纳米材料国内外研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料国内外研究进展

一、前言

从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。

二、国内外研究现状

1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。

自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。

第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。

第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索,一度成为纳米材料研究的主导方向。1995年超低功耗和高集成的纳米结构单电子三级管在美国研制成功,使人们对于纳米结构的研究对诞生下一代量子器件的重要性有了进一步认识。

第三阶段(从1994年到现在)纳米组装体系。人工组装合成的纳米结构的材料体系越来越受到人们的关注,已成为纳米材料研究的新的热点。高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合、纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点。如果说第一、二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。

三、结构特性

纳米材料主要由纳米晶粒和晶粒界面两部分组成。纳米晶粒内部的微观结构与粗晶材料基本相同,因此在这方面的研究报道不多。纳米材料突出的结构特征是晶界原子的比例很大,当晶粒尺寸为10nm时,一个金属纳米晶内的界面可达

6×1025m2时,晶界原子达15%~50%,可以用TEM(透射电镜)、X射线、中子衍射以及其他方法来表征纳米材料及其结构[6]。

由于纳米材料中晶界的原子结构十分复杂,使其在80年代末至 90年代初曾一度成为纳米材料研究的一个热点。为描述纳米晶界结构,人们提出了许多模型,概括起来可分为三种不同的学说[7-9]:Gleiter的完全无序说、Siegel的有序说和有序无序说。但是,目前很难用一个统一的模型来描述纳米晶界的微观结构。其原因在于纳米材料中的晶界结构相当复杂,它不但与材料的成分、键合类型、制备方法、成型条件以及所经历的热历史等因素密切相关,而且在同一块材料中不同晶界之间也各有差异。可以认为纳米材料中的界面存在着一个结构上的分布,它们处于无序到有序的中间状态,有的与粗晶界面结构十分接近,而有的则更趋于无序状态。

四、特异效应与性能

4.1特异效应

(1)量子尺寸效应

当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象,纳米半导体微粒存在不连续的最高被占分子轨道和最低未被占分子轨道能级,能隙变宽的现象均称为量子尺寸效应。

纳米材料中处于分立的量子化能级中电子的波动性带来了纳米材料的一系

列特殊性质,如高度光学非线性、特异性催化和光催化性质、强氧化性和还原性[10,11](如随着半导体纳米晶粒粒径的减小,分立能级增大,其光生电子比宏观晶态材料具有更负的电位,相应地表现出更强的还原性;而光生空穴因具有更正的电位,表现出更强的氧化性)。

(2)小尺寸效应(或体积效应)

当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体的周期性的边界条件将被破坏;在非晶态纳米微粒的颗粒表面层附近原子密度减少,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化,这就是纳米粒子的小尺寸效应。纳米材料之所以具有这些奇特的宏观结构特征,是由于在纳米层次上,物质的尺寸不大不小,所包含的原子、分子数不多不少,其运动速度不快不慢。而决定物质性质的正是这个层次的由有限分子组装起来的集合体,而不再是传统观念上的材料性质直接决定于原子和分子。介于物质的宏观结构与微观原子、分子结构之间的层次(即小尺寸效应)对材料的物性起着决定性作用[12]。

(3)表面与界面效应

表面效应是指纳米微粒表面原子与总原子数之比,随粒径的变小而急剧增大后引起性质上的变化。纳米材料的颗粒尺寸小,位于表面的原子所占的体积分数很大,产生相当大的表面能。随着纳米粒子热处理技术与装备尺寸的减小,比表面积急剧加大,表面原子数及比例迅速增大。由于表面原子数增多,比表面积大,使得表面原子处于“裸露”状态。周围缺少相邻的原子,原子配位数不足,存在未饱和键,导致了纳米颗粒表面存在许多缺陷,使这些表面具有很高的活性,特别容易吸附其他原子或与其他原子发生化学反应。这种表面原子的活性不但引起纳米粒子表面输运和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。它是纳米粒子及其固体材料的最重要的效应之一。

(4)宏观量子隧道效应

量子隧道效应是从量子力学的粒子具有波粒二象性的观点出发,解释粒子能够穿越比总能量高的势垒,这是一种微观现象。微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称其为宏观量子隧道效应。

(5)介电限域效应

随着纳米晶粒粒径的不断减小和比表面积不断增加,其表面状态的改变将会引起微粒性质的显著变化。当纳米材料与介质的介电常数值相差较大时,便产生明显的介电限域效应。此时,带电粒子间的库仑作用力增强,结果增强了电子-空穴对之间的结合能和振子强度,减弱了产生量子尺寸效应的主要因素,电子-空穴对之间的空间限域能,即此时表面效应引起的能量变化大于空间效应所引起的能量变化,从而使能带间隙减小,反映在光学性质上就是吸收光谱表现出明显

相关文档
最新文档