浙江大学数据挖掘在线作业
(完整word版)数据挖掘_概念与技术(第三版)部分习题答案
1。
4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据.它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合.1。
3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较.最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件.例如,一个数据挖掘系统可能发现的关联规则为:major(X,“computing science”) ⇒owns(X,“personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值.它们的相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值.聚类分析的数据对象不考虑已知的类标号。
数据挖掘试题参考答案
大学课程《数据挖掘》试题参考答案范围:∙ 1.什么是数据挖掘?它与传统数据分析有什么区别?定义:数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。
数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
区别:(1)数据挖掘的数据源与以前相比有了显著的改变;数据是海量的;数据有噪声;数据可能是非结构化的;(2)传统的数据分析方法一般都是先给出一个假设然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来。
即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。
在缺乏强有力的数据分析工具而不能分析这些资源的情况下,历史数据库也就变成了“数据坟墓”-里面的数据几乎不再被访问。
也就是说,极有价值的信息被“淹没”在海量数据堆中,领导者决策时还只能凭自己的经验和直觉。
因此改进原有的数据分析方法,使之能够智能地处理海量数据,即演化为数据挖掘。
∙ 2.请根据CRISP-DM(Cross Industry Standard Process for Data Mining)模型,描述数据挖掘包含哪些步骤?CRISP-DM 模型为一个KDD工程提供了一个完整的过程描述.该模型将一个KDD工程分为6个不同的,但顺序并非完全不变的阶段.1: business understanding: 即商业理解. 在第一个阶段我们必须从商业的角度上面了解项目的要求和最终目的是什么. 并将这些目的与数据挖掘的定义以及结果结合起来.2.data understanding: 数据的理解以及收集,对可用的数据进行评估.3: data preparation: 数据的准备,对可用的原始数据进行一系列的组织以及清洗,使之达到建模需求.4:modeling: 即应用数据挖掘工具建立模型.5:evaluation: 对建立的模型进行评估,重点具体考虑得出的结果是否符合第一步的商业目的.6: deployment: 部署,即将其发现的结果以及过程组织成为可读文本形式.(数据挖掘报告)∙ 3.请描述未来多媒体挖掘的趋势随着多媒体技术的发展,人们接触的数据形式不断地丰富,多媒体数据库的日益增多,原有的数据库技术已满足不了应用的需要,人们希望从这些媒体数据中得到一些高层的概念和模式,找出蕴涵于其中的有价值的知识。
大工22春《数据挖掘》在线作业123答案
大工22春《数据挖掘》在线作业1试卷总分:100 得分:100一、单选题(共10 道试题,共50 分)1.下面标识符中不是Python语言的关键字的是:()A.floatB.exceptC.continueD.global答案:A2.以下不属于Python的关键字的是()A.markB.delC.returnD.global答案:A3.Python中定义函数的关键字是()A.defB.defineC.functionD.defunc答案:A4.以下选项对Python文件操作描述错误的是()A.当文件以文本方式打开时,读写会按照字节流方式进行B.Python能以文本和二进制两种方式处理文件C.文件使用结束后要用close()方法关闭,释放文件的使用授权D.Python能通过内置的open()函数打开一个文件进行操作答案:A5.下列不是Python对文件进行读操作的方法是()A.readtextB.readlinesC.readD.readline答案:A6.Python中操作集合时,可以使用哪个函数来对集合进行增加元素的操作()A.appendB.putC.popD.add答案:D7.关于Python中异常处理,以下描述错误的是()A.异常语句可以与else和finally关键字配合使用B.程序异常发生后经过异常处理,程序可以继续执行C.Python通过try、except等关键字提供异常处理功能D.编程语言中的异常和错误完全是相同的概念答案:D8.以下那个关键字不是异常处理语句的关键字()A.elifB.exceptC.tryD.finally答案:A9.以下选项中不是Python关键字的是()A.whileB.exceptC.inD.do答案:D10.以下选项中用来捕获特定类型异常的关键字是()A.doB.passC.whileD.except答案:D二、判断题(共10 道试题,共50 分)11.在Python3.5中,集合类型的各个元素之间存在先后顺序。
数据挖掘习题答案
数据挖掘习题答案数据挖掘习题答案数据挖掘作为一门重要的技术和方法,广泛应用于各个领域。
在学习数据挖掘的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以更好地理解和掌握数据挖掘的原理和应用。
以下是一些常见的数据挖掘习题及其答案,供大家参考。
一、选择题1. 数据挖掘的目标是什么?A. 发现隐藏在大数据中的模式和关联B. 提供数据存储和管理的解决方案C. 分析数据的趋势和变化D. 优化数据的存储和传输速度答案:A. 发现隐藏在大数据中的模式和关联2. 下列哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 回归D. 排序答案:D. 排序3. 数据挖掘的过程包括以下几个步骤,哪个是第一步?A. 数据清洗B. 数据集成C. 数据转换D. 数据选择答案:B. 数据集成4. 下列哪个不是数据挖掘中常用的算法?A. 决策树B. 支持向量机C. 朴素贝叶斯D. 深度学习答案:D. 深度学习5. 下列哪个不是数据挖掘的应用领域?A. 金融B. 医疗C. 娱乐D. 政治答案:D. 政治二、填空题1. 数据挖掘是从大量数据中发现________和________。
答案:模式,关联2. 数据挖掘的主要任务包括分类、聚类、回归和________。
答案:预测3. 数据挖掘的过程包括数据集成、数据清洗、数据转换和________。
答案:模式识别4. 决策树是一种常用的________算法。
答案:分类5. 数据挖掘可以应用于金融、医疗、娱乐等多个________。
答案:领域三、简答题1. 请简要介绍数据挖掘的主要任务和应用领域。
答:数据挖掘的主要任务包括分类、聚类、回归和预测。
分类是将数据集划分为不同的类别,聚类是将数据集中相似的样本归为一类,回归是根据已有的数据预测未知数据的值,预测是根据已有的数据预测未来的趋势和变化。
数据挖掘的应用领域非常广泛,包括金融、医疗、娱乐等。
在金融领域,数据挖掘可以用于信用评估、风险管理等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面;在娱乐领域,数据挖掘可以用于推荐系统、用户行为分析等方面。
2014冬考浙大数据挖掘_模拟卷
《数据挖掘》模拟卷一、是非题(请标注“√”或“×”,共10分)1、大多数数据挖掘算法只有在关系数据库中的结构化数据上才能有效运行(×)2、离散属性值的个数必须是有限个数的(×)3、标准差与均值有着相同的度量单位,所以比方差更广泛的被使用(√)4、Euclidean距离和Manhattan距离都是Minkowski距离的特例(√)5、PCA和LDA都是线性降维方法(√)6、比率标度数值属性与区间标度数值属性的本质区别在于是否有真正的零点(即是否可以说一个值是另一个值的倍数)(√)7、数据集的四分位数Q1和Q3之间的区间覆盖了数据集中间50%的数据(√)8、相关性一定意味着因果关系(×)9、在文档聚类中,我们一般使用Euclidean距离来衡量文档相似性(×)10、一般使用使用Jaccard系数评估对称二元属性(×)二、填空题(每格1分,共20分)1、在数据挖掘中,常用的聚类算法包括:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法。
2、数据仓库的多维数据模型可以有三种不同的形式,分别是:星型模式、雪花模式和事实星座模式3、从数据分析的角度看,数据挖掘可以分为两类:描述性的数据挖掘和预测性的数据挖掘。
4、给定基本方体,方体的物化有三种选择:不物化、全物化和部分物化。
5、数据挖掘研究是多个学科融合的结果,目前最相关的三个主要学科是:数据库技术、统计学、机器学习。
6、两种常用的大数据集的数据概化方法是数据立方体方法(或OLAP)和面向属性的归纳方法。
7、在支持向量机(SVM)分类中,使用一个适当的对足够高维的非线性映射,两类的数据总可以被超平面分开;SVM 使用支持向量和边缘发现该超平面。
8、数据分类是一个两步的过程,分别是:利用训练集训练模型、使用模型对数据分类。
三、单选题(请选择一个正确答案填入括号内,每题2分,共20分)1.下面哪种分类方法是属于神经网络学习算法?( C )A. 判定树归纳B. 贝叶斯分类C. 后向传播分类D. 基于案例的推理2.置信度(confidence)是衡量兴趣度度量( B )的指标。
2015秋浙江大学网络学院《数据挖掘》在线作业及答案
2015秋浙江大学网络学院《数据挖掘》在线作业及答案单选题1.置信度(confidence)是衡量兴趣度度量()的指标。
A 简洁性B 确定性C 实用性D 新颖性正确答案:B 单选题2.哪种OLAP操作可以让用户在更高的抽象层,更概化的审视数据?A 上卷B 下钻C 切块D 转轴正确答案:A 单选题3.下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:A 单选题4.下列哪个描述是正确的?A 分类和聚类都是有指导的学习B 分类和聚类都是无指导的学习C 分类是有指导的学习,聚类是无指导的学习D 分类是无指导的学习,聚类是有指导的学习正确答案:C单选题5.计算一个单位的平均工资,使用哪个中心趋势度量将得到最合理的结果?A 算术平均值B 截尾均值C 中位数D 众数正确答案:B 单选题6.规则:age(X,”19-25”) ∧buys(X, “popcorn”) => buys(X, “coke”)是一个()。
A 单维关联规则B 多维关联规则C 混合维关联规则D 不是一个关联规则正确答案:B 单选题7.假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 孤立点分析D 演变分析 E概念描述正确答案:E 单选题8.下面哪种数据预处理技术可以用来平滑数据,消除数据噪声?A 数据清理B 数据集成C 数据变换D 数据归约正确答案:A 单选题9.进行数据规范化的目的是()。
A 去掉数据中的噪声B 对数据进行汇总和聚集C 使用概念分层,用高层次概念替换低层次“原始”数据D 将属性按比例缩放,使之落入一个小的特定区间正确答案:D 单选题10.平均值函数avg()属于哪种类型的度量?A 分布的B 代数的C 整体的D 混合的正确答案:B 单选题11.下面哪种分类方法是属于统计学的分类方法?A 判定树归纳B 贝叶斯分类C 后向传播分类D 基于案例的推理正确答案:B 单选题12.下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
数据挖掘练习题附答案
数据挖掘练习题A一、简答题1. 数据对象之间的相似性可用距离来衡量,常见的距离形式有哪些?答:曼哈顿距离,欧几里得距离,切比雪夫距离,闵可夫斯基距离,杰卡德距离2. 简述朴素贝叶斯分类的基本思想。
答:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个概率最大,就认为此待分类项属于哪个类别。
1)设x={a!,a",…,a#}为一个待分类项,a为x的特征属性;2)有类别集合C={y!,y",…,y$}3) 计算p(y!|x),p(y"|x),… p(y$|x)4) 如果p(y%|x)=max {p(y!|x),p(y"|x),…,p(y%|x)},则x∈y%3. 在做数据清洗时,如何处理缺失值?答:处理缺失值的方法有3种:1)忽略元组;2)数据补齐,包括人工填写、特殊值填充、平均值填充、使用最可能的值填充;3)不处理。
4. 简述K-means算法的基本步骤。
答:1)任意选择k个对象作为初始的簇中心;2)计算其它对象与这k个中心的距离,然后把每个对象归入离它“最近”的簇;3)计算各簇中对象的平均值,然后选择簇中心(离平均值“最近”的簇);4)重复第2步到第3步直到簇中心不再变化为止。
5. 在关联规则中,支持度(support)和置信度(confidence)的含义分别是什么?答:支持度support(x->y)=p(x,y),表示项集中同时含有x和y的概率。
置信度confidence(x->y)=p(y/x),表示在关联规则的先决条件x发生的条件下,关联结果y发生的概率,即含有x的项集中,同时含有y的可能性。
二、计算题1.假定属性A的取值x在[x_min,x_max]之间,其中x_min和x_max分别为属性A的最小值和最大值,请利用最小-最大规范化方法(也称离差标准化,是对原始数据的线性变化),将x转化到新的区间[y_min,y_max]中,结果用x’表示。
数据挖掘课程作业答案
浙江大学远程教育学院《数据挖掘》课程作业答案第一章引言一、填空题(1)数据清理,数据集成,数据选择,数据变换,数据挖掘,模式评估,知识表示(2)算法的效率、可扩展性和并行处理(3)统计学、数据库技术和机器学习(4)一些与数据的一般行为或模型不一致的孤立数据二、简答题(1)什么是数据挖掘答:数据挖掘指的是从大量的数据中挖掘出那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识。
(2)一个典型的数据挖掘系统应该包括哪些组成部分答:一个典型的数据挖掘系统应该包括以下部分:数据库、数据仓库或其他信息库数据库或数据仓库服务器知识库数据挖掘引擎模式评估模块图形用户界面(3)Web挖掘一般包括以下步骤:数据清理: (这个可能要占全过程60%的工作量)数据集成将数据存入数据仓库建立数据立方体选择用来进行数据挖掘的数据数据挖掘(选择适当的算法来找到感兴趣的模式)展现挖掘结果将模式或者知识应用或者存入知识库(4)请列举数据挖掘应用常见的数据源。
(或者说,我们都在什么样的数据上进行数据挖掘)答:常见的数据源包括关系数据库、数据仓库、事务数据库和高级数据库系统和信息库。
其中高级数据库系统和信息库包括:空间数据库、时间数据库和时间序列数据库、流数据、多媒体数据库、面向对象数据库和对象-关系数据库、异种数据库和遗产(legacy)数据库、文本数据库和万维网(WWW)等。
第二章认识数据一、填空题(1)5/13(2)极差、分位数、四分位数、百分位数、四分位数极差和标准差(3)出落在至少高于第三个四分位数或低于第一个四分位数×IQR处的值二、单选题(1)C;(2)C;三、简答题(1)什么是基于像素的可视化技术它有什么缺点答:对于一个m维数据集,基于像素的可视化技术在屏幕上创建m个窗口,每维一个。
记录的m个维值映射到这些窗口对应位置上的m个像素。
像素的颜色反映对应的值。
基于像素的可视化技术的缺点:难以呈现多维空间的数据分布,不显示数据子空间中是否存在稠密区域。
数据挖掘 习题及参考答案
①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。
②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。
③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。
第 4 页 共 27 页
(b)对于数据平滑,其它方法有: (1)回归:可以用一个函数(如回归函数)拟合数据来光滑数据; (2)聚类:可以通过聚类检测离群点,将类似的值组织成群或簇。直观地,落在簇集合 之外的值视为离群点。
2.6 使用习题 2.5 给出的 age 数据,回答以下问题: (a) 使用 min-max 规范化,将 age 值 35 转换到[0.0,1.0]区间。 (b) 使用 z-score 规范化转换 age 值 35,其中,age 的标准偏差为 12.94 年。 (c) 使用小数定标规范化转换 age 值 35。 (d) 指出对于给定的数据,你愿意使用哪种方法。陈述你的理由。
回归来建模,或使用时间序列分析。 (7) 是,需要建立正常心率行为模型,并预警非正常心率行为。这属于数据挖掘领域
的异常检测。若有正常和非正常心率行为样本,则可以看作一个分类问题。 (8) 是,需要建立与地震活动相关的不同波形的模型,并预警波形活动。属于数据挖
掘领域的分类。 (9) 不是,属于信号处理。
1.6 根据你的观察,描述一个可能的知识类型,它需要由数据挖掘方法发现,但本章未列出。 它需要一种不同于本章列举的数据挖掘技术吗?
答:建立一个局部的周期性作为一种新的知识类型,只要经过一段时间的偏移量在时间序列 中重复发生,那么在这个知识类型中的模式是局部周期性的。需要一种新的数据挖掘技 术解决这类问题。
智慧树知道网课《数据挖掘》课后章节测试满分答案
智慧树知道网课《数据挖掘》课后章节测试满分答案第一章测试1【单选题】(20分)什么是KDD?A.C.文档知识发现B.A.数据挖掘与知识发现C.D.动态知识发现D.B.领域知识发现2【判断题】(20分)数据挖掘的主要任务是从数据中发现潜在的规则,从而能更好的完成描述数据、预测数据等任务。
A.错B.对3【多选题】(20分)数据挖掘的预测建模任务主要包括哪几大类问题?A.分类B.模式匹配C.模式发现D.回归4【多选题】(20分)以下哪些学科和数据挖掘有密切联系?A.人工智能B.计算机组成原理C.矿产挖掘D.统计5【判断题】(20分)离群点可以是合法的数据对象或者值。
A.错B.对第二章测试1【单选题】(20分)下面哪个属于定量的属性类型:A.区间B.序数C.标称D.相异2【单选题】(20分)只有非零值才重要的二元属性被称作:A.非对称的二元属性B.离散属性C.对称属性D.计数属性3【判断题】(20分)定量属性可以是整数值或者是连续值。
A.对B.4【单选题】(20分)中心趋势度量模(mode)是指A.数据集中出现频率最高的值B.算术平均值C.最大值D.最小值5【多选题】(20分)以下哪些是属于中心趋势的度量A.标准差B.中位数五数概括D.平均值第三章测试1【单选题】(20分)数据清洗的方法不包括A.一致性检查。
大工19秋《数据挖掘》大作业题目及要求答案
网络教育学院《数据挖掘》课程大作业题目:题目一:Knn算法原理以及python实现姓名:报名编号:学习中心:层次:专升本专业:计算机科学与技术第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。
数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。
这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。
在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。
数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。
如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。
第二大题:完成下面一项大作业题目。
2019秋《数据挖掘》课程大作业注意:从以下5个题目中任选其一作答。
题目一:Knn算法原理以及python实现要求:文档用使用word撰写即可。
主要内容必须包括:(1)算法介绍。
(2)算法流程。
(3)python实现算法以及预测。
(4)整个word文件名为 [姓名奥鹏卡号学习中心](如戴卫东101410013979浙江台州奥鹏学习中心[1]VIP )答:KNN算法介绍KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。
若K=1,新数据被简单分配给其近邻的类。
KNN算法实现过程(1)选择一种距离计算方式, 通过数据所有的特征计算新数据与已知类别数据集中的数据点的距离;(2)按照距离递增次序进行排序,选取与当前距离最小的k个点;(3)对于离散分类,返回k个点出现频率最多的类别作预测分类;对于回归则返回k个点的加权值作为预测值;算法关键(1)数据的所有特征都要做可比较的量化若是数据特征中存在非数值的类型,必须采取手段将其量化为数值。
数据挖掘第二次作业
数据挖掘第二次作业第一题:1.a) Compute the Information Gain for Gender, Car Type and Shirt Size.b) Construct a decision tree with Information Gain.答案:a)因为class分为两类:C0和C1,其中C0的频数为10个,C1的频数为10,所以class元组的信息增益为Info(D)==11.按照Gender进行分类:Info gender(D)==0.971Gain(Gender)=1-0.971=0.0292.按照Car Type进行分类Info carType(D)==0.314 Gain(Car Type)=1-0.314=0.6863.按照Shirt Size进行分类:Info shirtSize(D)==0.988Gain(Shirt Size)=1-0.988=0.012b)由a中的信息增益结果可以看出采用Car Type进行分类得到的信息增益最大,所以决策树为:第二题:2. (a) Design a multilayer feed-forward neural network (one hidden layer) for thedata set in Q1. Label the nodes in the input and output layers.(b) Using the neural network obtained above, show the weight values after oneiteration of the back propagation algorithm, given the training instance “(M, Family, Small)". Indicate your initial weight values and biases and the learning rate used.a)x 11x 12x 21x 22x 23x 31x 32x 33x 34输入层隐藏层输出层b) 由a 可以设每个输入单元代表的属性和初始赋值由于初始的权重和偏倚值是随机生成的所以在此定义初始值为:净输入和输出:每个节点的误差表:10 0.0089 11 0.0030 12 -0.12权重和偏倚的更新: W 1,10 W 1,11 W 2,10 W 2,11 W 3,10 W 3,11 W 4,10 W 4,11 W 5,10 W 5,11 0.201 0.198 -0.211 -0.099 0.4 0.308 -0.202 -0.098 0.101 -0.100 W 6,10 W 6,11 W 7,10 W 7,11 W 8,10 W 8,11 W 9,10 W 9,11 W 10,12 W 11,12 0.092 -0.211 -0.400 0.198 0.201 0.190 -0.110 0.300 -0.304 -0.099 θ10 θ11 θ12 -0.287 0.1790.344第三题:3.a) Suppose the fraction of undergraduate students who smoke is 15% and thefraction of graduate students who smoke is 23%. If one-fifth of the college students are graduate students and the rest are undergraduates, what is the probability that a student who smokes is a graduate student?b) Given the information in part (a), is a randomly chosen college student morelikely to be a graduate or undergraduate student?c) Suppose 30% of the graduate students live in a dorm but only 10% of theundergraduate students live in a dorm. If a student smokes and lives in the dorm, is he or she more likely to be a graduate or undergraduate student? You can assume independence between students who live in a dorm and those who smoke.答:a) 定义:A={A 1 ,A 2}其中A 1表示没有毕业的学生,A 2表示毕业的学生,B 表示抽烟则由题意而知:P(B|A 1)=15% P(B|A 2)=23% P(A 1)= P(A 2)=则问题则是求P(A 2|B)由()166.0)()|B ()()|B (B 2211=+=A P A p A P A P P则()277.0166.02.023.0)()()|(|222=⨯=⨯=B P A P A B P B APb) 由a 可以看出随机抽取一个抽烟的大学生,是毕业生的概率是0.277,未毕业的学生是0.723,所以有很大的可能性是未毕业的学生。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx(1)计算整个数据集的Gini指标值。
(2)计算属性性别的Gini指标值(3)计算使用多路划分属性车型的Gini指标值(4)计算使用多路划分属性衬衣尺码的Gini指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么?(3)=26/160=0.1625]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. ((1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
(3)同理可得:{e}的支持度为4/5=0.8,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=0.8。
(4)c[{b,d}→{e}]=5/4=1.25,c[{e}→{b,d}]=4/5=0.8。
3. (20分)以下是多元回归分析的部分R输出结果。
> ls1=lm(y~x1+x2)> anova(ls1)Df Sum Sq Mean Sq F value Pr(>F)x1 1 10021.2 10021.2 62.038 0.0001007 ***x2 1 4030.9 4030.9 24.954 0.0015735 **Residuals 7 1130.7 161.5> ls2<-lm(y~x2+x1)> anova(ls2)Df Sum Sq Mean Sq F value Pr(>F)x2 1 3363.4 3363.4 20.822 0.002595 **x1 1 10688.7 10688.7 66.170 8.193e-05 ***Residuals 7 1130.7 161.5(1)用F检验来检验以下假设(α = 0.05)H0: β1 = 0H a: β1≠ 0计算检验统计量;是否拒绝零假设,为什么?(2)用F检验来检验以下假设(α = 0.05)H0: β2 = 0H a: β2≠ 0计算检验统计量;是否拒绝零假设,为什么?(3)用F检验来检验以下假设(α = 0.05)H0: β1 = β2 = 0H a: β1和β2 并不都等于零计算检验统计量;是否拒绝零假设,为什么?解:(1)根据第一个输出结果F=62.083>F(2,7)=4.74,p<0.05,所以可以拒绝原假设,即得到不等于0。
大工21春《数据挖掘》大作业题目及要求【答案】
网络教育学院《数据挖掘》课程大作业题目:Knn算法原理以及python实现姓名:学习中心:第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。
答:数据分析和数据挖掘并不是相互独立的,数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。
但是如果要分析已有信息背后的隐藏信息,而这些信息通过观察往往是看不到的,这是就需要用到数据挖掘,作为分析之前要走的一个门槛。
数据挖掘不是简单的认为推测就可以,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。
科技的快速发展和数据的存储技术的快速进步,使得各种行业或组织的数据得以海量积累。
但是,从海量的数据当中,提取有用的信息成为了一个难题。
在海量数据面前,传统的数据分析工具和方法很无力。
由此,数据挖掘技术就登上了历史的舞台。
数据挖掘是一种技术,将传统的数据分析方法与处理大量数据的复杂算法相结合,从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用信息和知识的过程。
第二大题:完成下面一项大作业题目。
题目一:Knn算法原理以及python实现答:一、knn算法介绍邻近算法,或者说K最近邻(kNN, k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。
所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的 k个邻居来代表。
kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
在类别决策时,只与极少量的相邻样本有关。
由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
数据挖掘习题参考答案
数据挖掘习题参考答案数据挖掘习题参考答案数据挖掘作为一门热门的学科,已经在各个领域得到广泛应用。
它的目标是从大量的数据中发现有用的信息,并且用这些信息来解决实际问题。
为了帮助读者更好地理解数据挖掘的概念和技术,本文将提供一些数据挖掘习题的参考答案,希望能够对读者有所帮助。
习题一:什么是数据挖掘?它有哪些应用领域?答案:数据挖掘是指从大量的数据中发现有用的信息,并且用这些信息来解决实际问题的过程。
它可以帮助我们发现数据中的模式、规律和趋势,从而提供决策支持和预测能力。
数据挖掘的应用领域非常广泛,包括但不限于市场营销、金融风险管理、医疗诊断、社交网络分析等。
习题二:数据挖掘的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘和异常检测。
分类是指根据已有的数据样本来预测新的数据样本所属的类别。
聚类是指将数据样本分成几个不同的组,使得同一组内的数据样本相似度较高,而不同组之间的相似度较低。
关联规则挖掘是指发现数据中的关联关系,例如购物篮分析中的“如果购买了商品A,则更有可能购买商品B”。
异常检测是指发现与其他样本不同的数据点,可能是潜在的异常或异常行为。
习题三:数据挖掘的过程有哪些步骤?答案:数据挖掘的过程通常包括问题定义、数据收集、数据预处理、特征选择和转换、模型选择和建立、模型评估和模型应用等步骤。
首先,我们需要明确问题的定义,确定我们需要从数据中挖掘出什么样的信息。
然后,我们收集相关的数据,并对数据进行预处理,包括数据清洗、数据集成、数据变换和数据规约等。
接下来,我们选择合适的特征,并进行特征转换,以便于模型的建立和分析。
在模型选择和建立阶段,我们选择合适的数据挖掘算法,并进行模型的训练和优化。
最后,我们评估模型的性能,并将模型应用于实际问题中。
习题四:数据挖掘中常用的算法有哪些?答案:数据挖掘中常用的算法包括决策树、朴素贝叶斯、支持向量机、神经网络、聚类算法(如K-means算法和DBSCAN算法)、关联规则挖掘算法(如Apriori算法)等。
数据挖掘-浙江大学计算机学院
B. 数据挖掘的应用
电信 :流失 银行:聚类(细分), 交叉销售 百货公司/超市:购物篮分析 (关联规则) 保险:细分,交叉销售,流失(原因分析) 信用卡: 欺诈探测,细分 电子商务: 网站日志分析 税务部门:偷漏税行为探测 警察机关:犯罪行为分析 医学: 医疗保健
电信
数据挖掘在银行领域的应用
美国银行家协会(ABA)预测数据仓库和数据挖 掘技术在美国商业银行的应用增长率是14.9%。 分析客户使用分销渠道的情况和分销渠道的容 量 ;建立利润评测模型;客户关系优化;风险 控制等
Mellon银行使用数据挖掘软件提高销售和定 价金融产品的精确度,如家庭普通贷款。 美国Firstar银行使用数据挖掘工具,根据客 户的消费模式预测何时为客户提供何种产 品。
C.
D. E. F.
A. 数据挖掘的由来
背景 网络之后的下一个技术热点
数据爆炸但知识贫乏
从商业数据到商业信息的进化
1. 背景
人类已进入一个崭新的信息时代
数据库中存储的数据量急剧膨胀 需要从海量数据库和大量繁杂信息中提取有价值 的知识,进一步提高信息的利用率 产生了一个新的研究方向:基于数据库的知识发 现(Knowledge Discovery in Database),以及相 应的数据挖掘(Data Mining)理论和技术的研究
英国电信需要发布一种新的产品 ,需要通过直邮的方式向客户推 荐这种产品。。。。。。
使直邮的回应率提高了100%
零售商店
GUS日用品零售商店需要准确 的预测未来的商品销售量,降 低库存成本。。。。。。
通过数据挖掘的方法使库存成本比原 来减少了3.8%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
您的本次作业分数为:100分单选题1.【第001章】孤立点挖掘适用于下列哪种场合?A 目标市场分析B 购物篮分析C 模式识别D 信用卡欺诈检测正确答案:D单选题2.【第01章】根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是()。
A 关联分析B 分类和预测C 演变分析D 概念描述正确答案:B单选题3.【第01章】数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于()。
A 所涉及的算法的复杂性B 所涉及的数据量C 计算结果的表现形式D 是否使用了人工智能技术正确答案:B4.【第01章】下列几种数据挖掘功能中,()被广泛的应用于股票价格走势分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:D单选题5.【第01章】下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:A单选题6.【第01章】帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 聚类分析D 孤立点分析E 演变分析单选题7.【第01章】下面的数据挖掘的任务中,()将决定所使用的数据挖掘功能。
A 选择任务相关的数据B 选择要挖掘的知识类型C 模式的兴趣度度量D 模式的可视化表示正确答案:B单选题8.【第01章】假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 孤立点分析D 演变分析E 概念描述正确答案:E单选题9.【第02章】下列哪种可视化方法可用于发现多维数据中属性之间的两两相关性?A 空间填充曲线B 散点图矩阵C 平行坐标D 圆弓分割正确答案:B单选题10.【第02章】计算一个单位的平均工资,使用哪个中心趋势度量将得到最合理的结果?A 算术平均值B 截尾均值C 中位数D 众数正确答案:B单选题11.【第02章】字段Size = {small, medium, large}属于那种属性类型?A 标称属性B 二元属性C 序数属性D 数值属性正确答案:C单选题12.【第02章】字段Hair_color = {auburn, black, blond, brown, grey, red, white}属于那种属性类型?A 标称属性B 二元属性C 序数属性D 数值属性正确答案:A单选题13.【第03章】哪种数据变换的方法将数据沿概念分层向上汇总?A 平滑B 聚集C 数据概化D 规范化正确答案:C单选题14.【第03章】下面哪种数据预处理技术可以用来平滑数据,消除数据噪声?A 数据清理B 数据集成C 数据变换D 数据归约正确答案:A单选题15.【第03章】()通过将属性域划分为区间,从而减少给定连续值的个数。
A 概念分层B 离散化C 分箱D 直方图单选题16.【第03章】数据的噪声是指()。
A 孤立点B 空缺值C 测量变量中的随即错误或偏差D 数据变换引起的错误正确答案:C单选题17.【第03章】进行数据规范化的目的是()。
A 去掉数据中的噪声B 对数据进行汇总和聚集C 使用概念分层,用高层次概念替换低层次“原始”数据D 将属性按比例缩放,使之落入一个小的特定区间正确答案:D单选题18.【第03章】数据归约的目的是()。
A 填补数据种的空缺值B 集成多个数据源的数据C 得到数据集的压缩表示D 规范化数据正确答案:C19.【第03章】下列哪些是数据变换可能涉及的内容?A 数据压缩B 数据概化C 维归约D 规范化正确答案:BD多选题20.【第03章】数据清理的目的是处理数据中的()。
A 空缺值B 噪声数据C 不一致数据D 敏感数据正确答案:ABC多选题21.【第03章】下面哪些问题是我们进行数据预处理的原因?A 数据中的空缺值B 噪声数据C 数据中的不一致性D 数据中的概念分层正确答案:ABC多选题22.【第03章】以下哪些原因可能引起空缺值?A 设备异常B 命名规则的不一致C 与其他已有数据不一致而被删除D 在输入时,有些数据因为得不到重视而没有被输入正确答案:ACD单选题23.【第04章】以下哪个范围是数据仓库的数据库规模的一个合理范围?A 1-100MB 100M-10GC 10-1000GD 100GB-数TB正确答案:D单选题24.【第04章】下面的数据操作中,哪些操作不是多维数据模型上的OLAP操作?A 上卷(roll-up)B 选择(select)C 切片(slice)D 转轴(pivot)正确答案:B单选题25.【第04章】平均值函数avg()属于哪种类型的度量?B 代数的C 整体的D 混合的正确答案:B单选题26.【第04章】存放最低层汇总的方体称为()。
A 顶点方体B 方体的格C 基本方体D 维正确答案:C单选题27.【第04章】哪种OLAP操作可以让用户在更高的抽象层,更概化的审视数据?A 上卷B 下钻C 切块D 转轴正确答案:A多选题28.【第04章】从结构的角度看,数据仓库模型包括以下几类()。
A 企业仓库C 虚拟仓库D 信息仓库正确答案:ABC多选题29.【第04章】以下哪些是数据仓库的主要应用?A 信息处理B 互联网搜索C 分析处理D 数据挖掘正确答案:ACD多选题30.【第04章】OLAP系统和OLTP系统的主要区别包括()。
A OLTP系统主要用于管理当前数据,而OLAP系统主要存放的是历史数据B 在数据的存取上,OLTP系统比OLAP系统有着更多的写操作C 对OLTP系统上的数据访问量往往比对OLAP系统的数据访问量要大得多D OLAP系统中往往存放的是汇总的数据,而OLTP系统中往往存放详细的数据正确答案:ABD多选题31.【第04章】数据仓库的三层架构主要包括以下哪三部分?A 数据源B 数据仓库服务器C OLAP服务器D 前端工具正确答案:BCD单选题32.【第08章】下列哪个描述是正确的?A 分类和聚类都是有指导的学习B 分类和聚类都是无指导的学习C 分类是有指导的学习,聚类是无指导的学习D 分类是无指导的学习,聚类是有指导的学习正确答案:C单选题33.【第08章】下面哪种分类方法是属于神经网络学习算法?A 判定树归纳B 贝叶斯分类C 后向传播分类D 基于案例的推理正确答案:C单选题34.【第08章】下面哪种分类方法是属于统计学的分类方法?A 判定树归纳B 贝叶斯分类C 后向传播分类D 基于案例的推理正确答案:B单选题35.【第10章】以下哪种聚类方法可以发现任意形状的聚类?A 划分的方法B 基于模型的方法C 基于密度的方法D 层次的方法正确答案:C单选题36.【第10章】下面那种数据挖掘方法可以用来检测孤立点?A 概念描述B 分类和预测C 聚类分析D 演变分析正确答案:C单选题37.【第10章】以下哪个指标不是表示对象间的相似度和相异度?A Euclidean距离B Manhattan距离C Eula距离D Minkowski距离单选题38.【第6 7章】根据关联分析中所处理的值类型,可以将关联规则分类为()。
A 布尔关联规则和量化关联规则B 单维关联规则和多维关联规则C 单层关联规则和多层关联规则D 简答关联规则和复杂关联规则正确答案:A单选题39.【第6 7章】支持度(support)是衡量兴趣度度量()的指标。
A 实用性B 确定性C 简洁性D 新颖性正确答案:A单选题40.【第6 7章】下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:A41.【第6 7章】规则:age(X,”19-25”) ∧buys(X, “popcorn”) => buys(X, “coke”)是一个()。
A 单维关联规则B 多维关联规则C 混合维关联规则D 不是一个关联规则正确答案:B单选题42.【第6 7章】置信度(confidence)是衡量兴趣度度量()的指标。
A 简洁性B 确定性C 实用性D 新颖性正确答案:B多选题43.【第6 7章】根据关联分析中所涉及的抽象层,可以将关联规则分类为()。
A 布尔关联规则B 单层关联规则C 多维关联规则D 多层关联规则正确答案:BD44.【第6 7章】根据关联分析中所涉及的数据维,可以将关联规则分类为()。
A 布尔关联规则B 单维关联规则C 多维关联规则D 多层关联规则正确答案:BC多选题45.【第6 7章】Apriori算法所面临的主要的挑战包括()。
A 会消耗大量的内存B 会产生大量的候选项集C 对候选项集的支持度计算非常繁琐D 要对数据进行多次扫描正确答案:BCD加入错题集关闭窗体底端。