RS485总线信号常见故障排查与处理方法
RS-485总线可靠性设计参考及常见故障排查方法
RS-485总线可靠性设计参考及常见故障排查方法现场总线技术作为自动化领域技术重点组成部分之一,被誉为自动化领域的计算机局域网,它是连接设置在控制现场的仪器仪表与设置在控制室内的控制设备的数字化、串行、多站通信的网络。
其关键标志是能支持双向、多节点、总线式的全数字通信。
它使传统的控制系统结构产生了革命性的变化,对自控系统朝着智能化、数字化、信息化、网络化、分散化的方向迈进起着重要作用。
RS-485作为最常用的现场总线技术采用平衡式发送,差分式接收的数据收发器来驱动总线,因其硬件设计简单、控制方便、成本低廉等优点被广泛应用于工厂自动化、工业控制、能源安全监测、水利自动报测等领域。
但RS-485总线在一些设计及使用过程中的细节问题处理不当时也会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
RS-485接口电路的硬件设计1. 总线匹配⏹方案一:在位于总线两端的差分端口,A+与B-之间跨接120Ω匹配电阻,减少由于不匹配而引起的反射、吸收噪声,抑制噪声干扰。
但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统;⏹方案二:比较省电的匹配方案是RC匹配,利用一只电容C隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折中;⏹方案三:采用二极管匹配,利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。
2. RO及DI端配置上拉电阻异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。
为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO外接10kΩ上拉电阻。
3. 保证上电时芯片状态正确对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU 引脚直接进行控制,以防止MCU上电时对总线的干扰,保证系统上电时的RS-485芯片处于接收输入状态。
4. 总线隔离RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口A+、B-与总线之间应加以隔离。
RS485常见的故障与解决方法
RS485常见的故障与解决方法一、如何预防故障的发生呢?为减少通信故障提出下面几条建议。
1、建议用户使用和购买厂家提供的485转换器或者厂家指定推荐品牌的485转换器。
2、厂家会对与其配套的485转换器做大量的测试工作,并且会要求485转换器生产厂家按照其固定的性能参数进行生产和品质检测,所以它与门禁设备具备较好的兼容性。
千万不要贪图便宜购买杂牌厂家的485转换器。
3、严格按照485总线的施工规范进行施工,杜绝任何侥幸心理。
4、对线路较长、负载较多的485总线工程采用科学的、有预留的解决方案。
5、如果通讯距离过长,如超500米,建议采用中继器或485HUB来解决。
6、如果负载数过多,如一条总线上超过30台,建议采用485HUB来解决问题。
7、现场调试带齐调试设备。
现场调试一定要随身携带几个可以接长距离和多负载的转换器、一台常用的电脑笔记本、测试通路断路的万用表,几个120欧姆的终端电阻。
二、采用485总线结构常见的几种通讯故障有下面几种?1、通讯不上,无反应。
2、可以上传数据,但不可以下载数据。
3、通讯时系统提示受到干扰,或者不通讯时通讯指示灯也不停地闪烁。
4、有时能通讯上,有时通讯不上,有的指令可以通,有的指令不可以通。
三、出现故障了有哪些调试方法呢?在调试前首先要确保设备接线正确,且施工合乎规范。
可以根据遇到的问题采用下面几种调试方法。
1、共地法:用1条线或者屏蔽线将所有485设备的GND地连接起来,这样可以避免所有设备之间存在影响通讯的电势差。
2、终端电阻法:在最后一台485设备的485+和485-上并接120欧姆的终端电阻来改善通讯质量。
3、中间分段断开法:通过从中间断开来检查是否设备负载过多、通讯距离过长、某台设备对整个通讯线路的影响等。
4、单独拉线法:单独简易拉一条线到设备,这样可以用来排除是否是布线引起了通讯故障。
5、更换转换器法:随身携带几个转换器,这样可以排除是否是转换器质量问题影响了通讯质量。
485常见故障处理
485常见故障处理提高RS-485总线可靠性的几种方法及常见故障处理在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。
但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
1 RS-485接口电路的硬件设计1)总线匹配。
总线匹配有两种方法,一种是加匹配电阻,如图1所示。
位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。
但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。
另外一种比较省电的匹配方案是RC 匹配(图2 )利用一只电容C 隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。
除上述两种外还有一种采用二极管的匹配方案(图3),这种方案虽未实现真正的匹配,但它利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。
2) RO及DI端配置上拉电阻。
异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。
为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO 外接10kΩ上拉电阻。
3)保证系统上电时的RS-485芯片处于接收输入状态。
对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU 引脚直接进行控制,以防止MCU上电时对总线的干扰,如图4所示。
4)总线隔离。
RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。
通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。
提高RS485总线可靠性的几种方法及常见故障处理
提高RS485总线可靠性的几种方法及常见故障处理提高RS485总线可靠性的几种方法及常见故障处理在MCU之间中长距离通信的诸多方案中、RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域、但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷、一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障、因此提高RS-485总线的运行可*性至关重要、1、RS-485接口电路的硬件设计1)总线匹配总线匹配有两种方法、一种是加匹配电阻、位于总线两端的差分端口V A与VB之间应跨接120Ω匹配电阻、以减少由于不匹配而引起的反射、吸收噪声、有效地抑制了噪声干扰、但匹配电阻要消耗较大电流、不适用于功耗限制严格的系统。
另外一种比较省电的匹配方案是RC 匹配利用一只电容C 隔断直流成分、可以节省大部分功率、但电容C的取值是个难点、需要在功耗和匹配质量间进行折衷、除上述两种外还有一种采用二极管的匹配方案、这种方案虽未实现真正的匹配、但它利用二极管的钳位作用、迅速削弱反射信号达到改善信号质量的目的、节能效果显著、2)RO及DI端配置上拉电阻、异步通信数据以字节的方式传送、在每一个字节传送之前、先要通过一个低电平起始位实现握手、为防止干扰信号误触发RO(接收器输出)产生负跳变、使接收端MCU进入接收状态、建议RO外接10kΩ上拉电阻、3)保证系统上电时的RS-485芯片处于接收输入状态、对于收发控制端TC建议采用MCU引脚通过反相器进行控制、不宜采用MCU 引脚直接进行控制、以防止MCU上电时对总线的干扰、4)总线隔离、RS-485总线为并接式二线制接口、一旦有一只芯片故障就可能将总线“拉死”、因此对其二线口V A、VB与总线之间应加以隔离、通常在V A、VB与总线之间各串接一只4~10Ω的PTC电阻、同时与地之间各跨接5V 的TVS二极管、以消除线路浪涌干扰、如没有PTC电阻和TVS二极管、可用普通电阻和稳压管代替、5)合理选用芯片、例如、对外置设备为防止强电磁(雷电)冲击、建议选用TI的75LBC184等防雷击芯片、对节点数要求较多的可选用SIPEX的SP485R、2、RS-485网络配置1)网络节点数、网络节点数与所选RS-485芯片驱动能力和接收器的输入阻抗有关、如75LBC184标称最大值为64点、SP485R标称最大值为400点、实际使用时、因线缆长度、线径、网络分布、传输速率不同、实际节点数均达不到理论值、例如75LBC184运用在500m分布的RS-485网络上节点数超过50或速率大于9.6kb/s时、工作可*性明显下降、通常推荐节点数按RS-485芯片最大值的70%选取、传输速率在1200~9600b/s之间选取、通信距离1km以内、从通信效率、节点数、通信距离等综合考虑选用4800b/s最佳、通信距离1km以上时、应考虑通过增加中继模块或降低速率的方法提高数据传输可*性、2)节点与主干距离、理论上讲、RS-485节点与主干之间距离(T头、也称引出线)越短越好、T头小于10m的节点采用T型、连接对网络匹配并无太大影响、可放心使用、但对于节点间距非常小(小于1m、如LED模块组合屏)应采用星型连接、若采用T型或串珠型连接就不能正常工作、RS-485是一种半双工结构通信总线、大多用于一对多点的通信系统、因此主机(PC)应置于一端、不要置于中间而形成主干的T型分布、3、提高RS-485通信效率RS-485通常应用于一对多点的主从应答式通信系统中、相对于RS-232等全双工总线效率低了许多、因此选用合适的通信协议及控制方式非常重要、1.总线稳态控制(握手信号)、大多数使用者选择在数据发送前1ms将收发控制端TC 置成高电平、使总线进入稳定的发送状态后才发送数据;数据发送完毕再延迟1ms后置TC端成低电平、使可*发送完毕后才转入接收状态、据笔者使用TC端的延时有4个机器周期已满足要求;2.为保证数据传输质量、对每个字节进行校验的同时、应尽量减少特征字和校验字、惯用的数据包格式由引导码、长度码、地址码、命令码、数据、校验码、尾码组成、每个数据包长度达20~30字节、在RS-485系统中这样的协议不太简练、推荐用户使用MODBUS协议、该协议已广泛应用于水利、水文、电力等行业设备及系统的国际标准中、4、RS-485接口电路的电源、接地对于由MCU结合RS-485微系统组建的测控网络、应优先采用各微系统独立供电方案、最好不要采用一台大电源给微系统并联供电、同时电源线(交直流)不能与RS-485信号线共用同一股多芯电缆、RS-485信号线宜选用截面积0.75mm2以上双绞线而不是平直线、对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适、当然应注意LM7805的保护:1.LM7805输入端与地应跨接220~1000μF电解电容;2.LM7805输入端与输出端反接1N4007二极管;3.LM7805输出端与地应跨接470~1000μF电解电容和104pF 独石电容并反接1N4007二极管;4.输入电压以8~10V为佳、最大允许范围为6.5~24V、可选用TI的PT5100替代LM7805、以实现9~38V的超宽电压输入。
RS485故障与解决办法
在当今信息通讯高速发展的阶段,人们在充分享受网络给人类带来的喜悦。
随着网络的普及与发展,使得各种控制设备网络化成为可能。
自动化监控、安全防护、门禁考勤及工业自动化系统得到迅速普及与应用。
在工业控制设备之间中长距离通信的诸多方案中,RS-485系统总线因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动测控等领域,随着RS485总线系统的广泛应用,RS485总线系统也越来越大,RS485总线外挂的485设备越来越多,从而导致485总线的稳定性越来越差。
现在市场上已经有可以负载128,256台甚至400台485设备的转换器,由于485总线使用总线连接形式,形成如果有一个485设备出现问题,就导致整个485总线出现问题的现象。
所以从485总线的稳定性来说,当设备达到一定数量的时候,从概率上分析,假设485总线上的485设备的无差错时间为99、9%,当有128个485设备在一个总线上时,其无差错时间就就是99、9%的128次方,其无差错时间讯速降为87、98%,再有RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行稳定性及可靠性至关重要。
现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下:一、由于485信号使用的就是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。
对于由分散式工业控制设备结合RS-485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用一台大电源给微系统并联供电,同时电源线(交直流)不能与RS-485信号线共用同一股多芯电缆。
RS-485信号线宜选用截面积0.75mm2以上双绞线而不就是平直线。
RS485通讯常见故障、解决方法以及布线安装注意事项!
RS485通讯常见故障、解决方法以及布线安装注意事项!积木式上位机怎么设计?高质量的PLC程序应该从何入手?如何在西门子博途中实现工艺配方?秒懂S7-1500PLC读写SQL微软数据库分享一组污水处理3D画面,谈谈上位机设计原则!【导读】做电气自动化工程很多时候会接触到RS485通讯,很多新手不是很了解,今天我们就来聊聊RS485相关的应用,你会发现里面的知识确实有不少,那么我们就选择一些平时在工程中会考虑到的问题供大家参考。
(一)什么是RS485总线?工业现场经常要采集多点数据,模拟信号或开关信号,一般用到RS485总线,RS-485采用半双工工作方式,支持多点数据通信。
RS-485总线网络拓扑一般采用终端匹配的总线型结构。
即采用一条总线将各个节点串接起来,不支持环形或星型网络。
RS485无具体的物理形状,根据工程的实际情况而采用的接口,RS485采用差分信号负逻辑,+2V~+6V表示'0',- 6V~- 2V表示'1'。
RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。
根据485总线结构理论,在理想环境的前提下,485总线传输距离可以达到1200米。
其条件是通讯线材优质达标,波特率为9600,只负载一台485设备,才能使得通讯距离达到1200米,所以通常485总线实际的稳定的通讯距离往往达不到1200米。
如果负载485设备多,线材阻抗不合乎标准,线径过细,转换器品质不良,设备防雷保护复杂和波特率的提高等等因素都会降低通讯距离。
(二)RS485线缆与传输距离在一般场合采用普通的双绞线就可以,在要求比较高的环境下可以采用带屏蔽层的同轴电缆。
在使用RS485接口时,对于特定的传输线路,从RS485接口到负载其数据信号传输所允许的最大电缆长度与信号传输的波特率成反比,这个长度数据主要是受信号失真及噪声等影响所影响。
RS-485总线可靠性的几种方法及常见故障处理
RS-485总线可靠性的几种方法及常见故障处理在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。
但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
一、RS-485接口电路的硬件设计1、总线匹配总线匹配有两种方法,一种是加匹配电阻。
位于总线两端的差分端口,VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。
但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。
另外一种比较省电的匹配方案是RC匹配利用一只电容C隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折中。
除上述两种外还有一种采用二极管的匹配方案,这种方案虽未实现真正的匹配,但它利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。
2、RO及DI端配置上拉电阻异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。
为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO外接10kΩ上拉电阻。
3、保证系统上电时的RS-485芯片处于接收输入状态对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU引脚直接进行控制,以防止MCU上电时对总线的干扰。
4、总线隔离RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。
通常在VA、VB与总线之间各串接一只4-10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。
如没有PTC电阻和TVS二极管,可用普通电阻和稳压管代替。
5、合理选用芯片例如,对外置设备为防止强电磁(雷电)冲击,建议选用TI的75LBC184等防雷击芯片,对节点数要求较多的可选用SIPEX的SP485R。
485常见故障处理
提高RS-485总线可靠性的几种方法及常见故障处理在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。
但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
1 RS-485接口电路的硬件设计1)总线匹配。
总线匹配有两种方法,一种是加匹配电阻,如图1所示。
位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。
但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。
另外一种比较省电的匹配方案是RC 匹配(图2 )利用一只电容C 隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。
除上述两种外还有一种采用二极管的匹配方案(图3),这种方案虽未实现真正的匹配,但它利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。
2) RO及DI端配置上拉电阻。
异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。
为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO 外接10kΩ上拉电阻。
3)保证系统上电时的RS-485芯片处于接收输入状态。
对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU引脚直接进行控制,以防止MCU上电时对总线的干扰,如图4所示。
4)总线隔离。
RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。
通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。
如没有PTC电阻和TVS二极管,可用普通电阻和稳压管代替。
RS485通讯原理及排错处理
RS485通讯原理及排错处理一、RS485通信原理RS485通信总线使用差分信号传输方式,即通过正负两根数据线进行数据传输。
正线上的电压高于负线上的电压表示1,反之表示0。
这种差分信号的方式可以提高抗干扰能力,减小信号失真率。
RS485总线的数据传输速率可根据具体应用需求选择,通常可以达到几十kbps至几Mbps的速率。
在RS485通信中,主设备通过向从设备发送控制命令或数据,从设备则根据命令执行相应的操作,并将执行结果返回给主设备。
RS485通信总线支持多个从设备同时响应主设备,实现了多点通信。
二、RS485通信排错处理方法1.差分信号线路电气连接方面的排错处理方法:-检查线路是否有不正常的短路或断路。
可以使用万用表或示波器进行检测。
-确保各个节点的信号引线正确连接到差分信号线路上。
检查是否有接错或误连的情况。
-检查总线两端是否加上了终端电阻,终端电阻的作用是抑制信号反射,提高通信质量。
2.通信参数配置方面的排错处理方法:-通信速率选择合适的波特率,通常可以根据具体应用需求进行设置。
-检查通信模式是否匹配,主设备和从设备之间的通信模式要保持一致,如全双工或半双工模式。
-检查数据位、停止位和校验位的配置是否一致,这些参数需要在主设备和从设备之间保持一致,否则会导致通信错误。
3.通信协议方面的排错处理方法:-检查通信命令或数据是否按照协议规定的格式进行发送。
如果命令或数据格式错误,从设备可能无法正确解析。
-确保通信命令或数据的有效性,即所发送的控制命令或数据是否正确并且得到从设备的正确响应。
4.环境干扰方面的排错处理方法:-检查总线系统中是否有强电机、电磁干扰源等影响信号传输的设备存在。
需要尽量将RS485总线与其他干扰源隔离开。
-如果环境干扰严重,可以考虑在差分信号线路上添加屏蔽层,以减小外部干扰对通信信号的影响。
5.软件程序方面的排错处理方法:-检查主设备和从设备的软件程序是否按照通信协议进行编写,确保通信命令的正确性。
RS485通讯原理及排错处理
提高RS485通信可靠性的设计方法发布时间:2009-5-11 14:00 发布者:李宽阅读次数:556RS-485接口芯片能担当起一种电平转化的角色,把TTL信号、COMS信号等转化为能在485总线上传输的差分信号,把接收到的485差分信号转化为MCU能够识别的TTL或COMS电平,在工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域得到了广泛应用。
但在RS485通信中,常常会存在通信距离不远、通信质量差等问题。
为提高RS485的通信质量,除了采用终端匹配的总线型结构外,在系统设计中通常要考虑以下几个问题。
1.故障保护根据RS-485的标准规定,接收器的接收灵敏度为±200mV,这意味着当接收端的差分电压大于等于+200mV时,接收器输出为高电平,小于等于 -200mV时输出为低电平,介于±200mV 之间时,接收器输出为不确定状态。
在总线空闲(即传输线上所有节点都为接收状态)以及传输线开路或短路故障时,若不采取特殊措施,接收器可能输出高电平或者低电平。
一旦某个节点的接收器产生低电平,就会使串行接收器(UART)找不到起始位,从而引起通信异常。
为解决该问题,很多RS485接口芯片引入了故障保护。
例如,上海英联电子的UM3085/UM3088输入灵敏度为-50mV/-200mV,即差分接收器输入电压UA-B≥-50mV时,接收器输出逻辑高电平,如果UA-B≤-200mV,则输出逻辑低电平。
当接收器输入端总线短路或总线上所有发送器被禁止时,接收器差分输入端为0V,从而确保总线空闲、短路时接收器输出高电平。
2.防雷电冲击RS- 485接口芯片在使用、焊接或设备的运输途中都有可能受到静电冲击而损坏。
在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭受雷电袭击。
选用抗静电或抗雷击的芯片可有效避免此类损失。
UM3085/UM3088芯片内部集成了ESD保护电路,人体模型ESD 保护和机器模型ESD保护分别达到 15kV和2kV。
PLC的RS-485通信接口常发生的故障解析和解决方法
PLC的RS-485通信接口常发生的故障解析和解决方法1、常见的故障现象当plc的rs-485口经非隔离的pc/ppi电缆与电脑连接、plc与plc之间连接或plc与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:(1)r1或r2被烧断,z1、z2和sn75176完好。
这是由于有较大的瞬态干扰电流经r1或r2、桥式整流、z1或z1到地,z1、z2能承受最大10a电流的冲击,而该电流在r1或r2上产生的瞬态功率为:102×10=1000w,当然会将其烧断。
(2)sn75176损坏,r1、r2和z1、z2完好。
这主要可能是受到静电冲击或瞬态过电压速度快于z1、z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kv的静电。
(3)z1或z2、sn75176损坏,r1和r2完好。
这可能是受到高电压低电流的瞬态干扰电压将z1或z2和sn75176击穿,由于电流较小和发生时间较短因而r1、r2不至于发热烧断。
2、故障的原因分析由1中的分析得知plc接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于plc内部24v电源和5v电源共地,24v电源的输出端子l+、m为其它设备混合供电可能导致地电位变化,从而造成共模电压超出允许范围。
所以eia-485标准要求将各个rs485接口的信号地用一条低阻值导线连接在一起以保证各节点的地电位相等,消除地线环流。
(1)当带电插拔未隔离的连接电缆时,由于两端电位不相等电路中又存在诸多电感、电容之类的器件,插拔瞬间必然产生瞬态过电压或过电流。
基于此考虑,在开展通信接头插拔的时候,尽量使设备处于断电状态。
(2)连接在rs-485总线上的其它设备产生的瞬态过电压或过电流同样会流入到plc,总线上连接的设备站点数越多,产生瞬态过电压的因素也越多。
(3)当通信线路较长或有室外架空线时,雷电是必须考虑的干扰。
RS-485网络故障的8步排除法
RS-485网络故障的8步排除法智能仪表随着80年代初单片机技术的成熟而发展起来,世界仪表市场基本被智能仪表所垄断,这归结于企业信息化的需要,而企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。
最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能,随后出现的RS485解决了这个问题。
定义RS-485又名TIA-485-A,ANSI/TIA/EIA-485或TIA/EIA-485。
RS485是一个定义平衡数字多点系统中的驱动器和接收器的电气特性的标准,该标准由电信行业协会和电子工业联盟定义。
使用该标准的数字通信网络能在远距离条件下以及电子噪声大的环境下有效传输信号。
RS-485使得连接本地网络以及多支路通信链路的配置成为可能。
RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,多采用的是两线制接线方式,这种接线方式为总线式拓扑结构,在同一总线上最多可以挂接32个节点。
在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。
很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来,而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,原因1是共模干扰:RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了,但容易忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7到+12V,只有满足上述条件,整个网络才能正常工作;当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口;原因二是EMI的问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。
提高RS485总线可靠性的几种方法及常见故障处理
提高RS485总线可靠性的几种方法及常见故障处理在mcu之间中长距离通信的诸多方案中、rs-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域、但rs-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷、一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障、因此提高rs-485总线的运行可*性至关重要、1、rs-485接口电路的硬件设计1)总线匹配总线匹配有两种方法、一种是加匹配电阻、位于总线两端的差分端口va与vb之间应当跨接120ω相匹配电阻、以增加由于不相匹配而引发的散射、稀释噪声、有效地遏制了噪声阻碍、但相匹配电阻必须消耗很大电流、呼吸困难用作功耗管制严苛的系统。
另外一种比较省电的匹配方案是rc匹配利用一只电容c隔断直流成分、可以节省大部分功率、但电容c的取值是个难点、需要在功耗和匹配质量间进行折衷、除上述两种外还有一种采用二极管的匹配方案、这种方案虽未实现真正的匹配、但它利用二极管的钳位作用、迅速削弱反射信号达到改善信号质量的目的、节能效果显著、2)ro及di端的布局上拉电阻、异步通信数据以字节的方式传输、在每一个字节传输之前、先要通过一个低电平起始位实现握手、为防止干扰信号误触发ro(接收器输出)产生负跳变、使接收端mcu进入接收状态、建议ro外接10kω上拉电阻、3)保证系统上电时的rs-485芯片处于接收输入状态、对于收发控制端tc建议采用mcu引脚通过反相器进行控制、不宜采用mcu引脚直接进行控制、以防止mcu上电时对总线的干扰、4)总线隔离、rs-485总线为并接式二线制接口、一旦有一只芯片故障就可能将总线“拉死”、因此对其二线口va、vb与总线之间应当予以隔绝、通常在va、vb与总线之间各串联一只4~10ω的ptc电阻、同时与地之间各跨接5v的tvs二极管、以消解线路浪涌阻碍、例如没ptc电阻和tvs二极管、需用普通电阻和稳压管替代、5)合理采用芯片、比如、对外复置设备为避免弱电磁(雷电)冲击、建议采用ti的75lbc184等防雷击芯片、对节点数要求较多的可选用sipex的sp485r、2、rs-485网络配置1)网络节点数、网络节点数与选好rs-485芯片驱动能力和接收器的输入阻抗有关、如75lbc184标称最大值为64点、sp485r标称最大值为400点、实际使用时、因线缆长度、线径、网络分布、传输速率不同、实际节点数均达不到理论值、例如75lbc184运用在500m分布的rs-485网络上节点数超过50或速率大于9.6kb/s时、工作可*性明显下降、通常推荐节点数按rs-485芯片最大值的70%选取、传输速率在1200~9600b/s之间选取、通信距离1km以内、从通信效率、节点数、通信距离等综合考虑选用4800b/s最佳、通信距离1km以上时、应考虑通过增加中继模块或降低速率的方法提高数据传输可*性、2)节点与主干距离、理论上讲、rs-485节点与主干之间距离(t头、也称引出线)愈长越不好、t头大于10m的节点使用t型、相连接对网络相匹配并并无太小影响、可以放心使用、但对于节点间距非常大(大于1m、例如led模块女团屏)应当使用星型相连接、若使用t型或串珠型相连接就无法正常工作、rs-485就是一种半双工结构通信总线、大多用作一对多点的通信系统、因此主机(pc)应当放在一端、不要放在中间而形成主干的t型分布、3、提升rs-485通信效率rs-485通常应用于一对多点的主从应答式通信系统中、相对于rs-232等全双工总线效率低了许多、因此选用合适的通信协议及控制方式非常重要、1.总线稳态掌控(击掌信号)、大多数使用者挑选在数据传送前1ms将通话掌控端的tc置成高电平、使总线进入稳定的发送状态后才发送数据;数据发送完毕再延迟1ms后置tc端成低电平、使可*发送完毕后才转入接收状态、据笔者使用tc端的延时有4个机器周期已满足要求;2.为保证数据传输质量、对每个字节进行校验的同时、应尽量减少特征字和校验字、惯用的数据包格式由鼓励码、长度码、地址码、命令码、数据、校验码、尾码共同组成、每个数据包长度超过20~30字节、在rs-485系统中这样的协议不太简洁、所推荐用户采用modbus协议、该协议已广为应用于水利、水文、电力等行业设备及系统的国际标准中、4、rs-485USB电路的电源、中剧对于由mcu结合rs-485微系统组建的测控网络、应优先采用各微系统独立供电方案、最好不要采用一台大电源给微系统并联供电、同时电源线(交直流)不能与rs-485信号线共用同一股多芯电缆、rs-485信号线宜选用截面积0.75mm2以上双绞线而不是平直线、对于每个小容量直流电源选用线性电源lm7805比选用开关电源更合适、当然应注意lm7805的保护:1.lm7805输出端的与地应当跨接220~1000μf电解电容;2.lm7805输出端的与输入端的LX11n4007二极管;3.lm7805输出端与地应跨接470~1000μf电解电容和104pf独石电容并反接1n4007二极管;4.输出电压以8~10v为尽如人意、最小容许范围为6.5~24v、可以采用ti的pt5100替代lm7805、以实现9~38v的超宽电压输入。
RS485总线系统排查故障步骤
RS485总线系统排查故障步骤RS485 标准最初由EIA 制定,后由TIA 修订后命名为TIA/EIA485-A。
RS- 485 允许在一对双绞线上进行多点、双向通信,其躁声抑制能力、数据传输速率、电缆长度及可靠性十分突出。
RS485(RS232 转RS485)是一种低成本、易操作的通信系统,但是在一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障。
以下是检查常见故障和建立比较麻烦的RS-485 网络的8 步方法:1. RS-485(RS485 转换器)使用一对非平衡差分信号,这意味着网络中的每一个设备都必须通过一个信号回路连接到地,以最小化数据线上的噪声。
数据传输介质由一对双绞线组成,在噪声较大的环境中应加上屏蔽层。
2. 在绝大多数的RS-485 网络中,终端节点所引起的问题比它能解决的要多。
为了检查哪一个节点停止了工作,需要切断每一个节点的电源并将其从网络中断开。
使用欧姆表测量接收端A 与B 或+与-之间的电阻值。
故障节点的读数通常小于200 欧姆,而非故障节点的读数将会比4,000 欧姆大得多。
3. 哪一根线是A、哪一根线是B 一直都不是很清楚。
不同的制造商采用不同的标签规定,即使B 线应该永远是在空闲状态下电压更高的那一根。
因此,A线相当于-,B 线相当于+。
可在网络空闲的状态下用电压表检测。
如果B 线没有比A 线电压更高,那么就会存在连接问题。
4. 当没有设备进行传输,所有设备都处于监听状态的时候,RS-485 网络中会出现三态状态。
这将导致所有的驱动器进入高阻态,使悬空状态传回所有的RS-485 接收端。
节点设计者为了克服这一不稳定状态典型的方法是:在接收端的A 和B 线加装下拉和上拉电阻来模拟空闲状态。
为了检查这一偏置,应在网络供电和空闲的状态下测量B 线到A 线的电压。
为了确保远离如图中所示的不定状态,要求至少存在300mV 的电压。
如果没有安装终端电阻,偏置的要求是非常宽松的。
RS-485网络常见问题及解决方法
RS-485网络常见问题及解决方法RS-485网络常见问题及解决方法RS-485的通讯距离RS-485与RS-422一样,其最大传输距离约为1200米,最大传输速率为10Mb/s。
平衡双绞线的长度与传输速率成反比,在100kb/s 速率以下,才可能使用规定最长的电缆长度。
只有在很短的距离下才能获得最高速率传输。
一般100米长双绞线最大传输速率仅为1Mb/s.RS-485的网络拓扑结构RS-485的网络拓扑一般采用终端匹配的总线型结构,不支持环形或星型网络。
最好采用一条总支持线将各个接点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。
RS-485的终端匹配电阻RS-485需要2个终端匹配电阻,其阻值要求等于传输电缆的特性阻抗,大多数情况下终端匹配在100至120之间。
传输距离在300米以下时不需终端匹配电阻。
中接电阻接在传输总线的两端。
RS-485电缆的极性问题RS-485使用两根电线来进行传输。
两根电线是有区别的,分别标注为A线和B线。
B线是在空闲状态下电压更高的那一根。
A线相当于-,B线相当于+。
RS-485选用的电缆RS-485可以使用国际和国内标准的通讯电缆。
国际电缆标准为:线径要大于AWG18.中国标准为:RVVP1×2×0.5mm 2。
RS-485通讯线路的隔离和抗干扰屏蔽双绞线的屏蔽层应该连接每一个RS-485设备的屏蔽端子。
屏蔽层只允许一个接地。
ModBUS名称的由来ModBUS总线是美国莫迪康(Modicon)公司(后被法国施奈德Schneider公司收购)在世界上首先推出的基于RS-485的总线。
ModBUS为Modicon’sBUS(即:Modicon的总线)的缩写。
所以:Mod代表 ModiconBUS是总线的意思,为专有名词合在一起:ModBUS。
ModBUS一成为中国国家推荐标准。
ModBUS允许在线路上有几台主机?ModBUS协议只允许在一条线路上有一台主机。
RS485总线常见故障及排除方法
RS485总线常见故障及排除方法在各种现场中,485总线应用的非常的广泛,但是485总线比较容易出现故障,现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下:1.由于485信号使用的是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。
2.在工业现场当中,现场情况非常复杂,各个节点之间存在很高的共模电压,485接口使用的是差分传输方式,有抗共模干扰能力,但是当共模电压大于+12V 或者小于-9V时,超过485接收器的极限接收电压。
接收器就无法工作,甚至可能会烧毁芯片和一起设备。
可以在485总线中使用深圳市富永通科技有限公司的485光隔离中继器,将485信号及电源完全隔离,从而消除共模电压的影响。
3.485总线随着传输距离的延长,会产生回波反射信号,如果485总线的传输距离如果超过100米,建议施工时在485通讯的开始端和结束端120欧姆的终端电阻。
相关接线方法可以参考网页:120欧姆电阻的接法.4.485总线中485节点要尽量减少与主干之间的距离,一般建议485总线采用手牵手的总线拓扑结构。
星型结构会产生反射信号,影响485通信质量。
如果在施工过程中必须要求485节点离485总线主干的距离超过一定距离,使用深圳市富永通科技有限公司的485中继器可以作出一个485总线的分叉。
如果施工过程中要求使用星型拓扑结构,可以使用深圳市富永通科技有限公司的485集线器可以解决这个问题。
5.影响485总线的负载能力的因素:通讯距离,线材的品质,波特率,转换器供电能力,485设备的防雷保护,485芯片的选择。
如果485总线上的485设备比较多的话,建议使用带有电源的485转换器,无源型的485转换器由于时从串口窃电,供电能力不是很足,负载能力不够。
RS485通讯常见故障解决方法以及布线安装注意事项!
RS485通讯常见故障解决方法以及布线安装注意事项!RS485通信是一种常用于工业自动化控制系统中的数据通信方式,它具有抗干扰能力强、支持多节点连接等特点。
然而,在实际应用中,也可能会遇到一些通信故障,下面将介绍一些常见的RS485通信故障、解决方法以及布线安装的注意事项。
一、RS485通信常见故障:1.通信不能建立连接:RS485通信不能建立连接的原因可能有多种,包括线路断开、通信波特率设置错误、硬件故障等。
解决方法是首先检查通信线路是否正常连接,然后检查通信波特率是否设置正确,最后检查硬件设备是否有损坏。
2.数据传输错误:数据传输错误可能会导致信息错误或者通信中断。
造成数据传输错误的原因可能有噪声干扰、功率干扰、线路质量差等。
解决方法是增加隔离器、增加筛选电容、提高线路质量等。
3.通信距离过短:RS485通信在一条总线上可以连接多个节点,但是总线的物理长度也有一定的要求,如果总线长度过短,则可能无法通信。
解决方法是增加总线的长度,可以使用中继器进行信号放大,或者使用RS485转换器将信号转化为其他形式传输。
4.数据通信速度过低:数据通信速度过低可能会导致不稳定的通信,造成通信中断。
造成通信速度过低的原因可能包括通信线路长、串口通信波特率设置不当等。
解决方法是缩短通信线路长度,或者修改串口通信波特率设置。
二、RS485通信解决方法:1.加强线路保护:RS485通信中,线路的保护是非常重要的,可以采用绞线方式布线,并使用屏蔽绞线。
在线路两端可以使用终端电阻进行防护,以减少终端反射和信号干扰。
2.适当设置通信波特率:RS485通信的波特率设置应考虑到通信环境、数据传输量以及通信时间等因素,以提高通信的效率和稳定性。
3.使用合适的抗干扰措施:RS485通信可能会受到外部噪声和干扰的影响,可以使用屏蔽绞线、隔离器等设备来避免干扰。
4.增加总线长度:如果总线长度不足导致通信中断,可以使用中继器或者信号放大器来增加总线长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RS485总线信号常见故障排查与处理方法
在通常的RS485总线通信中485中继器、485变换器、485集线器的应用过程普遍面临很多问题,比如:无法通信,没有反应;可以上传数据,但不能下载;通信时,系统提示会受到干扰;或者不通信时,通信灯也继续闪烁。
;有时不能通信,有时不能通信,等等故障。
故障检测与排查:
1.共地法-通过一条线或屏蔽线连接所有RS485设备的gnd,使所有设备之间不存在影响通信的电位差。
2.终端电阻法-在最后RS485设备的485+和485-上连接120欧姆的终端电阻来改善通信质量。
3.中间阶段切断法-从其中断断续续地检查设备负荷过多、通信距离过长、某设备的损害对整个通信线路的影响等原因。
4.单独引线法-单独简单地暂时把一条线拉到设备上,可以排除布线是否引起了通信故障。
5.变换器法的交换-可以随身携带一些变换器,排除变换器的质量问题是否影响了通信质量。
6.笔记本调试法-首先保证自己随身携带的电脑笔记本是通信正常的设备,更换客户的电脑进行通信。
如果可能的话,客户电脑的串行端口可能会受损或受伤。
为了减少485放大器通信故障引起的故障,请参考以下几个建议。
485放大器的故障诊断
1.数据通信失败
●验证RS485/422输入布线是否正确
●确认RS485/422输出接线正确
●检查供电是否正常。
●确认配线端子已正常连接。
●观察接收指示灯时是否闪烁。
●检查发送指示灯发送时是否闪烁。
2.数据丢失或错误
●检查数据通信设备两端的数据速率、格式是否一致。