上海高考数学理科真题含解析
高考数学试题上海题及答案
高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。
由于值域为[0, +∞),所以函数的零点个数为2。
2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。
又因为z的实部与虚部的和为0,即a + b = 0。
解得a = 1, b = -1。
3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。
4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。
5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。
6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。
2023高考上海数学理科试卷含详细解答
2023年全国普通高等学校招生统一考试(上海) 数学(理工农医类) 全解全析一 填空(4’×11)1.不等式|1|1x -<地解集是 .【解析】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = .【解析】2【解析】由{2}, 22A B A B a =⇒⇒= 只有一个公共元素.3.若复数z 满足z =i (2-z)(i 是虚数单位),则z = .【解析】1i+【解析】由2(2)11iz i z z i i=-⇒==++.4.若函数f (x )地反函数为f -1(x )=x 2(x >0),则f (4)= .【解析】2【解析】令12(4)()44(0)2f t ft t t t -=⇒=⇒=>⇒=.5.若向量→ a 、→ b 满足|→ a |=1,|→ b |=2,且→ a 与→ b 地夹角为π3,则|→ a +→b |= .【解析】222||()()2||||2||||cos 7||3a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+ 6.函数f (x )=3sin x +sin(π2+x )地最大值是 .【解析】2【解析】由max ()cos 2sin()()26f x x x x f x π=+=+⇒=.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形地概率是 (结果用分数表示).【解析】34【解析】已知A C E F B C D 、、、共线;、、共线;六个无共线地点生成三角形总数为:36C;可构成三角形地个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=;8.设函数f (x )是定义在R 上地奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0地x 地取值范围是 .【解析】(1,0)(1,)-+∞ 【解析】 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;;由f (x )为奇函数得: 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;9.已知总体地各个体地值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体地中位数为10.5,若要使该总体地方差最小,则a 、b 地取值分别是 .【解析】10.5,10.5a b ==【解析】根据总体方差地定义知,只需且必须10.5,10.5a b ==时,总体方差最小;10.某海域内有一孤岛,岛四周地海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 地椭圆,已知岛上甲、乙导航灯地海拔高度分别为h 1、h 2,且两个导航灯在海平面上地投影恰好落在椭圆地两个焦点上,现有船只经过该海域(船只地大小忽略不计),在船上测得甲、乙导航灯地仰角分别为θ1、θ2,那么船只已进入该浅水区地判别条件是 .【解析】1122cot cot 2h h a θθ⋅+⋅≤【解析】依题意, 12||||2MF MF a+≤1122cot cot 2h h a θθ⇒⋅+⋅≤;11.方程x 2+2x -1=0地解可视为函数y =x +2地图像与函数y =1x 地图像交点地横坐标,若x 4+ax -4=0地各个实根x 1,x 2,…,x k(k ≤4)所对应地点(x i,4x i )(i =1,2,…,k )均在直线y =x 地同侧,则实数a 地取值范围是 .【解析】(,6)(6,)-∞-+∞ 【解析】方程地根显然0x ≠,原方程等价于34x a x+=,原方程地实根是曲线3y x a =+与曲线4y x=地交点地横坐标;而曲线3y x a =+是由曲线3y x =向上或向下平移||a 个单位而得到地。
高考真题----理科数学(上海卷)解析版含答案
2013年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)一、填空题 1.计算:20lim______313n n n →∞+=+【解答】根据极限运算法则,201lim3133n n n →∞+=+.2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩. 3.若2211x x x y y y =--,则______x y += 【解答】2220x y xy x y +=-⇒+=.4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示) 【解答】2222222323303a ab bc c a b ab++-=⇒=++,故11cos ,arccos 33C C π=-=-.5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【解答】2515()(),2(5)71r r r r aT C x r r r x-+=--=⇒=,故15102C a a =-⇒=-. 6.方程1313313x x-+=-的实数解为________ 【解答】原方程整理后变为233238034log 4x x x x -⋅-=⇒=⇒=.7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________【解答】联立方程组得(1)1ρρρ-=⇒=,又0ρ≥. 8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【解答】9个数5个奇数,4个偶数,根据题意所求概率为252913118C C -=.9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,2BC =,则Γ的两个焦点之间的距离为________【解答】不妨设椭圆Γ的标准方程为22214x y b +=,于是可算得(1,1)C ,得2446,233b c ==. 10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=【解答】10E x ξ=,2222222(981019)30||19d D d ξ=+++++++=.11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2sin()3x y +=. 12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________【解答】(0)0f =,故011a a ≥+⇒≤-;当0x >时,2()971a f x x a x=+-≥+ 即6||8a a ≥+,又1a ≤-,故87a ≤-. 13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【解答】根据提示,一个半径为1,高为2π的圆柱平放,一个高为2,底面面积8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为221228216πππππ⋅⋅+⋅=+.14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y fx -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【解答】根据反函数定义,当[0,1)x ∈时,()(2,4]f x ∈;[1,2)x ∈时,()[0,1)f x ∈,而()y f x =的定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应在集合(,0)[1,2](4,)-∞⋃⋃+∞,故若00()f x x =,只有02x =.二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞【解答】集合A 讨论后利用数轴可知,111a a ≥⎧⎨-≤⎩或11a a a ≤⎧⎨-≤⎩,解答选项为B .16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件 【解答】根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B .17.在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( )(A)18(B)28(C)48(D)63【解答】,21i ji j i j i j a a a a a +=⋅++=-,而2,3,,19i j +=,故不同数值个数为18个,选A .18.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ).(A) 0,0m M =>(B) 0,0m M <>(C) 0,0m M <=(D)0,0m M <<【解答】作图知,只有0AF DE AB DC ⋅=⋅>,其余均有0i r a d ⋅≤,故选D . 三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =, 故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C ;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC D C AD ===,故132AD C S ∆=所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【解答】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥ 又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+ 故6x =时,max 457500y =元.21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值. 【解答】(1)因为0ω>,根据题意有C 11A34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”. 【解答】:(1)C 1的左焦点为(3,0)F -,过F 的直线3x =-与C 1交于2(3,)2-±,与C 2交于(3,(31))-±+,故C 1的左焦点为“C 1-C 2型点”,且直线可以为3x =-; (2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”。
理数高考试题答案及解析-上海
理数高考试题答案及解析-上海亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i ( i 为虚数单位). 【答案】 1-2i 【解析】3-i (3-i)(1-i) 2-4i= = =1-2i1+i (1+i)(1-i) 2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可. 2.若集合 } 0 1 2 | { + = x x A , } 2 | 1 || { = x x B ,则 = B A . 【答案】3 ,21 【解析】根据集合 A 2 1 0 x+ ,解得12x ,由 1 2, , 1 3 x x 得到,所以 = 3 ,21B A . 【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数 1 sincos 2) (= xxx f 的值域是 . 【答案】 23,25 【解析】根据题目 2 2 sin212 cos sin ) ( = = x x x x f ,因为1 2 sin 1 x ,所以23) (25 x f . 【点评】本题主要考查1/ 18行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质. 4.若 ) 1 , 2 ( = n 是直线l 的一个法向量,则l 的倾斜角的大小为(结果用反三角函数值表示). 【答案】 2 arctan 【解析】设直线的倾斜角为,则 2 arctan , 2 tan = = . 【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx 的二项展开式中,常数项等于 . 【答案】160 【解析】根据所给二项式的构成,构成的常数项只有一项,就是 3 3 34 62C ( ) 160 T xx= = . 【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题. 6.有一列正方体,棱长组成以 1 为首项、21为公比的等比数列,体积分别记为,,,,nV V V2 1,则= + + + ) ( lim2 1 nnV V V . 【答案】78 【解析】由正方体的棱长组成以 1 为首项,21为公比的等比数列,可知它们的体积则组成了一个以 1 为首项,81为公比的等比数列,因此,788111) ( lim21== + + + nnV V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合. 7.已知函数| |) (a xe x f= ( a 为常数).若 ) (x f 在区间 ) ,1 [ + 上是增函数,则 a 的取值范围是 . 【答案】 ( ] 1 , 【解析】根据函数,( ),x ax ax ae x af x ee x a += =看出当 a x 时函数增函数,而已知函数 ) (x f 在区间 [ ) + , 1上为增函数,所以 a 的取值范围为:( ] 1 , . 【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中. 8.若一个圆锥的侧面展开图是面积为 2 的半圆面,则该圆锥的体积为 . 【答案】33 【解析】根据该圆锥的底面圆的半径为 r ,母线长为 l ,根据条件得到 2212=l ,解得母线长 2 = l ,1 , 2 2 = = = r l r 所以该圆锥的体积为:331 231S312 2= = = h V 圆锥 . 【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题. 9.已知2) ( x x f y + = 是奇函数,且 1 ) 1 ( = f ,若 2 ) ( ) ( + = x f x g ,则 = ) 1 ( g . 【答案】 1 】【解析】因为函数2) ( x x f y + = 为奇函数,所以 , 3 ) 1 ( , 1 ) 1 ( , 2 ) 1 ( ) 1 ( = = + =g f f g 所以,又 1 2 3 2 ) 1 ( ) 1 ( , 3 ) 1 ( = + = + = = f g f . ( 1) (1). f f = 【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数 ) ( x f y = 为奇函数,所以有) ( ) ( x f x f = 这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.3/ 1810.如图,在极坐标系中,过点 ) 0 , 2 ( M 的直线 l 与极轴的夹角 6 = ,若将 l 的极坐标方程写成 ) ( f = 的形式,则 = ) ( f . 【答案】)6sin(1 【解析】根据该直线过点 ) 0 , 2 ( M ,可以直接写出代数形式的方程为:) 2 (21 = x y ,将此化成极坐标系下的参数方程即可,化简得)6sin(1) (= f . 【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中. 11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示). 【答案】32 【解析】一共有 27 种取法,其中有且只有两个人选择相同的项目的取法共有 18 种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题. 12.在平行四边形 ABCD 中,3= A ,边 AB 、 AD 的长分别为 2、1,若 M 、 N 分别是边 BC 、CD 上的点,且满足| || || || |CDCNBCBM= ,则 AN AM 的取值范围是 . 【答案】 [ ] 5 , 2 【解析】以向量 AB 所在直线为 x 轴,以向量 AD 所在直线为 y 轴建立平面直角坐标系,如图所示,因为1 , 2 = = AD AB ,所以 5 1(0,0), (2,0), ( ,1) ( ,1).2 2A B C D 设1 5 1 5 5 1 5 1 5 1( ,1)( ), , - , - , (2 ,( )sin ).2 2 2 2 4 2 8 4 4 2 3N x x BM CN CN x BM x M x x = = = + 则根据题意,有 )83 2 3 5,4 821( ), 1 , (x xAM x AN = = . 所以83 2 3 5)4 821(x xx AN AM+ = 2521x ,所以 2 5. AM AN 64224610 5 5 10ADCBMN 【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中. 13.已知函数 ) ( x f y = 的图象是折线段 ABC ,其中 ) 0 , 0 ( A 、 ) 5 ,21( B 、 ) 0 , 1 ( C ,函数 ) ( x xf y = ( 1 0 x )的图象与 x 轴围成的图形的面积为 . 【答案】45 【解析】根据题意得到,110 ,02( )110 10, 12x xf xx x = + 从而得到22110 ,02( )110 10 , 12x xy xf xx x x = = +所以围成的面积为45) 10 10 ( 101212210= + + =dx x x xdx S ,所以围成的图形的面积为45 . 【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图, AD 与 BC 是四面体 ABCD 中互相垂直的棱, 2 = BC ,若 c AD 2 = ,且 a CD AC BD AB 2 = + = + ,其中 a 、 c 为常数,则四面体 ABCD 的体积的最大值是 . 【答案】 1322 2 c a c 【解析】据题 a CD AC BD AB 2 = + = + ,也就是说,线段 CD AC BD AB + + 与线段的长度是定值,因为棱AD 与棱 BC 互相垂直,当 ABD BC 平面时,此时有最大值,此时5/ 18最大值为:1322 2 c a c . 【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题. 二、选择题(20 分) 15.若 i 2 1+ 是关于 x 的实系数方程 02= + + c bx x 的一个复数根,则() A. 3 , 2 = = c b B. 3 , 2 = = c b C. 1 , 2 = = c b D. 1 , 2= = c b 【答案】 B 【解析】根据实系数方程的根的特点 1 2 i 也是该方程的另一个根,所以 b i i = = + + 2 2 1 2 1 ,即 2 =b ,c i i = = + 3 ) 2 1 )( 2 1 ( ,故答案选择 B. 【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意. 16.在 ABC 中,若 C B A2 2 2sin sin sin + ,则 ABC的形状是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定【答案】C 【解析】由正弦定理,得 , sin2, sin2, sin2CRcBRbARa= = = 代入得到2 2 2a b c + ,由余弦定理的推理得2 2 2cos 02a b cCab+ = ,所以 C 为钝角,所以该三角形为钝角三角形.故选择 A. 【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题. 17.设44 3 2 110 10 xx x x ,5510 = x ,随机变量1 取值5 4 3 2 1x x x x x 、、、、的概率均为 2 . 0 ,随机变量2 取值2 2 2 2 21 5 5 4 4 3 3 2 21x x x x x x x x x x + + + + +、、、、的概率也均为 2 . 0 ,若记2 1 D D 、分别为2 1 、的方差,则() A.2 1 D D B.2 1 D D = C.2 1 D D D.1 D 与2 D 的大小关系与4 3 2 1x x x x 、、、的取值有关【答案】 A 【解析】由随机变量2 1 , 的取值情况,它们的平均数分别为:1 1234 51( ),5x x x x x x = + + + + ,2 3 3 4 45 5 1 122 11,5 2 2 2 2 2x x x x x x x x x xx x+ + + + + = + + ++ =且随机变量 2 1 , 的概率都为 2 . 0 ,所以有 1 D >2 D . 故选择 A. 【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1 nna n = ,n na a a S + + + = 2 1,在100 2 1, , , S S S 中,正数的个数是() A.25 B.50 C.75 D.100 【答案】C 【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项. 【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的 14 项的和为 0,这就是规律,考查综合分析问题和解决问题的能力. 三、解答题(74分):19.(6+6=12 分)如图,在四棱锥 ABCD P 中,底面 ABCD 是7/ 18矩形, PA 底面 ABCD , E 是 PC 的中点,已知 2 = AB , 2 2 = AD , 2 = PA ,求:(1)三角形 PCD 的面积;(2)异面直线 BC 与 AE 所成的角的大小. 【答案及解析】所以三角形 PCD 的面积为 3 2 3 2 221= ................6 分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修 2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14 分)已知函数 ) 1 lg( ) ( + = x x f .(1)若 1 ) ( ) 2 1 ( 0 x f x f ,求 x 的取值范围;(2)若 ) ( x g 是以 2 为周期的偶函数,且当 1 0 x 时,有 ) ( ) ( x f x g = ,求函数 ) ( x g y = ( ] 2 , 1 [ x )的反函数. 【答案及解析】,3132 x 【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题. 21.(6+8=14 分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴正方向建立平面直角坐标系(以 1 海里为单位长度),则救援船恰好在失事船正南方向 12 海里 A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y = ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发 t 小时后,失事船所在位置的横坐标为t 7 .(1)当 5 . 0 = t 时,写出失事船所在位置 P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16 分)在平面直角坐标系 xOy 中,已知双曲线1C :1 22 2= y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及 x 轴围成的三角形的面积;(2)设斜率为 1 的直线 l 交1C 于 P 、 Q 两点,若 l 与圆 12 2= + y x 相切,求证:OQ OP ;(3)设椭圆2C :1 42 2= + y x ,若 M 、 N 分别是1C 、2C 上的动点,且 ON OM ,求证:O 到直线 MN 的距离是定值. 【答案及解析】过点 A与渐近线 x y 2 = 平行的直线方程为22 , 2 1.2y x y x= + = +即 1 = ON ,22= OM ,则 O 到直线 MN 的距离为33. 设 O 到直线 MN 的距离为 d . 【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为 2 ,它的渐近线为 x y = ,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题. 23.(4+6+8=18 分)对于数集 } 1 {2 1 nx x x X ,,,, = ,其中nx x x 2 10 , 2 n ,定义向量集} , ), , ( |9/ 18{ X t X s t s a a Y = = ,若对任意 Y a 1,存在 Y a 2,使得02 1= a a ,则称 X 具有性质 P .例如 } 2 , 1 , 1 { 具有性质P .(1)若 2 x ,且 } , 2 , 1 , 1 { x 具有性质 P ,求 x 的值;(2)若 X 具有性质 P ,求证:X 1 ,且当 1 nx 时, 11= x ;(3)若 X 具有性质 P ,且 11= x 、 q x =2( q 为常数),求有穷数列nx x x ,,, 2 1的通项公式. 【答案及解析】必有形式 ) , 1 ( b 显然有2a 满足 02 1= a a 【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义 X 具有性质 P 这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!怎样调整好考试心态心态就是一个人的心情。
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
高考试题数学理上海卷解析版
第III氐到两个定点入D殆距制目等,是AD的中垂绻即阻.•・、;=二•一皐沦二;第N区;到定^、A与到定直线•、■轴砖距离柏等,是抛牧线,达\畑・> 一Iv -luixSZ)}第V&.到两个亠D走虫的鉅离相等,应協是AD的中爭绻俚该线不经过弟V色故第V区没有满忌聚件的点;第vi氐到定直銭:•轮的距禹等于到定点0距鮎放满足隶件的点只有丄轴的非正半轴,即{(和).V<O,T=O}第ni心到同一个点o的距扁相等的点,爰妣蘇象f艮的点,即:{(x.v)X CS:T<!0}策'in区:到定直筑.\轴,与列定点0的距韶痔,姒应O故满足条件的为.:轴的非iE半轴.RP:{(rr) r=Oj <n}第IX E;到定点a D的鉅斋相等的為为0D昭中垂竭该戋不经过IX区,枚不存在。
殊上所述:清足条件的点为:二H.;、y SrS?}^ {(x,:.);. - 2x ・ W.H Z】)}_ f(儿;:v • S x 52:}S 0; vSO),J:l・vj| A<0;Mil年上海高舟歎学试卷(理科)-、填空题(爭小邂4分.満分%分〉1、__________________________ 禺数“门■丄的更轟数为r(M-•r-2 ・【解析】厂⑴■丄・2.V2、箸全集L 集^-4»{r|x^l}J{.\ A<0}> 1*1 C,.4= ___________________【解析】<¥ 0<x<l}3、设別是常數.并虫刁0・门是双购找丄一二“的一个氯L 则加.w P【解析】根播交点公式* - r => «J■ 25 -P ■ 16.那・16」、不帑式口曲的解为 _____________X【解折】-L1<3=O i—^-<0 {.v .x<0 A m >1)x x 25、在极坐标系中,it繼p(】coM-shi8i■:与朮銭门4&・1的夬厨大小为_____________ (站果Jfl反三刑西歎值表示)【解析】因为.V =pcosc^.r = psint7,故直銭的一鮫方程为:lx-)«2,A =1.夹角为arctan A 6、恵和距2千米的±3两点处测董81标点C,若上(?:』■?亍丄(?3.4・6小・则.4.C两点W 问的距禹为 ___________ 千米.【解析】由正弦定现;=, AC •小sinoO- $in4?"7S箔01馳的侧而积为X.廉酝积为二,则该圆毎的休积为■10、柠列邓 耕agg-LiQ :所有可储的值中,说大杓是 __________________ 【解析】F :卜仝£一立,所以a = jf = £剣取丸值为6lk 在正三用彫・£C 杯 Q 是3C 上的点,若・i3・3.3D ・l, « A?<3- ___________________ 【覲析】绥田如下,过点D 柞DE_・4B ・则|AB - AD = --13 • -4x? = 34随机掖収的9仗同学杯 至少有::位同学在一月份出生的槪半为 __________________________________________________________________ (跌认番个月的夭歎相同.绐粟输确到0.001)13^设訓门是;t 义在R 上•以1为周期的及瓠 芳国数r (x —W 虫区间[3•町上的值 威为[-2.5]>刚在区间(-10:10]±的值域为 ________________ 【解析】-lSJlJs定义在虫上,以1为周禺的国敎■••• 0X411 = 0X1.文I7S =3( "3 - S5 I =5(3-13D I «JL X (3-1)«12Ml*» ■【解析】p= 0OS5P:.P.…,Pj Jll lirn QP, = ___________【解析】d £的极限点就是以原点为圆心,以】対半径与j=l的交点亀15 33 P1 8 161V1•11V V V 1 1 ■•・•1 1 1 1 1 11 1 1 11 1 •1 1 •1 1 1 ! i! ?013 2 9324本送就是二分法解方程的延伸,关蛙条件(0Q -21( OR, -2i<0的意思是QR.上到原点距离为2的点(设为P)始终在QR<之间,且Q&的长度不斷缩小,fi•到Q,面£^QR 的中為也妊终在0&之间,故当职极限时匕£两点就重合了,此时ljm OP =怛(妙_0Q: Hi M若0为任意一点,为重心,则;0S1只有重心満足条件八所有不竽于董心的点有丽=557-1^,故只有诂点是重心时才能为零向晏面董心只有一个,故満足条件的点只有一个.1$、设匕〕是各项为正的无穷数列,.4杲边长为U, S的絶形的面积仁—丄…),则⑷ 为等比数列的充晏条件是< )A. {叮是等比歎列氐20.…2「.・…或仃;.攻..・・・・%.…長等比教列£;・绡:•…£«・…和込…•冬「…均是等比数列2忑卫•…,■斗…和冬•乞,…山―…均是等比敎外且公比相同【解析】D日二”幺」故竺吕二込丄满足访条件只有A、D,而显然D的范囲aa・ a sr.a z• • • • < ■庚全面,放选D三、解答题(本题满分?4分)19、(本题满分1】分)巳知真數2.滿足(Z.-2X1-/1=1-/ (f为虚数卑仗),复数2•的虚部为2,且2・・Z •是夹数,• ・• • •求?・•2L (本遠满分14分.第1小题6分,第丄小魏S分)已H3CD • H3CD是底酝边氏舟1的正四祓栓.0曲.< 坊5D的交点.・ lit ••••・⑴设.3坊嚴西・打(・:2所戍的夹丙的丸小为二而用,-32-亠的大小为0.求证:can" 〔aim :⑵若处到平a&.3的距需为i, 蘇四极桂攻的高.【解析】(1)拟採题意可知’显藝&就是厶3亠3. 0就是4CU•i •>已矣°歎刊(aj和{弭的通顶公式分剧为a - 3廿-6. :■ 2?r- 7(片三V i ,杵集合所以:aiiz?->j-tana{.vi.x-a t.wf .V) J{x x■玄豊"〉•']申的无需从小到大侬次椰儿枸成数列w、・・.「・• $ 顼.第四顶一定是顶■第五項是{汀中的项.第兴項不拄这样的话.⑴是以4 为截取周禺的.枚匕;的X、(本題満分(1)35 ±通項为:n = 4k9 k e .V e fl+i c =6*r** > 则c,・=6次二 + ■二二f ■;a 4 2^n = 4/t-l> k€ A"时.。
2021年上海高考数学理科试题及知识点解析
2021年上海市高考数学试卷(理科)一、填空题(56分):1.(2021•上海)计算:=_________(i为虚数单位).2.(2021•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=_________.3.(2021•上海)函数f(x)=的值域是_________.4.(2021•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为_________(结果用反三角函数值表示).5.(2021•上海)在的二项展开式中,常数项等于_________.6.(2021•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═_________.7.(2021•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是_________.8.(2021•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_________.9.(2021•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=_________.10.(2021•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=_________.11.(2021•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_________(结果用最简分数表示).12.(2021•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是_________.13.(2021•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C (1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为_________.14.(2021•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是_________.二、选择题(20分):15.(2021•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣116.(2021•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定17.(2021•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关18.(2021•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100三、解答题(共5小题,满分74分)19.(2021•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E 是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.20.(2021•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.21.(2021•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?22.(2021•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐进线的平行线,求该直线与另一条渐进线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.23.(2021•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.2021年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(2021•上海)计算:=1﹣2i(i为虚数单位).考点:复数代数形式的乘除运算。
2021年上海市高考数学试卷(理科)解析
2021年上海市高考数学试卷(理科)一、填空题(本大题共有14题,总分值48分.)考生应在答题纸相应编号的空格内直接填写结果,每一个空格填对4分,不然一概得零分.1.(4分)(2021•上海)设全集U=R.假设集合Α={1,2,3,4},Β={x|2≤x≤3},那么Α∩∁UΒ=.2.(4分)(2021•上海)假设复数z知足3z+=1+i,其中i是虚数单位,那么z= .3.(4分)(2021•上海)假设线性方程组的增广矩阵为解为,那么c1﹣c2= .4.(4分)(2021•上海)假设正三棱柱的所有棱长均为a,且其体积为16,那么a= .5.(4分)(2021•上海)抛物线y2=2px(p>0)上的动点Q到核心的距离的最小值为1,那么p= .6.(4分)(2021•上海)假设圆锥的侧面积与过轴的截面面积之比为2π,那么其母线与轴的夹角的大小为.7.(4分)(2021•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)(2021•上海)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,那么不同的选取方式的种数为(结果用数值表示).9.(2021•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q 的轨迹别离为双曲线C1和C2.假设C1的渐近线方程为y=±x,那么C2的渐近线方程为.10.(4分)(2021•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,那么y=f(x)+f﹣1(x)的最大值为.11.(4分)(2021•上海)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)(2021•上海)赌博有陷阱.某种赌博每局的规那么是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).假设随机变量ξ1和ξ2别离表示赌客在一局赌博中的赌金和奖金,那么Eξ1﹣Eξ2=(元).13.(4分)(2021•上海)已知函数f(x)=sinx.假设存在x1,x2,…,x m知足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥12,m∈N*),那么m的最小值为.14.(2021•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积别离为2和4.过D作D E⊥A B于E,DF⊥AC于F,那么•=.二、选择题(本大题共有4题,总分值15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,不然一概得零分.15.(5分)(2021•上海)设z1,z2∈C,那么“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)(2021•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,那么点B的纵坐标为()A.B.C.D.17.(2021•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,以下选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)(2021•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,那么极限=()C.1D.2A.﹣1 B.﹣三、名师解答题(本大题共有5题,总分值74分)名师解答以下各题必需在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F别离是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE 所成的角的大小.20.(14分)(2021•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警察同时从A地动身匀速前去B地,通过t小时,他们之间的距离为f (t)(单位:千米).甲的线路是AB,速度为5千米/小时,乙的线路是ACB,速度为8千米/小时.乙抵达B地后原地等待.设t=t1时乙抵达C地.(1)求t1与f(t1)的值;(2)已知警察的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判定f(t)在[t1,1]上的最大值是不是超过3?说明理由.21.(14分)(2021•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2别离于椭圆交于A、B和C、D,记取得的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)(2021•上海)已知数列{a n}与{b n}知足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)假设b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).23.(18分)(2021•上海)关于概念域为R的函数g(x),假设存在正常数T,使得cosg (x)是以T为周期的函数,那么称g(x)为余弦周期函数,且称T为其余弦周期.已知f (x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f (T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2021年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,总分值48分.)考生应在答题纸相应编号的空格内直接填写结果,每一个空格填对4分,不然一概得零分.1.(4分)(2021•上海)设全集U=R.假设集合Α={1,2,3,4},Β={x|2≤x≤3},那么Α∩∁UΒ= {1,4}.知识归纳:交、并、补集的混合运算.名师分析:此题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.名师讲解:解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁U B)={x|x>3或x<2},∴A∩(∁U B)={1,4},故答案为:{1,4}.名师点评:此题考查集合的交、并、补的混合运算,熟练把握集合的交并补的运算规那么是解此题的关键.此题考查了推理判定的能力.2.(4分)(2021•上海)假设复数z知足3z+=1+i,其中i是虚数单位,那么z=.知识归纳:复数代数形式的乘除运算.名师分析:设z=a+bi,那么=a﹣bi(a,b∈R),利用复数的运算法那么、复数相等即可得出.名师解答:解:设z=a+bi,那么=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.名师点评:此题考查了复数的运算法那么、复数相等,属于基础题.3.(4分)(2021•上海)假设线性方程组的增广矩阵为解为,那么c1﹣c2=16.知识归纳:二阶行列式与逆矩阵.名师分析:依照增广矩阵的概念取得,是方程组的解,解方程组即可.名师解答:解:由题意知,是方程组的解,即,那么c1﹣c2=21﹣5=16,故答案为:16.名师点评:此题要紧考查增广矩阵的求解,依照条件成立方程组关系是解决此题的关键.4.(4分)(2021•上海)假设正三棱柱的所有棱长均为a,且其体积为16,那么a=4.知识归纳:棱锥的结构特征.名师分析:由题意可得(•a•a•sin60°)•a=16,由此求得a的值.名师解答:解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.名师点评:此题要紧考查正棱柱的概念和体积公式,属于基础题.5.(4分)(2021•上海)抛物线y2=2px(p>0)上的动点Q到核心的距离的最小值为1,那么p=2.知识归纳:抛物线的简单性质.名师分析:利用抛物线的极点到核心的距离最小,即可得出结论.名师解答:解:因为抛物线y2=2px(p>0)上的动点Q到核心的距离的最小值为1,因此=1,因此p=2.故答案为:2.名师点评:此题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)(2021•上海)假设圆锥的侧面积与过轴的截面面积之比为2π,那么其母线与轴的夹角的大小为.知识归纳:旋转体(圆柱、圆锥、圆台).名师分析:设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而取得答案.名师解答:解:设圆锥的底面半径为r,高为h,母线长为l,那么圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,那么cosθ==,故θ=,故答案为:.名师点评:此题考查的知识点是旋转体,其中依照已知求出圆锥的母线与轴的夹角的余弦值,是名师解答的关键.7.(4分)(2021•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.知识归纳:对数的运算性质.名师分析:利用对数的运算性质化为指数类型方程,解出并验证即可.名师解答:解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.通过验证:x=1不知足条件,舍去.∴x=2.故答案为:2.名师点评:此题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)(2021•上海)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,那么不同的选取方式的种数为120(结果用数值表示).知识归纳:排列、组合的实际应用.名师分析:依照题意,运用排除法名师分析,先在9名教师当选取5人,参加义务献血,由组合数公式可得其选法数量,再排除其中只有女教师的情形;即可得答案.名师解答:解:依照题意,报名的有3名男教师和6名女教师,共9名教师,在9名教师当选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情形;那么男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.名师点评:此题考查排列、组合的运用,此题适宜用排除法(间接法),能够幸免分类讨论,简化计算.9.(2021•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q 的轨迹别离为双曲线C1和C2.假设C1的渐近线方程为y=±x,那么C2的渐近线方程为.知识归纳:双曲线的简单性质.名师分析:设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.名师解答:解:设C1的方程为y2﹣3x2=λ,设Q(x,y),那么P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.名师点评:此题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(4分)(2021•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,那么y=f(x)+f﹣1(x)的最大值为4.知识归纳:反函数.名师分析:由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,取得y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.名师解答:解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.名师点评:此题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.11.(4分)(2021•上海)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).知识归纳:二项式系数的性质.名师分析:先把原式前两项结合展开,名师分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,那么答案可求.名师解答:解:∵(1+x+)10=,∴仅在第一部份中显现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.名师点评:此题考查了二项式系数的性质,关键是对二项展开式通项的经历与运用,是基础题.12.(4分)(2021•上海)赌博有陷阱.某种赌博每局的规那么是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).假设随机变量ξ1和ξ2别离表示赌客在一局赌博中的赌金和奖金,那么Eξ1﹣Eξ2=0.2(元).知识归纳:离散型随机变量的期望与方差.名师分析:别离求出赌金的散布列和奖金的散布列,计算出对应的均值,即可取得结论.名师解答:解:赌金的散布列为1 2 3 4 5P因此Eξ1=(1+2+3+4+5)=3,奖金的散布列为1.42.8 4.2 5.6P ====因此Eξ2=1.4×(×1+×2+×3+×4)=2.8,那么Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.2名师点评:此题要紧考查离散型随机变量的散布列和期望的计算,依照概率的公式别离进行计算是解决此题的关键.13.(4分)(2021•上海)已知函数f(x)=sinx.假设存在x1,x2,…,x m知足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥12,m∈N*),那么m的最小值为8.知识归纳:正弦函数的图象.名师分析:由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得知足条件的最小m值.名师解答:解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f (x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按以下图取值即可知足条件,∴m的最小值为8.故答案为:8.名师点评:此题考查正弦函数的图象和性质,考查名师分析问题和解决问题的能力,考查数学转化思想方式,正确明白得对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f (x j)|≤f(x)max﹣f(x)min=2是名师解答该题的关键,是难题.14.(2021•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积别离为2和4.过D作D E⊥A B于E,DF⊥AC于F,那么•=﹣.知识归纳:平面向量数量积的运算.名师分析:由题意画出图形,结合面积求出cosA=,,然后代入数量积公式得答案.名师解答:解:如图,∵△ABD与△ACD的面积别离为2和4,∴,,可得,,∴.又tanA=,∴,联立sin2A+cos2A=1,得,cosA=.由,得.则.∴•==.故答案为:.名师点评:此题考查平面向量的数量积运算,考查了数形结合的解题思想方式,考查了三角函数的化简与求值,是中档题.二、选择题(本大题共有4题,总分值15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,不然一概得零分.15.(5分)(2021•上海)设z1,z2∈C,那么“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件知识归纳:必要条件、充分条件与充要条件的判断.名师分析:依照充分条件和必要条件的概念结合复数的有关概念进行判定即可.名师解答:解:设z1=1+i,z2=i,知足z1、z2中至少有一个数是虚数,那么z1﹣z2=1是实数,那么z1﹣z2是虚数不成立,假设z1、z2都是实数,那么z1﹣z2必然不是虚数,因此当z1﹣z2是虚数时,那么z1、z2中至少有一个数是虚数,即必要性成立,故“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的必要不充分条件,应选:B.名师点评:此题要紧考查充分条件和必要条件的判定,依照复数的有关概念进行判定是解决此题的关键.16.(5分)(2021•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,那么点B的纵坐标为()A.B.C.D.知识归纳:任意角的三角函数的定义.名师分析:依照三角函数的概念,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.名师解答:解:∵点A的坐标为(4,1),∴设∠xOA=θ,那么sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,那么OB的倾斜角为θ+,那么|OB|=|OA|=,那么点B的纵坐标为y=|OP|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,应选:D.名师点评:此题要紧考查三角函数值的计算,依照三角函数的概念和两角和差的正弦公式是解决此题的关键.17.(2021•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,以下选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根知识归纳:根的存在性及根的个数判断.名师分析:依照方程根与判别式△之间的关系求出a12≥4,a22<8,结合a1,a2,a3成等比数列求出方程③的判别式△的取值即可取得结论.名师解答:解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,那么a32=()2=,即方程③的判别式△3=a32﹣16<0,现在方程③无实根,应选:B名师点评:此题要紧考查方程根存在性与判别式△之间的关系,结合等比数列的概念和性质判定判别式△的取值关系是解决此题的关键.18.(5分)(2021•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,那么极限=()A.﹣1 B.C.1D.2﹣知识归纳:极限及其运算.名师分析:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无穷靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.名师解答:解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无穷靠近(1,1),而可看做点P n(x n,y n)与(1,1)连线的斜率,其值会无穷接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.应选:A.名师点评:此题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、名师解答题(本大题共有5题,总分值74分)名师解答以下各题必需在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F别离是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE 所成的角的大小.知识归纳:直线与平面所成的角.名师分析:利用长方体的集合关系成立直角坐标系.利用法向量求出二面角.名师解答:解:连接AC,因为E,F别离是AB,BC的中点,因此EF是△ABC的中位线,因此EF∥AC.由长方体的性质知AC∥A1C1,因此EF∥A1C1,因此A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1别离为xyz轴,成立空间直角坐标系,易求得,设平面A1C1EF的法向量为则,因此,即,z=1,得x=1,y=1,因此,因此=,因此直线CD1与平面A1C1FE所成的角的大小arcsin.名师点评:此题要紧考查利用空间直角坐标系求出二面角的方式,属高考常考题型.20.(14分)(2021•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警察同时从A地动身匀速前去B地,通过t小时,他们之间的距离为f (t)(单位:千米).甲的线路是AB,速度为5千米/小时,乙的线路是ACB,速度为8千米/小时.乙抵达B地后原地等待.设t=t1时乙抵达C地.(1)求t1与f(t1)的值;(2)已知警察的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判定f(t)在[t1,1]上的最大值是不是超过3?说明理由.知识归纳:余弦定理的应用.名师分析:(1)由题意可得t1==h,由余弦定理可得f(t1)=PC=,代值计算可得;(2)当t1≤t≤时,由已知数据和余弦定理可得f(t)=PQ=,当<t≤1时,f(t)=PB=5﹣5t,综合可适当<t≤1时,f(t)∈[0,],可得结论.名师解答:解:(1)由题意可得t1==h,设现在甲运动到点P,那么AP=v甲t1=5×=千米,∴f(t1)=PC===千米;(2)当t1≤t≤时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB﹣8t=7﹣8t,PB=AB﹣AP=5﹣5t,∴f(t)=PQ===,当<t≤1时,乙在B点不动,设现在甲在点P,∴f(t)=PB=AB﹣AP=5﹣5t∴f(t)=∴当<t≤1时,f(t)∈[0,],故f(t)的最大值超过了3千米.名师点评:此题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题.21.(14分)(2021•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2别离于椭圆交于A、B和C、D,记取得的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.知识归纳:直线与圆锥曲线的综合问题;点到直线的距离公式.名师分析:(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;(2)方式一:设直线l1的斜率为k,那么直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方式二:设直线l1、l2的斜率别离为、,那么=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.名师解答:解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,因此S=|AB|d=2|x1y2﹣x2y1|;(2)方式一:设直线l1的斜率为k,那么直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,依照对称性,设x1=,那么y1=,同理可得x2=,y2=,因此S=2|x1y2﹣x2y1|=.方式二:设直线l1、l2的斜率别离为、,那么=﹣,因此x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,因此(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,因此S=2|x1y2﹣x2y1|=.名师点评:此题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.22.(16分)(2021•上海)已知数列{a n}与{b n}知足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)假设b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).知识归纳:数列递推式;数列的函数特性.名师分析:(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此取得{a n}是等差数列,那么a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加取得a n=2b n+a1﹣2b1,求得,进一步取得得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情形求得a n的最大值M和最小值m,再由∈(﹣2,2)列式求得λ的范围.名师解答:(1)解:∵a n+1﹣a n=2(b n+1﹣b n),b n=3n+5,∴a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴{a n}是等差数列,首项为a1=1,公差为6,那么a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=λ,∴∈(﹣2,2),∴λ∈,∴.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不知足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时知足条件.名师点评:此题考查了数列递推式,考查了等差关系的确信,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方式,是中档题.23.(18分)(2021•上海)关于概念域为R的函数g(x),假设存在正常数T,使得cosg (x)是以T为周期的函数,那么称g(x)为余弦周期函数,且称T为其余弦周期.已知f (x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f (T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).知识归纳:函数与方程的综合运用.名师分析:(1)依照余弦周期函数的概念,判定cosg(x+6π)是不是等于cosg(x)即可;(2)依照f(x)的值域为R,即可取得存在x0,使得f(x0)=c,而依照f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf(x)=1在[0,T]上的解,是不是为方程的解,带入方程,使方程成当即是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x∈(0,T)三种情形:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而取得f(2T)=2k1π,k1∈Z,依照f(x)单调递增便能取得k1>2,然后依照f(x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情形说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T 时结论成立;而关于x∈(0,T)时,通过考查cosf(x)=c的解取得f(x+T)=f(x)+f (T),综合以上的三种情形,最后得出结论即可.名师解答:解:(1)g(x)=x+sin;∴==cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:假设u0+T为方程cosf(x)=1在区间[T,2T]上的解;那么:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)假设k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)假设k1≥5,f(2T)≥10π,那么存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;那么T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(x n),(x1<x2<…<x n);那么f(x1+T),f(x2+T),…,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(x i+T)=f(x i)+4π=f(x i)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).名师点评:考查对余弦周期函数概念的明白得,充分条件的概念,方程的解的概念,明白由cosf(x)=1能得出f(x)=2kx,k∈Z,和构造方程解题的方式,在证明最后一问时能运用第二问的结论.。
高考真题试卷理科数学(上海卷)答案解析版
2012年全国普通高等学校招生统一考试上海数学试卷(理)一、填空题(56分):1.计算:=+-ii 13 (i 为虚数单位)。
【解析】复数i i i i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-。
【答案】i 21-2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。
【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。
【答案】)3,21(- 3.函数1sin cos 2)(-= x x x f 的值域是 。
【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12sin 1≤≤-x ,所以212sin 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--。
【答案】]23,25[-- 4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。
【解析】【 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan 。
【答案】2arctan5.在6)2(xx -的二项展开式中,常数项等于 。
【解析】二项展开式的通项为k k k k k k k x C x x C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T 。
【答案】160-6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V 。
【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78。
高考数学理科卷带详解
2 个女生,(步骤
1)∴ P(ξ=0)=
C
2 5
C
2 7
10 21
.P(
ξ=1)=
C15 C12 C72
10
.
21
P( ξ=2) =
C22 C27
1
10
(步骤 2)∴ Eξ=0
1 10
2
1 = 4 .故答案为:
4
.(步骤 3)
21
21
21
21 7
7
8.已知三个球的半径 R1, R2 , R3 满足 R1+2R2=3R3, 则它们的表面积 S1 , S2, S3, 满足的等量关系是 【测量目标】球的表面积 .
一定符合该标志的是
()
A .甲地:总体均值为 6, 中位数为 8 C.丙地:中位数为 5, 众数为 6 【测量目标】用样本数字特征估计总体数字特征
B .乙地:总体均值为 5, 总体方差为 12 D .丁地:总体均值为 3, 总体方差大于 0
.
【考查方式】运用均值、中位数、众数、方差的数值特征对整体数字特征进行估计.
∴∠ MAB= arctan2 故答案为: arctan 2 .
3
3
MAB 时, 曲线 C 都不是一个函数的图像
第 14 题图 二、选择题(共 4 小题, 每小题 4 分, 满分 16 分)
15. “ 2 , a, 2”是“实系数一元二次方程 x2+ax+1=0 有虚根 ”的
A .必要不充分条件
B.充分不必要条件
【难易程度】容易
【测量目标】椭圆的简单几何性质 .
【考查方式】给出椭圆上的一点与椭圆两交点之间的位置关系,
及它们所形成的三角形面积求解椭圆方程中
最新整理上海市高考数试卷及答案理数.doc
上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则 ( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( )(A )25. (B )50. (C )75. (D )100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分) (2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数ABCDAB CPE)(x g y =])2,1[(∈x 的反函数.(8分)21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.(8分)上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . 3.函数1sin cos 2)(-=xx x f 的值域是],[2325-- .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 arctan2 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 -160 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 .10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf )sin(16θπ- . 11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是32(结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD BC =,则AN AM ⋅的取值范围是 [2, 5] . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是12232--c a c . ABCD二、选择题(本大题共有4题,满分20分)15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( B )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( C )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则 ( A )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( D )(A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求: (1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分) [解](1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与BC 的夹角为θ,则222224cos ===⨯⋅BC AE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形,所以∠AEF =4π.因此异面直线BC 与AE 所成的角的大小是4π ……12分20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数AB CD PE yA B CDP EF)(x g y =])2,1[(∈x 的反函数.(8分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分 由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x . ……14分21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程y = 中,得P 的纵坐标y P =3. ……2分由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度. ……6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分 22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(4分) (2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分) (3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分) [解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分所以所求三角形的面积1为8221||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . ……13分 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==. 若对于任意Y ∈1,存在Y ∈2,使得021=⋅a a ,则称X 具有性质P . 例如}2,1,1{-=X 具有性质P . (1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分记},,,1,1{2k k x x A -=,k =2, 3, …, n . 先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s与t 中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以kk q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211s tt s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数, 所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n<<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x 注意到12111x x x x x x n n >>>- ,所以12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, …, n . ……18分。
普通高等学校招生全国统一考试上海卷理科数学试题及答案
2020年一般高等学校招生上海卷理工类数学试题一、填空(本大分 48分,每小4分)11.若tgα=,tg(α+)= .242.抛物的点坐(2,0),准方程x=-1,它的焦点坐.3.会合A={5,log2(a+3)},会合B={a,b}.若A∩B={2},A∪B= .1 84.等比数列{an }(n∈N)的公比q=- ,且lim(a1+a3+a5+⋯+a2n-1)=,a1=.2 n 35.奇函数 f(x)的定域[-5,5].若当x∈[0,5] ,f(x)的象如右,不等式 f(x)<0的解是 . yy=f(x)6.已知点A(1, -2),若向量AB 与a={2,3}同向, AB=213, 点B 的坐.O25x7.在极坐系中,点M(4,)到直l:ρ(2cos θ+sin 的θ距)=4离3d= .8.心在直2x -y -7=0上的C 与y 交于两点A(0,-4),B(0,-2),C的方程.9.若在二式(x+1)10的睁开式中任取一,的系数奇数的概率是.(果用分数表示)10.若函数f(x)=axb2在[0,+∞)上增函数,数a 、b 的取范是.11.教材中“坐平面上的直”与“曲”两章内容体出分析几何的本是.12.若干个能独一确立一个数列的量称数列的“基本量”.{a n}是公比q的无等比数列,以下{an}的四量中,必定能成数列“基本量”的是第.(写出全部切合要求的号)①S 1与S2; ②a 2与S3; ③a 1与an; ④q 与an.此中n 大于1的整数,Sn{an}的前n 和.二、(本大分 16分,每小4分)13.在以下对于直 l 、m 与平面α、β的命中,真命是()若l β且α⊥β,l ⊥α.(B)若l ⊥β且α∥β,l ⊥α.若l ⊥β且α⊥β,l ∥α.(D)若α∩β=m 且l ∥m,l ∥α.14.三角方程2sin(-x)=1的解集()25(A){x │x=2kπ+,k∈Z}.(B){x│x=2kπ+,k∈Z}.33 (C){x │x=2kπ±,k∈Z}. (D){xK│x=kπ-1)+(,k∈Z}.315.若函数 y=f(x)的象可由函数y=lg(x+1)的象坐原点O 逆旋获得,2f(x)=( )-x(B)10x-x x(A)10-1.-1.(C)1-10.(D)1-10.16.某地2004年第一季度应聘和招聘人数排行榜前5个行业的状况列表以下行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数与招聘人数比值的大小来权衡该行业的就业状况,则依据表中数据,就业局势必定是()计算机行业好于化工行业.(B)建筑行业好于物流行业.(C)机械行业最紧张.(D)营销行业比贸易行业紧张.三、解答题(本大题满分86分)17.(此题满分12分)已知复数z1知足(1+i)z1=-1+5i,z2=a-2-i,此中i为虚数单位,a∈R,若z1z2<z1,求a的取值范围.18.(此题满分12分)某单位用木材制作以下图的框架,框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm2.问x、y分别为多少(精准到0.001m)时用料最省?yx19.(此题满分14分)第1小题满分6分,第2小题满分8分记函数f(x)=2x3的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.(1)x1求A;若BA,务实数a的取值范围.20.(此题满分14分)第1小题满分6分,第2小题满分8分已知二次函数y=f1(x)的图象以原点为极点且过点(1,1),反比率函数y=f2(x)的图象与直线y=x的两个交点距离8,f(x)=f1(x)+f2(x).求函数f(x)的表达式;明:当a>3,对于x的方程f(x)=f(a)有三个数解.21.(安分16分)第1小分4分,第2小分6分,第3小分6分如,P-ABC是底面1的正三棱,D、E、F分棱PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱P-ABC的棱和相等.(棱和是指多面体中全部棱的度之和)明:P-ABC正四周体;1(2)若PD=PA,求二面角D-BC-A的2大小;(果用反三角函数表示)棱台DEF-ABC的体V,是否存在体V且各棱均相等的直平行六面体,使得它与棱台DEF-ABC有同样的棱和?若存在,详细结构出的一个直平行六面体,并出明;若不存在,明原因.22.(安分18分)第1小分6分,第2小分4分,第3小分8分P1(x1,y1), P1(x2,y2),⋯,P n(x n,y n)(n≥3,n∈N)是二次曲C上的点,且a1=OP12,a2=OP22,⋯,a n=OP n2组成了一个公差d(d≠0)的等差数列,此中O是坐原点.S n=a1+a2+⋯+a n.(1) 若C的方程x2y2=1,n=3.点P1(3,0)及S3=255,求点P3的坐;100 25(只要写出一个)x2y21(a>b>0).点P1(a,0),于定的自然数n,当公差d化,(2)若C的方程b2a2求S n的最小;.(3)定一条除外的二次曲C及C上的一点P1,于定的自然数n,写出切合条件的点P,⋯P存在的充要条件,并明原因.1,P2n符号意本卷所用符号等同于《教材》符号向量坐标a ={x,y}a =(x,y)正切 tgtan2004年一般高等学校招生上海卷理工类数学试题参照答案一、填空题(本大题满分48 分,每题4分)1.32.(5,0)3.{1,2,5}5.(-2,0)∪(2,5]6.(5,4)2 15229.410.a>0且b ≤07.58.(x -2)+(y+3)=51111.用代数的方法研究图形的几何性质 12.①、④ 二、选择题(本大题满分16分,每题4分)三、解答题(本大题满分86 分)17.【解】由题意得z 1= 1 5i =2+3i,1i于是z 1z 2=4a2i =(4a)24,z 1=13.(4 a)2 4< 13,得a 2-8a+7<0,1<a<7.18.【解】由题意得18 x 2 8 x(0<x<44=xy+ x 2=8,∴y=x 2).4x 4于定, 框架用料长度为l=2x+2y+2(2x )=( 3 + 2)x+ 16 ≥4 642 .2 2 x 当(316 ,即x=8-4 2时等号建立.2+2)x=x此时,x ≈2.343,y=22≈2.828. 故当x 为2.343m,y 为时,用料最省.x 3x 1 19.【解】(1)2-1≥0,得≥0,x<-1或x ≥1x x 1即A=(-∞,-1)∪[1,+ ∞)(2)由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0.a<1,∴a+1>2a,∴B=(2a,a+1). ∵BA,∴2a ≥1或a+1≤-1,即a ≥1或a ≤-2,而a<1,2∴1≤a<1或a ≤-2,故当BA 时,实数a 的取值范围是21 (-∞,-2]∪[,1)220.【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1,∴f 1(x)=x 2.k设f 2(x)=(k>0),它的图象与直线 y=x 的交点分别为xA(k , k )B(- k ,- k )由AB =8,得k=8,.∴f 2(x)=8.故f(x)=x 2+8.xxx【证法一】f(x)=f(a),得x 2+8=a 2+,a 882 28即=-x+a+.xa8和 在同一坐标系内作出f 2(x)=8xf 3(x)= -x 2+a 2+a的大概图象,此中f 2(x)的图象是以坐标轴为渐近线 ,且位于第一、三象限的双曲线,f 3(x)与的图象是以(0,a 2 + 8 )为极点,张口向下的抛物线.a所以,f 2(x)与f 3(x)的图象在第三象限有一个交点 , 即f(x)=f(a)有一个负数解 . 又∵f 2(2)=4,f 3(2)=-4+a 2+8a当a>3时,.f 3(2)-f 2(2)=a 2+8-8>0,a∴当a>3时,在第一象限 f 3(x)的图象上存在一点 (2,f(2))在f 2(x)图象的上方. ∴f 2(x)与f 3(x)的图象在第一象限有两个交点 ,即f(x)=f(a)有两个正数解 . 所以,方程f(x)=f(a)有三个实数解.【证法二】由 f(x)=f(a),得x 2+8=a 2+8,x a8即(x -a)(x+a -)=0,得方程的一个解x 1=a.ax方程x+a -8=0化为ax 2+a 2x -8=0,ax 4由a>3,△=a+32a>0,得a 2a 4 32aa 2 a 4 32a ,x 2=2a,x 3=2a∵x 2<0,x 3>0,∴x 1≠x≠x2,且x 23.a 2a 4 32a2a 432a 4若x 1=x 3,即a=,则3a=,a=4a,2a得a=0或a=34,这与a>3矛盾,∴x1≠x3.故原方程f(x)=f(a)有三个实数解.21.【证明】(1)∵棱台DEF-ABC与棱锥P-ABC的棱长和相等,DE+EF+FD=PD+OE+PF.又∵截面DEF∥底面ABC,DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°,∴P-ABC是正四周体.【解】(2)取BC的中点M,连拉PM,DM.AM.BC⊥PM,BC⊥AM,∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D-BC-A的平面角.由(1)知,P-ABC的各棱长均为1,3∴PM=AM=,由D是PA的中点,得2AD33sin∠DMA=,∴∠DMA=arcsin.AM33(3)存在知足条件的直平行六面体.棱台DEF-ABC的棱长和为定值6,体积为V.1,底面相邻两边夹角为α,设直平行六面体的棱长均为21则该六面体棱长和为sinα=V.6,体积为8∵正四周体P-ABC的体积是22,∴0<V<,0<8V<1.可知α=arcsim(8V) 1212故结构棱长均为1,底面相邻两边夹角为arcsim(8V)的直平行六面体即知足要求.2。
2024年上海市高考数学试卷
2024年上海市高考数学试卷(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000道题,C题库有3000道题.小申已完成所有题,他A题库的正确率是0.92,B题库的正确率是答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],a n a n q n -1a n a n +1a 1q n -1a 1q nA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n +1a n a 2a 1q n -1a 21q n -21q n -2(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:AA.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )D.存在f(x)在x=-1处取到极小值答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,√2所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√A -A P 2O 2V圆锥131332√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;x 2y 2b2(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.2√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,√3√2√3√33解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A 1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b2Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2m 210b2m 210b 210310310√3√33(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n a n q n -1a n a n +1a 1q n -1a 1q n a n +1a n a 2a 1q n -1a 21q n -21q n -2A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:A解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数D.存在f(x)在x=-1处取到极小值(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,√2√A -A P 2O 2V圆锥131332因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.x 2y 2b22√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,].√3√2√3√3√303解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b24m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,m 210b2m 210b 210310310√3√33(2024•上海)对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)2+(f(x)-b)2,若存在P(x 0,f(x 0)),使s(x 0)是s(x)的最小值,则称点P是函数f(x)到点M的“最近点”.(1)对于f (x )=(x>0),求证:对于点M(0,0),存在点P,使得点P是f(x)到点M的“最近点”;(2)对于f(x)=e x ,M(1,0),请判断是否存在一个点P,它是f(x)到点M的“最近点”,且直线MP与f(x)在点P处的切线垂直;(3)已知f(x)存在导函数f′(x),函数g(x)恒大于零,对于点M 1(t-1,f(t)-g(t)),点M 2(t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是f(x)到点M 1与点M 2的“最近点”,试判断f(x)的单调性.1x答案:(1)证明过程见解析;(2)存在,P(0,1);(3)f(x)严格单调递减.解析:(1)代入M(0,0),利用基本不等式即可;(2)由题得s(x)=(x-1)2+e 2x ,利用导函数得到其最小值,则得到P,再证明直线MP与切线垂直即可;(3)根据题意得到s 1'(x 0)=s 2'(x 0)=0,对两等式化简得f ′()=-,再利用“最近点”的定义得到不等式组,即可证明x 0=t,最后得到函数单调性.x 01g (t )解答:解:(1)当M(0,0)时,s (x )=(x -0+(-0=+≥22,当且仅当=即x=1时取等号,故对于点M(0,0),存在点P(1,1),使得该点是M(0,0)在f(x)的“最近点”;(2)由题设可得s(x)=(x-1)2+(e x -0)2=(x-1)2+e 2x ,则s'(x)=2(x-1)+2e 2x ,因为y=2(x-1),y=2e 2x 均为R上单调递增函数,则s'(x)=2(x-1)+2e 2x 在R上为严格增函数,而s'(0)=0,故当x<0时,s'(x)<0,当x>0时,s'(x)>0,故s(x)min =s(0)=2,此时P(0,1),而f'(x)=e x ,k=f'(0)=1,故f(x)在点P处的切线方程为y=x+1,而==-1,故k MP •k=-1,故直线MP与y=f(x)在点P处的切线垂直.(3)设(x )=(x -t +1+(f (x )-f (t )+g (t ),(x )=(x -t -1+(f (x )-f (t )-g (t ),而s 1'(x)=2(x-t+1)+2(f(x)-f(t)+g(t))f'(x),s 2'(x)=2(x-t-1)+2(f(x)-f(t)-g(t))f'(x),若对任意的t∈R,存在点P同时是M 1,M 2在f(x)的“最近点”,设P(x 0,y 0),则x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,因为两函数的定义域均为R,则x 0也是两函数的极小值点,则存在x 0,使得s 1'(x 0)=s 2'(x 0)=0,即s 1'(x 0)=2(x 0-t+1)+2f′(x 0)[f(x 0)-f(t)+g(t)]=0,①s 2'(x 0)=2(x 0-t-1)+2f′(x 0)[f(x 0)-f(t)-g(t)]=0,②由①②相等得4+4g(t)•f'(x 0)=0,即1+f'(x 0)g(t)=0,即f ′()=-,又因为函数g(x)在定义域R上恒正,则f ′()=-<0恒成立,接下来证明x 0=t,因为x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,则s 1(x 0)≤s(t),s 2(x 0)≤s(t),即 (-t +1+(f ()-f (t )+g (t )≤1+(g (t ),③(-t -1+(f ()-f (t )-g (t )≤1+(g (t ),④③+④得2(-t +2+2[f ()-f (t )+2(t )≤2+2(t ),即(-t +(f ()-f (t )≤0,因为(-t ≥0,(f ()-f (t )≥0)21x )2x 21x 2x 21x 2k MP 0-11-0s 1)2)2s 2)2)2x 01g (t )x 01g (t )x 0)2x 0)2)2x 0)2x 0)2)2x 0)2x 0]2g 2g 2x 0)2x 0)2x 0)2x 0)2则,解得x 0=t,则f ′(t )=-<0恒成立,因为t的任意性,则f(x)严格单调递减.{-t =0f ()-f (t )=0x 0x 01g (t )。
2024年上海高考数学试题+答案详解
2024年上海高考数学试题+答案详解(试题部分)一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A = .2.已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.已知,x ∈R 则不等式2230x x −−<的解集为 .4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .5.已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 .6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 .7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 . 10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 .11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠= (精确到0.1度)12.无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=−∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是 . 二、单选题13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势 14.下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x xC .22sin cos x x +D .22sin cos x x −15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,ΩP P P ∈,存在不全为0的实数123,,λλλ,使得1122330OP OP OP λλλ++=.已知(1,0,0)Ω∈,则(0,0,1)Ω∉的充分条件是( )A .()0,0,0∈ΩB .()1,0,0−∈ΩC .()0,1,0∈ΩD .()0,0,1−∈Ω16.已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈−<R ,在使得[]1,1M =−的所有()f x 中,下列成立的是( )A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x −处取到极小值三、解答题17.如图为正四棱锥,P ABCD O −为底面ABCD 的中心.(1)若5,AP AD ==POA 绕PO 旋转一周形成的几何体的体积; (2)若,AP AD E =为PB 的中点,求直线BD 与平面AEC 所成角的大小. 18.若()log (0,1)a f x x a a =>≠.(1)()y f x =过()4,2,求()()22f x f x −<的解集;(2)存在x 使得()()()12f x f ax f x ++、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少? (2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d −=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)20.已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.21.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =−+−,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”. (1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”; (2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t −−,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2024年上海高考数学试题+答案详解(答案详解)一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A = . 【答案】{}1,3,5【解析】由题设有{}1,3,5A =, 答案:{}1,3,52.已知()0,1,0x f x x >=≤⎪⎩则()3f = .【解析】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.已知,x ∈R 则不等式2230x x −−<的解集为 . 【答案】{}|13x x −<<【解析】方程2230x x −−=的解为=1x −或3x =, 故不等式2230x x −−<的解集为{}|13x x −<<, 答案:{}|13x x −<<.4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【解析】因为()f x 是奇函数,故()()0f x f x −+=即()330x a x a ++−+=,故0a =, 答案:0.5.已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 . 【答案】15【解析】//a b ,256k ∴=⨯,解得15k =. 答案:15.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 . 【答案】10【分析】令1x =,解出5n =,再利用二项式的展开式的通项合理赋值即可. 【解析】令1x =,(11)32n ∴+=,即232n =,解得5n =, 所以5(1)x +的展开式通项公式为515C r rr T x−+=⋅,令52r -=,则3r =,32245C 10T x x ==∴.答案:10.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .【答案】【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为答案:8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 【答案】0.85【解析】根据题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=. 答案:0.85.9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 . 【答案】2【解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+−+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m ∈R ,22323101b m b b b b ⎧+=⎪⎪+∴⎨−⎪=⎪+⎩,解得2m =,答案:2.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 . 【答案】329【解析】根据题意知集合中且至多只有一个奇数,其余均是偶数. 首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有29P 72=个;②当个位不为0时,则个位有14C 个数字可选,百位有18C 256=个数字可选,十位有18C 个数字可选,由分步乘法这样的偶数共有111488C C C 256=,最后再加上单独的奇数,所以集合中元素个数的最大值为722561329++=个. 答案:329.11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠= (精确到0.1度)【答案】7.8︒【分析】设BCA θ∠=,在DCA △和BCA V 中分别利用正弦定理得到sin sin CA CD D CAD =∠,()sin16.5sin 16.5CA CB θ=+。
2024年上海卷高考数学真题(含部分解析)
2024年普通高等学校招生全国统一考试 上海卷数学试卷1.设全集,集合,则_________.2.已知,_________.3.已知,的解集为_________.4.已知,若是奇函数,,_________.5.已知,,,,则k 的值为_________.6.在的二项展开式中,若各项系数和为32,则项的系数为_________.7.已知抛物线上有一点P 到准线的距离为9,那么P 到x 轴的距离为_________.8.某校举办科学竞技比赛,有A 、B 、C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是_________.9.已知虚数z ,其实部为1,且,则实数m 为_________.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值_________.11.已知A 在O 正东方向,B 在O 的正北方向,O 到A 、B 距离相等,,,则_________.(精确到0.1度)12.等比数列首项,,记,若对任意正整数n ,是闭区间,则q 的范围是_________.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是(){1,2,3,4,5}U ={2,4}A =A=0()1,0x f x x >=≤⎪⎩(3)f =x ∈R 2230x x --<3()f x x a =+()f x x ∈R a =k ∈R (2,5)a =(6,)b k = //a b (1)n x +2x 24y x =2()z m m z+=∈R 16.5BTO ∠=︒37ATO ∠=︒BOT ∠={}n a 10a >1q >[][]{}121ln ,,,n n x y x y a a a a +=-∈ ∣lnA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势14.下列函数的最小正周期是的是( )A. B. C. D.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,,,使得.已知,则的充分条件是( )A. B. C. D.16.定义集合,在使得的所有中,下列成立的是( )A.是偶函数 B.在处取最大值C.严格增D.在处取到极小值17.如图为正四棱锥,O 为底面ABCD 的中心.(1)若,绕PO 旋转一周形成的几何体的体积;(2)若,E 为PB 的中点,求直线BD 与平面AEC 所成角的大小.18.若(,).(1)过,求的解集;(2)存在x 使得、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580()f x 2πsin cos x x+sin cos x x22sin cos x x+22sin cos x x-Ω123,,P P P ∈Ω1λ2λ3λ1122330OP OP OP λλλ++= (1,0,0)∈Ω(0,0,1)∉Ω(0,0,0)(1,0,0)-(0,1,0)(0,0,1)-()(){}0000,,,()M x x x x f x f x =∈∈-∞<R ∣[1,1]M =-()f x ()f x ()f x 2x =()f x ()f x 1x =-P ABCD -5AP =AD =POA △AP AD =()log a f x x =0a >1a ≠()y f x =(4,2)(22)()f x f x -<(1)f x +()f ax (2)f x +人,得到日均体育锻炼时长与学业成绩的数据如下表所示:优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?附:,.20.双曲线,,,为左右顶点,过点的直线l 交双曲线于两点P 、Q ,且点P 在第一象限.(1)若时,求b .(2)若为等腰三角形时,求点P 的坐标.(3)过点Q 作OQ 延长线交于点R ,若,求b 取值范围.21.对于一个函数和一个点,令,若是取到最小值的点,则称P 是M 在的“最近点”.(1)对于,,求证,对于点,存在点P ,使得P 是M 在的“最近点”;(2)对于,,,请判断是否存在一个点P ,它是M 在最近点,且直线MP 与在点P 处的切线垂直;(3)设存在导函数,且在定义域R 上恒正,设点,.若对任意的,都存在点P ,满足P 是的最近点,也是的最近点,试求的单调性.[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)95%22()()()()()n ad bc a b c d a c b d χ-=++++()2 3.8410.05P χ≥≈222:1y x bΓ-=(0)b >1A 2A (2,0)M -Γe 2=b =2MA P △Γ121A R A P ⋅=()f x (,)M a b 22()()(())s x x a f x b =-+-()()00,P x f x ()s x ()f x 1()f x x=(0,)D =+∞(1,0)M ()f x ()e x f x =D =R (1,0)M ()f x ()f x ()f x ()g x 1(1,()())M t f t g t --2(1,()())M t f t g t ++t ∈R 1M 2M ()f x参考答案3.答案:4.答案:0解析:由题可知,,则.5.答案:15解析:由题可知,,则.6.答案:10解析:由题可知,展开式中各项系数的和是,所以,该二项式的通项公式是,令,,得.7.答案:解析:设P 坐标为,P 到准线的距离为9,即,,代入抛物线方程,可得,则P 到x 轴的距离为解析:由题可知,A 题库占比为,B 题库占比为,C 题库占比为,.9.答案:2解析:设,所以,因为,所以,解得,所以.10.答案:329解析:由题可知,集合A 中每个元素都互异的,且元素中最多有一个奇数,剩余全是偶数,先研究集合中(0)0F =256k =⨯(1)32nx +=515C 1rr r r T x -+=⋅⋅3r =2201b b b -=+2211121m b =+=+=+(1,3)-0a =15k =5n =52r -=35C 10=()00,x y 019x +=08x =0y =±5121314511170.920.860.72123420P =⨯+⨯+⨯=1i(0)z b b =+≠222222(1i)221i 1i 1i 1i 111b b z b b b z b b b b ⋅-⎛⎫+=++=++=++- ⎪++++⎝⎭m ∈R 1b =±无重复数字的三位偶数:(1)若个位为0,这样的偶数有种;(2)若个位不为0,这样的偶数有种;所以集合元素个数最大值为种.11.答案:解析:不妨设,,,则所以在中,①在中,②在中,③①②③联立.12.答案:解析:由题不妨设,若x ,y 均在,则有,若x ,y 均在,则有,若x ,y 分別在两个区间,则,又因为,总有ln 是闭区间,则恒成立即可,化简得,所以有恒成立.13.答案:C解析:成对数据相关分析中,若相关系数为正数,当x 的值由小变大,y 的值具有由小变大的变化趋垫,故A ,B ,D 选项错误,答案选C.14.答案:A解析:对于A ,,则,满足条件,故A 正确;对于B ,,则,不满足条件,故B 错误;对于C ,,为常值函数,则不存在最小正周期,不满足条件,故C 错误;对于D ,,则,不满足条件,故D 错误;故答案选A.15.答案:C111488C C C 256⋅⋅=7.8︒BT b =AB =222)2cos53.5b c bc =+-︒sin16.5sin a bBOT=︒∠()sin 37sin 90a bBOT =︒︒-∠1(2)0nq q q --+≥2πT=2ππ2T==22sin cos cos 2x x x -=-2972P =256721329++=OA OB a ==AT c =ABT △OBT △OAT △7.8BOT ∠≈︒[2,)+∞x y >[]12,a a []210,x y a a -∈-[]1,n n a a +[]10,n n x y a a +-∈-[]211,n n x y a a a a +-∈--1q >21n n n a a a a +-≤-2q ≥πsin cos 4x x x x x ⎫⎛⎫+=+=+⎪ ⎪⎪⎝⎭⎭1sin cos sin 22x x x =22sin cos 1x x +=2ππ2T ==解析:因为,,不全为0,,所以三个向量无法构成三维空间坐标系的一组基,又因为,所以对于A ,三者可以构成一组基,故不能推出,故A 错误;对于B ,若,均属于,且,共线,所以可以属于,此时三者不共面,故B 错误;对于C ,显然,三者可以构成一组基,与条件不符合,故可以推出,故C 正确;对于D ,三者无法构成一组基,故不能推出,故D 错误.故答案选C.16.答案:D解析:时,,又因为,所以,当且时,恒成立,说明在上,函数单调递增,故A 错误;对于B ,且在上,函数单调递增,故函数在上最大值为,若函数在时,,则M 的集合不会是,所以在1处取到极大值,在2处不一定取最大值,故B 错误;对于C ,在时,若函数严格增,则集合M 的取值不会是,而是全体定义域,故C 错误.对于D ,因为当时,,所以左侧不是单调递减,若左侧单调递增,或者在某一段单调递增,则M 的集合不会是,所以在左侧相邻一段是常函数,又因为在上,函数单调递增,故D 正确.17.答案:(1)(2)解析:(1)因为是正四棱锥,所以底面ABCD 是正方形,且底面ABCD ,因为,因为,所以,所以绕OP 旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以.1λ(1,0,0)-(1,0,0)(0,0,1)(0,0,1)∈Ω0x x <[1,1]M =-0[1,1]x ∈-()0()f x f x <()(1)f x f <-()(1)f x f <-[1,1]-[1,1]-π4OP ⊥3AO OD OB OC ====4PO ==211π3412π33V Sh ==⨯⨯=圆锥2λ3λ1122330OP OP OP λλλ++=(1,0,0)∈Ω(0,0,1)∈Ω(1,0,0)Ω(1,0,0)-Ω(0,0,1)Ω∉()0()f x f x <()(1)f x f <-[1,1)x ∈-[1,1]-[1,1]-(,1]-∞(1)f ()f x 1x >()(1)f x f >[1,1]-1x <-()f x [1,1]-1x <-1-1-12πP ABCD -AD =5AP =POA △(2)如图建立空间直角坐标系,因为,由题知是正四棱锥,所以该四棱锥各棱长相等,设,则,,则可得,,,,,,,故,,设为平面AEC 的法向量,则,令,则,,所以,则,设直线BD 与面AEC 所成角为,因为,,所以.18.答案:(1)(2)解析:(1)由过可得,则,又,故,AP AD =P ABCD-AB =AO OD OB OC a ====PO a ==(0,0,0)O (0,0,)P a (0,,0)A a -(,0,0)B a (0,,0)C a (,0,0)D a -,0,22aa E ⎛⎫⎪⎝⎭(2,0,0)BD a =- (0,2,0)AC a = ,,22a a AE a ⎛⎫⎪⎝⎭ ()111,,n x y z =11112000022a y n AC a ax a y z n AE ⎧⋅=⎧⋅=⎪⎪⇒⎨⎨⋅+⋅+⋅=⋅=⎪⎪⎩⎩11x =10y =11z =-(1,01)n =-cos ,||||n BD n BD n BD ⋅〈〉===⋅θsin |cos ,|n BD θ=〈〉= π0,2θ⎡⎤∈⎢⎥⎣⎦π4θ=(1,2)1a >()y f x =(4,2)log 42a =242a a =⇒=±0a >2a =因为在上是严格增函数,,所以解集为.(2)因为、、成等差数列,所以,即有解,化简可得,得且,则在上有解,又,故在上,,即或,又,所以.19.答案:(1)12500人(2)(3)学业成绩与锻炼时长不小于1小时且小于2小时有关解析:(1)580人中体育锻炼时长不小于1小时人数占比该地区29000名初中学生中体育锻炼时长不小于1小时的人数约为人;(2)该地区初中学生锻炼平均时长约为:;(3)[1,2)其他总数优秀455095不优秀177308485①提出原假设:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关.log (1)log (2)2log ()a a a x x ax +++=2(1)(2)()x x ax ++=22(1)(2)x x a x ++=222(1)(2)231311248x x x x x x ++⎛⎫=++=+- ⎪⎝⎭22(1)(2)3120148x x x ++⎛⎫>+-= ⎪⎝⎭1a >1a >423113740272558058P +++++==10.50.511 1.5 1.522 2.5(5134)(44147)(42137)(340)(127)58022222++++⎡⎤⨯++⨯++⨯++⨯++⨯+⎢⎥⎣⎦2()log f x x =(0,)+∞(22)()02212f x f x x x x -<⇒<-<⇒<<(1,2)(1)f x +()f ax (2)f x +(1)(2)2()f x f x f ax +++=()2log (1)(2)log a a x x ax ++=1020000,1x x x ax a a +>⎧⎪+>⎪⇒>⎨>⎪⎪>≠⎩(0,)+∞(0,)+∞211a a >⇒<-0a >0.9h25290001250058⨯=270.9h 29=≈0H②确定显著性水平,③④否定原假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.20.答案:(1)(2)(3)解析:(1)因为,即,所以.因为,所以.因为,所以,所以.(2)因为为等腰三角形,①若为底,则点P 在直线时,与P 在第一象限矛盾,故舍去.②若为底,则,与矛盾,故舍去.③若MP 为底,则,设,,.,即,又因为,得,很,得,.(3)由,设,,则,设直线0.05α=22580(4530817750) 3.976 3.841(4550)(177308)(45177)(50308)χ⨯⨯-⨯=≈>+⨯+⨯+⨯+(2,P 2e =224c a =24c =23b =2MA P △12x =-2MP MA =22MA PA =00x >3=()2 3.8410.05P χ≥≈b =b ∈2ca=21a =222a b c +=b =2MA 2A P 2MP MA >()00,P x y 00y >()220019x y -+=2200183y x -=()()220081193x x -+-⨯=200116320x x --=02x =0y =(2,P 1(1,0)A -()11,P x y ()22,Q x y ()22,R x y --1:2l x my m b ⎛⎫=->⎪⎝⎭联立得,则,,,又由,得即,即化简后可得到再由韦达定理得,化简:所以得,又,得.21.答案:(1)见解析(2)存在点使直线MP 于在点P 处的切线垂直(3)略解析:(1)证明:,当且仅当即时取到最小值,所以对于点存在点使得P 是M 在的最近点.(2),0负0正严格减极小值严格增所以当时,取到最小值,此时点,,,222121x my m b y x b ⎧⎛⎫=-> ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩()222221430b m y b my b --+=21222212224131b m y y b m b y y b m ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩()1221,A R x y =-+- ()2111,A P x y =- 121A R A P ⋅=()()2112111x x y y -+--=()()2112111x x y y --+=-()()2112331my my y y --+=-()()2121213100m y y m y y +-++=()()22222231121010b m m b b m +-+-=2223100b m b +-=22221031b m b b-=>23b <0b >b ∈(0,1)P ()f x 222211()(0)02s x x x x x ⎛⎫=-+-=+≥= ⎪⎝⎭221x x=1x =(0,0)M (1,1)P ()f x ()2222()(1)e 0(1)e xx s x x x =-+-=-+2()2(1)2e xs x x '=-+(,0)-∞(0,)+∞()s x '()s x 0x =()s x (0,1)P ()e xf x '=0e 1k ==在点P 处的切线为,,此时,所以存在点使直线MP 于在点P 处的切线垂直.()f x 1y x =+01110MP k -==--1MP k k ⋅=-(0,1)P ()f x。
高考上海理科数学试题及答案(word解析版)
列的前两项为 2, 0;或 2, 1;或 3, 0;或 3, 为 2, 0,
1;若 n 3 , 由 S3
2,3 , 可得数列的前三项
0;或 2, 0, 1;或 2, 1, 0;或 2, 1, 3, 1, 1;
若 n 4 , 由 S4 2,3 , 可得数列的前四项为 或 2, 0,
1;或 3, 0, 0;或 3, 0, 1;或 3, 1, 0;或 2, 0, 0, 0;或 2, 0, 0, 1;或 2, 0, 1, 0;
3 , 则该正四棱柱的高等于
.
【答案】 2 2
tan DBD1 DD1
【解析】由题意得
BD
【点评】本题考查了正四棱柱的性质,
2 DD1 2 DD1 2 2
3 32 3
.
正四棱柱的高的计算, 考查了线面角的定义,
关键是找到直线与平面
所成的角.
( 7)【 2019 年上海, 理 7, 4 分】方程 3sin x 1 cos2x 在区间 0,2 上的解为
2)r x
8 4r
( 2)r C8r x3 3 , 求常数项则令
8 3
4 r
3
0 , 所以 r 2 , 所以 T3 112 .
【点评】本题主要考查二项式定理的应用,
二项式展开式的通项公式, 求展开式中某项的系数, 二项式系数
的性质, 属于中档题.
( 9)【 2019 年上海, 理 9, 4 分】已知 ABC的三边长分别为 3, 5, 7, 则该三角形的外接圆半径等于
( A )充分非必要条件 【答案】 A
( B)必要非充分条件
( C)充要条件
(D )既非充分也非必要条件
【解析】 a 1 a2 1,a2 1 a 1或 a 1, 所以是充分非必要条件, 故选 A .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海高考数学(理科)真题一、解答题(本大题共有14题,满分56分) 1. 设x ∈R ,则不等式31x -<的解集为 【答案】(2,4)【解析】131x -<-<,即24x <<,故解集为(2,4)2. 设32iiz +=,其中i 为虚数单位,则Im z =【答案】3-【解析】i(32i)23i z =-+=-,故Im 3z =-3. 1l :210x y +-=, 2l :210x y ++=, 则12,l l 的距离为25【解析】22112521d +==+4. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米) 【答案】1.765. 已知点(3,9)在函数()1x f x a =+的图像上,则()f x 的反函数1()f x -= 【答案】2log (1)x -【解析】319a +=,故2a =,()12x f x =+∴2log (1)x y =-∴12()log (1)f x x -=-6. 如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为2arctan 3, 则该正四棱柱的高等于 【答案】2【解析】32BD =12223DD BD =⋅=7. 方程3sin 1cos2x x =+在区间[0,2π]上的解为【答案】π5π,66x =【解析】23sin 22sin x x =-,即22sin 3sin 20x x +-=∴(2sin 1)(sin 2)0x x -+=∴1sin 2x =∴π5π,66x =8. 在2nx ⎫⎪⎭的二项式中,所有项的二项式系数之和为256,则常数项等于【答案】112【解析】2256n =, 8n =通项88433882()(2)r rr r r r C x C x x--⋅⋅-=-⋅取2r =常数项为228(2)112C -=9. 已知ABC 的三边长为3,5,7,则该三角形的外接圆半径等于【解析】3,5,7a b c ===,2221cos 22a b c C ab +-==-∴sin C =∴2sin c R C ==10. 设0,0a b >>,若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是【答案】(2,)+∞【解析】由已知,1ab =,且a b ≠,∴2a b +>11. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*n ∈N ,{2,3}n S ∈,则k 的最大值为 【答案】412. 在平面直角坐标系中,已知(1,0)A , (0,1)B -, P 是曲线y =,则BP BA ⋅的取值范围 是【答案】[0,1+【解析】设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =, (cos ,sin 1)BP αα=+πcos [0,1sin 1)14BP BA ααα⋅=++=+∈+13. 设,,a b ∈R , [0,2π)c ∈,若对任意实数x 都有π2sin(3)sin()3x a bx c -=+,则满足条件的有序实数组(,,)a b c 的组数为 【答案】4【解析】(i)若2a =若3b =,则5π3c =; 若3b =-,则4π3c =()若2a =-,若3b =-,则π3c =;若3b =,则2π3c =共4组14. 如图,在平面直角坐标系xOy 中,O 为正八边形128A A A 的中心,1(1,0)A ,任取不同的两点,i j A A ,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是【答案】528 【解析】285528C =二、选择题(本大题共有4题,满分20分)15. 设a ∈R ,则“1a >”是“21a >”的( ) ﻩA. 充分非必要条件 B. 必要非充分条件ﻩ C. 充要条件 ﻩD. 既非充分也非必要条件 【答案】A16. 下列极坐标方程中,对应的曲线为右图的是( ) A. 65cos ρθ=+ﻩ B. 65sin ρθ=+ ﻩC. 65cos ρθ=-ﻩ D. 65sin ρθ=- 【答案】D【解析】π2θ=-时,ρ达到最大17. 已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得*2()n S S n <∈N 恒成立的是( )A. 10a >, 0.60.7q << ﻩB. 10a <, 0.70.6q -<<- ﻩC . 10a >, 0.70.8q <<ﻩﻩﻩD. 10a <, 0.80.7q -<<- 【答案】B【解析】1(1)1n n a q S q -=-, 11a S q =-, 11q -<<2n S S <,即1(21)0n a q -> 若10a >,则12nq >,不可能成立若10a <,则12nq <,B 成立18. 设(),(),()f x g x h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +,()()f x h x +,()()g x h x +均为增函数,则(),(),()f x g x h x 中至少有一个为增函数;②若()()f x g x +,()()f x h x +,()()g x h x +均是以T 为周期的函数,则(),(),()f x g x h x 均是以T 为周期的函数,下列判断正确的是( ) A. ①和②均为真命题 ﻩﻩﻩﻩB. ①和②均为假命题ﻩC. ①为真命题,②为假命题 ﻩﻩD. ①为假命题,②为真命题 【答案】D【解析】①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩ ②()()()()f x g x f x T g x T +=+++()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+ ∴②正确 故选D三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19. (本题满分12分)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AA O O 的同侧 (1) 求三棱锥111C O A B -的体积(2) 求异面直线1B C 与1AA 所成角的大小 【解析】(1) 连11O B ,则111113AO A B B π∠==∴111O A B 为正三角形∴1113O A B S∴1111111133C O A B O A B V OO S -=⋅=(2) 设点1B 在下底面圆周的射影为B ,连1BB ,则11BB AA ∥∴1BB C ∠为直线1B C 与1AA 所成角(或补角) 111BB AA == 连,,BC BO OC113AB A B π==, 23AC π=∴3BC π=∴3BOC π∠=∴BOC 为正三角形 ∴1BC BO ==∴11tan 1BCBB C BB ∠== ∴145BB C ∠=︒∴直线1B C 与1AA 所成角大小为45︒20.(本题满分14分)有一块正方形菜地EFGH , EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
于是,菜 地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点, 点F 的坐标为(1,0),如图(1) 求菜地内的分界线C 的方程(2) 菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为83。
设M 是C上纵坐标为1的点,请计算以EH 为一边,另一边过点M 的矩形的面积,及五边形EOMGH 的面积,并 判断哪一个更接近于1S 面积的经验值【解析】(1) 设分界线上任一点为(,)x y ,依题意221(1)x x y +=-+可得2(01)y x x =≤≤(2) 设00(,)M x y ,则01y =∴200144y x ==∴设所表述的矩形面积为3S ,则315(1)422S ⨯+==设五边形EMOGH 面积为4S ,则43512113111144224OMPMGQS S SS=-+=-⨯⨯+⨯⨯= 13851326S S -=-=, 411181143126S S -=-=<∴五边形EOMGH 的面积更接近1S 的面积21.(本题满分14分)本题共2个小题,第1小题满分6分,第2小题满分8分双曲线2221(0)y x b b-=>的左、右焦点分别为1F 、2F ,直线l 过2F 且与双曲线交于,A B 两点(1) 若l 的倾斜角为2π,1F AB 是等边三角形,求双曲线的渐近线方程(2) 设b =若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率【解析】(1)由已知1(F , 2F取x =得2y b =122F F A =∵12F F =, 22F A b =∴2即4222344(32)(2)0b b b b --=+-=∴b =∴渐近线方程为y =(2)若b 2213y x -= ∴1(2,0)F -, 2(2,0)F设11(,)A x y , 22(,)B x y ,则111(2,)F A x y =+, 122(2,)F B x y =+, 2121(,)AB x x y y =--∴111212(4,)F A F B x x y y +=+++222211212121()4()0F A F B AB x x x x y y +⋅=-+-+-= (*)∵22221212133y y x x -=-=∴222221213()y y x x -=- ∴代入(*)式,可得2221214()4()0x x x x -+-= 直线l 的斜率存在,故21x x ≠∴121x x +=-设直线l 为(2)y k x =-,代入2233x y -= 得2222(3)4(43)0k x k x k -+-+=∴230k -≠,且4222164(3)(43)36(1)0k k k k ∆=+-+=+>2122413k x x k +=-=--∴23k =∴k =∴直线l 的斜率为22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分已知a ∈R ,函数21()log ()f x a x=+(1) 当5a =时,解不等式()0f x >(2) 若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰有一个元素,求a 的取值范围(3) 设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值和最小值的差不超过1,求a的取值范围【解析】(1)21log (5)0x +>151x ⇔+>410(41)0x x x x+⇔>⇔+> ∴不等式的解为{|0x x >或1}4x <-(2)依题意,221log ()log [(4)25]a a x a x+=-+-∴1(4)250a a x a x+=-+->ﻩ ① 可得2(4)(5)10a x a x -+--= 即(1)[(4)1]0x a x +--= ②当4a =时,方程②的解为1x =-,代入①式,成立 当3a =时,方程②的解为1x =-,代入①式,成立当3a ≠且4a ≠时,方程②的解为11,4x a =--若1x =-为方程①的解,则110a a x+=->,即1a >若14x a =-为方程①的解,则1240a a x+=->,即2a >要使得方程①有且仅有一个解,则12a <≤综上,若原方程的解集有且只有一个元素,则a 的取值范围为12a <≤或3a =或4a = (3)()f x 在[,1]t t +上单调递减 依题意,()(1)1f t f t -+≤即2211log ()log ()11a a t t +-+≤+ ∴112()1a a t t +≤++,即1211(1)t a t t t t -≥-=++设1t r -=,则1[0,]2r ∈21(1)(1)(2)32t r rt t r r r r -==+---+ 当0r =时,2032rr r =-+ 当102r <≤时,212323r r r r r=-++- ∵函数2y x x=+在递减∴219422r r +≥+=∴112293332r r ≤=+-- ∴a 的取值范围为23a ≥23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分若无穷数列{}n a 满足:只要*(),p q a a p q ∈=N ,必有11p q a a ++=,则称{}n a 具有性质P . (1) 若{}n a 具有性质P . 且11a =, 22a =, 43a =, 52a =, 67821a a a ++=,求3a ;(2) 若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由; (3) 设{}n b 是无穷数列,已知1sin n n n a b a +=+*()n ∈N ,求证:“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”. 【解析】(1) 252a a ==∴36a a =∴473a a == ∴582a a ==∴6782116a a a =--= ∴316a =(2)设{}n b 的公差为d ,{}n c 的公差为q ,则0q > 51480b b d -== ∴20d =∴2019n b n =- 451181c q c == ∴13q =∴51()3n n c -=∴512019()3n n n n a b c n -=+=-+∵182a =, 582a =而2212748a =+=, 6130410133a =+=15a a =但62a a ≠故{}n a 不具有性质P(3) 充分性:若{}n b 为常数列,设n b C = 则1sin n n a C a +=+若存在,p q 使得p q a a =,则11sin sin p p q q a C a C a a ++=+=+=, 故{}n a 具有性质P必要性:若对任意1a ,{}n a 具有性质P 则211sin a b a =+设函数1()f x x b =-, ()sin g x x =由(),()f x g x 图像可得,对任意的1b ,二者图像必有一个交点 ∴一定能找到一个1a ,使得111sin a b a -= ∴2111sin a b a a =+= ∴1n n a a +=故1211sin sin n n n n n n b a a a a b ++++=-=-= ∴{}n b 是常数列。