面.ADMN因此,PB DC <>u u u r u u u r的余角即是CD 与平面ADMN 所成的角.因为cos ,||||PB DCPB DC PB DC ⋅<>=⋅u u u r u u u ru u u r u u u r u u u r u u u r =,所以CD 与平面ADMN 所成的角的正弦为51020. (Ⅰ)证明(方法一)取B A '中点D ,连接DC ED ,,因为D E ,分别为B A AB ',中点,所以'//,'21AA ED AA ED =,┅┅┅┅┅┅┅3分 所以CF ED CF ED //,=,所以四边形EFCD 为平行四边形,所以CD EF //,又因为BC A CD BC A EF ''面,面⊂⊄,所以//EF 面BC A ';┅┅┅┅┅┅┅6分(方法二)取'AA 中点G ,连接FG EG ,,因为G E ,分别为',AA AB 中点,所以B A EG '//又因为G F ,分别为','AA CC 中点,所以''//C A FG ┅┅┅┅┅┅┅3分 且G GF EG EFG GF EFG EG =⊂⊂I ,,面面,'''',''',''''A B A C A BC A B A BC A C A =⊂⊂I 面面所以面//EFG 面''BC A ,又⊂EF 面EFG ,所以//EF 面BC A '┅┅┅┅┅┅6分 (方法三)取BC 中点O ,连接',OC AO , 由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC ,所以⊥AO 面''B BCC ,又因为菱形''B BCC 中o BCC 60'=∠,所以BC O C ⊥'. 可以建立如图所示的空间直角坐标系 ┅┅┅┅┅┅┅7分不妨设2=BC ,可得)0,0,1(C ,)0,3,0('C)3,0,0(A ,)0,0,1(-B ,)3,3,1('-A ,)0,3,2('-B ,所以)0,23,21(),23,0,21(F E -所以)3,3,0('),0,3,1('),23,23,1(==-=BC ,┅┅┅┅┅┅┅9分 设面BC A '的一个法向量为),,(c b a n =ρ,则⎩⎨⎧=+=+03303c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=⋅n ρ,又因为⊄EF 面BC A ',所以//EF 面BC A '. ┅┅┅┅┅┅┅12分 (Ⅱ)(方法一)过F 点作'AA 的垂线FM 交'AA 于M ,连接BF BM ,. 因为'//','AA CC CC BF ⊥,所以'AA BF ⊥,所以⊥'AA 面MBF ,所以BMF ∠为二面角B AA C --'的平面角. ┅┅┅┅┅┅┅8分因为面⊥ABC 面''B BCC ,所以A 点在面''B BCC 上的射影落在BC 上,所以41cos 'cos 'cos =∠∠=∠ACB BCC ACC ,所以AC MF ACC ==∠415'sin ,不妨设2=BC ,所以215=MF ,同理可得215=BM .┅┅┅┅┅┅┅10分 所以532153415415cos =-+=∠BMF ,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分(方法二)接(Ⅰ)方法三可得)0,3,1(),3,0,1(-=--=,设面B AA '的一个法向量为),,(1111z y x n =ρ,则⎩⎨⎧=+-=--03031111y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一个法向量为),,(2222z y x n =ρ,则⎩⎨⎧=+-=-03032222y x z x ,不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分 所以53||||,cos 212121=⋅⋅>=<n n n n n n ρρρρρρ,因为二面角B AA C --'为锐角,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为)0,(),0,(21c F c F -,椭圆上点P 满足,2||||2,2||||2121c PF PF c a PF PF ≤-≤-=+所以,||1c a PF c a +≤≤-P 在左顶点时||1PF 取到最小值12-=-c a ,又21=a c ,解得1,1,2===b c a ,所以1C 的方程为1222=+y x .(或者利用设),(y x P 解出x aca PF +=||1得出||1PF 取到最小值12-=-c a ,对于直接说明P 在左顶点时||1PF 取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线l 存在斜率,所以设其方程为m kx y +=,┅┅┅┅┅┅┅5分联立其与1222=+y x ,得到 0224)21(222=-+++m kmx x k ,0=∆,化简得01222=--k m ┅┅┅┅┅┅┅8分联立其与22:4C y x =,得到042=+-m y y k ,0=∆,化简得01=-km ,┅┅┅┅┅┅┅10分 解得2,22==m k 或2,22-=-=m k 所以直线l 的方程为222+=x y 或222--=x y ┅┅┅┅┅┅┅12分 22. 解:(Ⅰ)由题可得直线过点(1,0),在椭圆内,所以与椭圆一定相交,交点设为),(),,(2211y x N y x M ,则2121x x y y k --=,OP 斜率为2121x x y y ++,所以2122212221-=--x x y y ,┅┅┅┅┅┅┅3分又1221221=+b y a x ,1222222=+b y a x ,所以02222122221=-+-by y a x x ,所以222b a =,又 11222=+ba ,解得2,422==b a ,所以椭圆C 的方程为12422=+y x ;┅┅┅┅┅┅┅6分(Ⅱ)(1y k x =-)与椭圆C 联立得:0424)21(2222=-+-+k x k x k ,┅┅┅┅┅┅┅8分AMN ∆面积为31021)32(82||||2||||21222121=++=-=-kk k x x k y y , 解得1±=k .┅┅┅┅┅┅┅12分。

相关文档
最新文档