2009年上海高考数学试卷
2009年普通高等学校招生全国统一考试(上海卷)数学(理科)
2009年普通高等学校招生全国统一考试(上海卷)数学(理科)学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共56.0分)1.若复数z满足z(1+i)=1-i(i是虚数单位),则其共轭复数=____________.【答案】i【解析】∵,∴z的共轭复数=i.2.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是_____________. 【答案】(-∞,1]【解析】∵A∪B=R,如图所示.当a≤1时满足题意.即a的取值范围是(-∞,1].3.若行列式中,元素4的代数余子式大于0,则x满足的条件是____________. 【答案】【解析】因元素4的代数余子式为:(-1)1+1=9x-24.由题意9x-24>0,∴.4.某算法的程序框图如图所示,则输出量y与输入量x满足的关系式是___________.【答案】【解析】由算法的程序框中的判断可知,当x>1时,把x-2赋给y,当x≤1时,把2x赋给y,因此.5.如图,若正四棱柱ABCD—A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是____________.(结果用反三角函数值表示)【答案】【解析】∵AD∥BC,∴BD1与AD所成的角等于BD1与BC所成的角.连结CD1,∵BC⊥面CC1D1D,CD 1面CC1D1D,∴BC⊥CD1.在R t△BCD1中,BC=2,,∴.∴∠D1BC=.6.函数y=2cos2x+sin2x的最小值是____________.【答案】【解析】因y=2cos2x+sin2x=1+cos2x+sin2x所以y的最小值为.7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=__________.(结果用最简分数表示) 【答案】【解析】由题意知ξ=0,1,2,则,,.∴.8.已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3满足的等量关系是_____________.【答案】【解析】由题意S1=4πR12,S2=4πR22,S3=4πR32,则S1S2=16π2(R1R2)2,∴.又∵,∴====∴.9.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=______________.【答案】3【解析】∵,∴∠F1PF2=90°,∴△F1PF2为直角三角形.∴|PF1|2+|PF2|2=(2c)2.又∵|PF1|+|PF2|=2a,∴|PF1|2+|PF2|2=(|PF1|+|PF2|)2-2|PF1|·|PF2|,即(2c)2=(2a)2-4×|PF1|·|PF2|,.∴4c2=4a2-4×9=0,∴4b2=4×9.∴b=3.10.在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积是_______________.【答案】【解析】将三条直线的极坐标方程转化为直角坐标方程,则三条直线的方程分别为y=0,,x+y=1,∴,即.∴.11.当0≤x≤1时,不等式成立,则实数k的取值范围是____________.【答案】k≤1【解析】∵0≤x≤1时,不等式成立,设,y=kx,做出两函数的图象,∴由图象可知,当k≤1时,12.已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(,),且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,则当k=__________时,f(a k)=0.【答案】14【解析】由题意,a n∈(,)且{a n}为等差数列,并且有sina1+tana1+sina2+tana2+…+sina27+tana27=0,又∵函数y=sinx与y=tanx均为奇函数,故f(x)=sinx+tanx也是奇函数,要使f(a1)+f(a2)+…+f(a27)=0,需a1,a2,…a27等距对称在数轴原点两侧,∴中间项a14在原点上.∴a14=0,f(a14)=sin0+tan0=0.13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)___________为发行站,使6个零售点沿街道到发行站之间路程的和最短.【答案】(3,3)【解析】设确定的格点为(x,y),由题意知确定的格点到已知的6个格点路程的和最短,即为x,y 分别到6个格点的横.纵坐标距离和最小,6个格点的横坐标由小到大排列为-2,-2,3,3,4,6,所以x=3时到这6个数的距离和最小.同理y=3时,y到6个格点纵坐标距离之和最小.故所求的格点为(3,3).14.将函数(x∈[0,6])的图像绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图像,则α的最大值为_____________.【答案】【解析】当x∈[0,6]时,,∴.移项、平方、配方,得(x-3)2+(y+2)2=13,(0≤x≤3)图象是圆心为O1(3,-2),半径在第一象限内的一段圆弧,如图所示.要想使曲线都是一个函数的图象,必须使平行于y轴的直线与曲线有且只有一个交点,即对一个确定的x值,y有唯一的一个值与之对应,因此,当圆弧转到与y轴相切时,旋转的角最大,设旋转前圆在原点处的切线为l,由图可知,α=∠AOO1,∴tan=tan∠AOO1=.∴.三、解答题(本大题共5小题,共78.0分)19.如图,在直三棱柱ABC—A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1-A1C-C1的大小.【答案】解:如图,建立空间直角坐标系,则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,∵BM⊥AC,BM⊥CC1,∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.设平面A1B1C的一个法向量是n=(x,y,z).=(-2,2,-2),=(-2,0,0),∴n·=-2x=0, n·=-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n=(0,1,1),设法向量n与的夹角为φ,二面角B1-A1C-C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|=,解得,∴二面角B1-A1C-C1的大小为.【解析】略20.本题共有2个小题,第1小题满分6分,第2小题满分8分.有时可用函数描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1).证明:当x≥7时,掌握程度的增长量f(x+1)-f(x)总是下降;(2).根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【答案】(1)证明:当x≥7时,.而当x≥7时,函数y=(x-3)(x-4)单调递增,且(x-3)(x-4)>0.故f(x+1)-f(x)单调递减.∴当x≥7时,掌握程度的增长量f(x+1)-f(x)总是下降.(2)解:由题意可知,整理得,解得≈20.50×6=123.0,123.0∈[121,127].由此可知,该学科是乙学科.【解析】略21.已知双曲线C:,设过点A(,0)的直线l的方向向量e=(1,k).(1).当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2).证明:当时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.【答案】解:(1)双曲线C的渐近线m:,即,∴直线l的方程.∴直线l与m的距离.(2)证法一:设过原点且平行于l的直线b:kx-y=0,则直线l与b的距离,当时,.又双曲线C的渐近线为,∴双曲线C的右支在直线b的右下方,∴双曲线C右支上的任意点到直线l的距离大于.故在双曲线C的右支上不存在点Q,使之到直线l的距离为.证法二:假设双曲线C右支上存在点Q(x0,y0)到直线l的距离为, 则x02-2y02=2,(2)由(1),得,设,当时,;.将y0=kx0+t代入(2)得(1-2k2)x02-4ktx0-2(t2+1)=0,(*)∵,t>0,∴1-2k2<0,-4kt<0,-2(t2+1)<0.∴方程(*)不存在正根,即假设不成立,故在双曲线C的右支上不存在点Q,使之到直线l的距离为.【解析】略22.已知函数y=f-1(x)是y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f-1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1).判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2).求所有满足“2和性质”的一次函数;(3).设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.【答案】解:(1)函数g(x)=x2+1(x>0)的反函数是(x>1),∴(x>0).而g(x+1)=(x+1)2+1(x>-1),其反函数为(x>1).故函数g(x)=x2+1(x>0)不满足“1和性质”.(2)设函数f(x)=kx+b(x∈R)满足“2和性质”,k≠0.∴(x∈R).∴.而f(x+2)=k(x+2)+b(x∈R),得反函数,由“2和性质”定义可知对x∈R恒成立.∴k=-1,b∈R,即所求一次函数为f(x)=-x+b(b∈R).(3)设a>0,x0>0,且点(x0,y0)在y=f(ax)图像上,则(y0,x0)在函数y=f-1(ax)图像上,故可得ay0=f(x0)=af(ax0),令ax0=x,则.∴,即.综上所述,(k≠0),此时,其反函数就是,而,故y=f(ax)与y=f-1(ax)互为反函数.【解析】略23.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1).若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2).找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3).若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.【答案】解:(1)由a m+a m+1=a k,得6m+5=3k+1,整理后,可得,∵m、k∈N*,∴k-2m为整数.∴不存在m、k∈N*,使等式成立.(2)解法一:若,即,(*)①若d=0,则1=b1q n-1=b n.当{a n}为非零常数列,{b n}为恒等于1的常数列,满足要求.②若d≠0,(*)式等号左边取极限得,(*)式等号右边的极限只有当q=1时,才可能等于1.此时等号左边是常数,∴d=0,矛盾.综上所述,只有当{a n}为非零常数列,{b n}为恒等于1的常数列,满足要求.解法二:设a n=nd+c.若,对n∈N*都成立,且{b n}为等比数列,则,对n∈N*都成立,即a n a n+2=qa n+12.∴(dn+c)(dn+2d+c)=q(dn+d+c)2对n∈N*都成立.∴d2=qd2.①若d=0,则a n=c≠0,∴b n=1,n∈N*.②若d≠0,则q=1,∴b n=m(常数),即,则d=0,矛盾.综上所述,有a n=c≠0,b n=1,使对一切n∈N*,.(3)a n=4n+1,b n=3n,n∈N*.设a m+1+a m+2+…+a m+p=b k=3k,p、k∈N*,m∈N.,∴4m+2p+3=.∵p、k∈N*,∴p=3s,s∈N.取k=3s+2,4m=32s+2-2×3s-3=(4-1)2s+2-2×(4-1)s-3≥0,由二项展开式可得正整数M1、M2,使得(4-1)2s+2=4M1+1,2×(4-1)s=8M2+(-1)s2,∴4m=4(M1-2M2)-[(-1)s+1]2.∴存在整数m满足要求.故当且仅当p=3s,s∈N时,命题成立.说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分).若p为偶数,则a m+1+a m+2+…+a m+p为偶数,但3k为奇数.故此等式不成立,∴p一定为奇数.当p=1时,则a m+1=b k,即4m+5=3k,而3k=(4-1)k=,M∈Z.当k为偶数时,存在m,使4m+5=3k成立.当p=3时,则a m+1+a m+2+a m+3=b k,即3a m+2=b k,也即3(4m+9)=3k,∴4m+9=3k-1,4(m+1)+5=3k-1.由已证可知,当k-1为偶数即k为奇数时,存在m,4m+9=3k成立.当p=5时,则a m+1+a m+2+…+a m+5=b k,即5a m+3=b k,也即5(4m+13)=3k,而3k不是5的倍数,∴当p=5时,所要求的m不存在.故不是所有奇数都成立.【解析】略二、选择题(本大题共4小题,共20.0分)15.“-2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A【解析】实系数一元二次方程x2+ax+1=0有虚根Δ<0,即a2-4<0,∴-2<a<2.∵{a|-2<a<2}{a|-2≤a≤2},∴由-2<a<2-2≤a≤2,但由-2≤a≤2-2<a<2.故选A.16.若事件E与F相互独立,且,则P(E∩F)的值等于…()A.0B.C.D.【答案】B【解析】∵事件E与F相互独立,P(E∩F)为相互独立事件同时发生的概率,∴P(E∩F)=P(E)·P(F)=.17.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【答案】D【解析】设过去10天新增疑似病例数据为a1,a2,a3,…,a10,对于选项D,=2,S2=3,不防设a10=8,a1=a2=…=a8=1,a9=4,此时=2,则.所以当总体均值为2,总体方差为3时一定符合该标志,故选D.18.过圆C:(x-1)2+(y-1)2=1的圆心,作直线分别交x、y正半轴于点A. B,△AOB被圆分成四部分(如图).若这四部分图形面积满足SⅠ +SⅣ =SⅡ +SⅢ ,则这样的直线AB有()A.0条B.1条C.2条D.3条【答案】C【解析】从原图中可看出SⅣ=(定值),SⅡ=(定值),当∠OAB变大时SⅢ变大,SⅠ变小,所以总有一个位置使SⅠ+SⅣ=SⅡ+SⅢ,由图象的对称性可知,当∠OAB变小时,SⅢ变小,SⅠ增大,因此直线AB的条数不能为奇数条,并且一定存在,故选C.。
2009年上海 文科 数学试题 解答
2009年全国普通高等学校招生统一考试上海 数学试卷(文史类)桃浦中学 付敏忠 整理解答考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2.本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数3()1f x x =+的反函数1()________fx -=【答案】,x R ∈【解】:(1)将原函数的解析式视为关于x 的方程,解出x :31y x x =+⇒(2)将x 与y 互换,得反函数的解析式:y =(3)求原函数的值域,即为反函数的定义域:x R ∈。
故1()f x x R -=∈。
2.已知集合{}1A x x =≤,{}B x x a =≥,且A B R =,则实数a 的取值范围是_____【答案】:(,1]-∞ 或填{}1a a ≤或填1a ≤ 【解】:在数轴上,表示出集合A 、B 。
1A B R a =⇒≤。
3. 若行列式4513789xx 中,元素4的代数余子式大于0,则x 满足的条件是________【答案】:83x >后两位 号 码 校验码14.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是___________ 【答案】:{2,12,1xx y x x ≤=->5.如图,若正四棱柱1111ABCD A B C D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________ (结果用反三角函数值表示)。
【答案】:arctan 56.若球1O 、2O 表示面积之比421=S S ,则它们的半径之比21R R =__________ 【答案】:27.已知实数x 、y 满足223y xy x x ≤⎧⎪≥-⎨⎪≤⎩,则目标函数2z x y =-的最小值是__________【答案】:9-8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 【答案】:83π9.过点(1,0)A 作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则______MN = 【答案】:2610.函数2()2cos sin 2f x x x =+的最小值是 【答案】:12-11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
2009年上海市高考数学试卷(理科)答案与解析
2009年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)(2009•上海)若复数z满足z(1+i)=1﹣i(I是虚数单位),则其共轭复数=i.【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】本题考查的知识点是共轭复数的定义,由复数z满足z(1+i)=1﹣i,我们可能使用待定系数法,设出z,构造方程,求出z值后,再根据共轭复数的定义,计算【解答】解:设z=a+bi,则∵(a+bi)(1+i)=1﹣i,即a﹣b+(a+b)i=1﹣i,由,解得a=0,b=﹣1,所以z=﹣i,=i,故答案为i.【点评】求复数的共轭复数一般步骤是:先利用待定系数法设出未知的向量,根据已知条件构造复数方程,根据复数相等的充要条件,转化为一个实数方程组,进而求出求知的复数,再根据共轭复数的定义,求出其共轭复数.2.(4分)(2009•上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是a≤1.【考点】集合关系中的参数取值问题.【专题】集合.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.【点评】本题属于以数轴为工具,求集合的并集的基础题,也是高考常会考的题型.3.(4分)(2009•上海)若行列式中,元素4的代数余子式大于0,则x满足的条件是x>且x≠4.【考点】三阶矩阵.【专题】计算题.【分析】根据3阶行列式D的元素a ij的余子式M ij附以符号(﹣1)i+j后,叫做元素a ij的代数余子式,所以4的余子式加上(﹣1)1+1即为元素4的代数余子式,让其大于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:依题意得,(﹣1)2>0,即9x﹣24>0,解得x>,且x≠4,故答案为:x>且x≠4【点评】此题考查学生掌握三阶矩阵的代数余子式的定义,是一道基础题.4.(4分)(2009•上海)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是.【考点】程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是根据输入x值的不同,根据不同的式子计算函数值.即求分段函数的函数值.【解答】解:根据流程图所示的顺序,程序的作用是分段函数的函数值.其中输出量y与输入量x满足的关系式是故答案为:【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.(4分)(2009•上海)如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是arctan(结果用反三角函数值表示).【考点】异面直线及其所成的角.【专题】计算题.【分析】先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在直角三角形中求出正切值,再用反三角函数值表示出这个角即可.【解答】解:先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,BC=2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.【点评】本题主要考查了异面直线及其所成的角,以及解三角形的应用,属于基础题.6.(4分)(2009•上海)函数y=2cos2x+sin2x的最小值是.【考点】三角函数的最值.【专题】计算题.【分析】先利用三角函数的二倍角公式化简函数,再利用公式化简三角函数,利用三角函数的有界性求出最小值.【解答】解:y=2cos2x+sin2x=1+cos2x+sin2x=1+=1+当=2k,有最小值1﹣故答案为1﹣【点评】本题考查三角函数的二倍角余弦公式将三角函数降幂、利用公式化简三角函数.7.(4分)(2009•上海)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ(结果用最简分数表示).【考点】离散型随机变量的期望与方差.【专题】计算题.【分析】用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,结合变量对应的事件写出分布列当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,求出期望.【解答】解:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,∴Eξ=0×=.故答案为:【点评】本题考查离散型随机变量的分布列和期望,这是近几年经常出现的一个问题,可以作为解答题出现,考查的内容通常是以分布列和期望为载体,有时要考查其他的知识点.8.(4分)(2009•上海)已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3,满足的等量关系是.【考点】球的体积和表面积.【专题】计算题.【分析】表示出三个球的表面积,求出三个半径,利用R1+2R2=3R3,推出结果.【解答】解:因为S1=4πR12,所以,同理:,即R1=,R2=,R3=,由R1+2R2=3R3,得故答案为:【点评】本题考查球的表面积,考查计算能力,是基础题.9.(4分)(2009•上海)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.【考点】椭圆的应用;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由已知得|PF1|+|PF2|=2a,=4c2,,由此能得到b的值.【解答】解:∵F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.∴|PF1|+|PF2|=2a,=4c2,,∴(|PF1|+|PF2|)2=4c2+2|PF1||PF2|=4a2,∴36=4(a2﹣c2)=4b2,∴b=3.故答案为3.【点评】主要考查椭圆的定义、基本性质和平面向量的知识.10.(4分)(2009•上海)在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于.【考点】简单曲线的极坐标方程;定积分.【专题】计算题.【分析】三条直线化为直角坐标方程,求出三角形的边长,然后求出图形的面积.【解答】解:三条直线θ=0,,ρcosθ+ρsinθ=1的直角坐标方程分别为:y=0,y=x,x+y=1,所以它们的交点坐标分别为O(0,0),A(1,0),B(,),OB==,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积S==.故答案为:.【点评】本题考查极坐标与直角坐标的互化,三角形的面积的求法,考查计算能力.11.(4分)(2009•上海)当时,不等式sinπx≥kx恒成立.则实数k的取值范围是k≤2.【考点】函数恒成立问题.【专题】数形结合.【分析】要使不等式sinπx≥kx恒成立,设m=sinπx,n=kx,利用图象得到k的范围即可.【解答】解:设m=sinπx,n=kx,x∈[0,].根据题意画图得:m≥n恒成立即要m的图象要在n图象的上面,当x=时即πx=时相等,所以此时k==2,所以k≤2故答案为k≤2【点评】考查学生利用数形结合的数学思想解决问题的能力,理解函数恒成立时取条件的能力.12.(4分)(2009•上海)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=14时,f(a k)=0.【考点】函数奇偶性的性质.【专题】计算题;压轴题.【分析】本题考查的知识点是函数的奇偶性及对称性,由函数f(x)=sin x+tan x,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,我们易得a1,a2,…,a27前后相应项关于原点对称,则f(a14)=0,易得k值.【解答】解:因为函数f(x)=sinx+tanx是奇函数,所以图象关于原点对称,图象过原点.而等差数列{a n}有27项,a n∈().若f(a1)+f(a2)+f(a3)+…+f(a27)=0,则必有f(a14)=0,所以k=14.故答案为:14【点评】代数的核心内容是函数,函数的定义域、值域、性质均为高考热点,所有要求同学们熟练掌握函数特别是基本函数的图象和性质,并能结合平移、对称、伸缩、对折变换的性质,推出基本函数变换得到的函数的性质.13.(4分)(2009•上海)某地街道呈现东﹣西、南﹣北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(﹣2,2),(3,1),(3,4),(﹣2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)(3,3)为发行站,使6个零售点沿街道到发行站之间路程的和最短.【考点】两点间距离公式的应用.【专题】直线与圆.【分析】设发行站的位置为(x,y),则可利用两点间的距离公式表示出零售点到发行站的距离,进而求得在(3,3)处z取得最小值.【解答】解:设发行站的位置为(x,y),6个零售点到发行站的距离为Z,则z=|x+2|+|y﹣2|+|x﹣3|+|y﹣1|+|x﹣3|+|y﹣4|+|x+1|+|y﹣3|+|x﹣4|+|y﹣5|+|x﹣6|+|y﹣6|=|x+2|+|x﹣3|+|x﹣3|+|x+1|+|x﹣4|+|x﹣6|+|y﹣2|+|y﹣1|+|y﹣4|+|y﹣3|+|y﹣5|+|y﹣6|x=3,3≤y<4时,取最小值,∴在(3,3)处z取得最小值.故答案为(3,3).【点评】本题主要考查了两点间的距离公式的应用.考查了学生创造性思维能力和逻辑思维能力.14.(4分)(2009•上海)将函数(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值为arctan.【考点】旋转变换.【专题】计算题;压轴题.【分析】先画出函数(x∈[0,6])的图象,然后根据由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象,求出此角即可.【解答】解:先画出函数(x∈[0,6])的图象这是一个圆弧,圆心为M(3,﹣2)由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象∴∠MAB=arctan故答案为:arctan【点评】本题主要考查了旋转变换,同时考查了数形结合的思想和分析问题解决问题的能力,属于基础题.二、选择题(共4小题,每小题4分,满分16分)15.(4分)(2009•上海)“﹣2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】实系数一元二次方程x2+ax+1=0有虚根⇒△=a2﹣4<0⇒﹣2<a<2,由此入手能够作出正确选择.【解答】解:∵实系数一元二次方程x2+ax+1=0有虚根,∴△=a2﹣4<0,解得﹣2<a<2,∴“﹣2≤a≤2”是“﹣2<a<2”的必要不充分条件,故选A.【点评】本题考查必要条件、充分条件和充要条件的应用,解题时要认真审题,仔细解答.16.(4分)(2009•上海)若事件E与F相互独立,且P(E)=P(F)=,则P(E∩F)的值等于()A.0 B.C.D.【考点】相互独立事件的概率乘法公式.【分析】本题考查的知识点是相互独立事件的概率乘法公式,由相互独立事件的概率计算公式,我们易得P(E∩F)=P(E)•P(F),将P(E)=P(F)=代入即可得到答案.【解答】解:P(E∩F)=P(E)•P(F)=×=.故选B.【点评】相互独立事件的概率计算公式:P(E∩F)=P(E)•P(F),P(E∪F)=P(E)+P(F).17.(4分)(2009•上海)有专业机构认为甲型N1H1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【考点】众数、中位数、平均数;极差、方差与标准差.【专题】压轴题.【分析】平均数和方差都是重要的数字特征,是对总体的一种简单的描述,平均数描述集中趋势,方差描述波动大小.【解答】解:假设连续10天,每天新增疑似病例的人数分别为x1,x2,x3,…x10.并设有一天超过15人,不妨设第一天为16人,根据计算方差公式有s2=[(16﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x10﹣5)2]>12,说明乙地连续10天,每天新增疑似病例的人数都不超过15人.故选:B.【点评】根据题意可知本题主要考查用数字特征估计总体,属于基础题.18.(4分)(2009•上海)过圆C:(x﹣1)2+(y﹣1)2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S|+S IV=S||+S|||则直线AB有()A.0条B.1条C.2条D.3条【考点】直线与圆的位置关系.【专题】综合题;压轴题;数形结合.【分析】由圆的方程得到圆心坐标和半径,根据四部分图形面积满足S|+S IV=S||+S|||,得到S IV﹣S II=SⅢ﹣S I,第II,IV部分的面积是定值,所以三角形FCB减去三角形ACE的面积为定值即SⅢ﹣S I为定值,所以得到满足此条件的直线有且仅有一条,得到正确答案.【解答】解:由已知,得:S IV﹣S II=SⅢ﹣S I,由图形可知第II,IV部分的面积分别为S正方形OECF﹣S扇形ECF=1﹣和S扇形ECF=,所以,S IV﹣S II为定值,即SⅢ﹣S I为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条.故选B.【点评】此题考查学生掌握直线与圆的位置关系,会求三角形、正方形及扇形的面积,是一道综合题.三、解答题(共5小题,满分78分)19.(14分)(2009•上海)如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.【考点】向量在几何中的应用;与二面角有关的立体几何综合题.【专题】计算题;向量法.【分析】建立空间直角坐标系,求出2个平面的法向量的坐标,设二面角的大小为θ,显然θ为锐角,设2个法向量的夹角φ,利用2个向量的数量积可求cosφ,则由cosθ=|cosφ|求出二面角的大小θ.【解答】解:如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,∵BM⊥AC,BM⊥CC1.∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.设平面A1B1C的一个法向量是n=(x,y,z).=(﹣2,2,﹣2),=(﹣2,0,0),∴令z=1,解得x=0,y=1.∴n=(0,1,1),设法向量n与的夹角为φ,二面角B1﹣A1C﹣C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|==,解得:θ=.∴二面角B1﹣A1C﹣C1的大小为.【点评】本题考查利用向量求二面角的大小的方法,设二面角的大小为θ,2个平面法向量的夹角φ,则θ和φ相等或互补,这两个角的余弦值相等或相反.20.(16分)(2009•上海)有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【考点】分段函数的应用.【专题】应用题;探究型;数学模型法.【分析】(1)x≥7时,作差求出增长量f(x+1)﹣f(x),研究其单调性知,差是一个减函数,故掌握程度的增长量总是下降、(2)学习某学科知识6次时,掌握程度是85%,故得方程由此方程解出a的值即可确定相应的学科.【解答】证明:(1)当x≥7时,而当x≥7时,函数y=(x﹣3)(x﹣4)单调递增,且(x﹣3)(x﹣4)>0故函数f(x+1)﹣f(x)单调递减当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降(2)由题意可知整理得解得(13分)由此可知,该学科是乙学科..(14分)【点评】本题是分段函数在实际问题中的应用,在实际问题中,分段函数是一个很重要的函数模型.21.(16分)(2009•上海)已知双曲线,设直线l过点,(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.【考点】双曲线的简单性质.【专题】计算题;证明题.【分析】(1)先求出双曲线的渐近线方程,进而可得到直线l的斜率,然后根据直线l过点求出直线l的方程,再由平行线间的距离公式可求直线l的方程及l与m 的距离.(2)设过原点且平行于l的直线方程利用直线与直线的距离求得l与b的距离,当k>时,可推断出,利用双曲线的渐近线方程可知双曲线C的右支在直线b的右下方,进而推断出双曲线C的右支上的任意点到直线l的距离大于,进而可知故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.【解答】解:(1)双曲线C的渐近线,即∴直线l的方程∴直线l与m的距离.(2)设过原点且平行于l的直线b:kx﹣y=0,则直线l与b的距离d=,当时,.又双曲线C的渐近线为,∴双曲线C的右支在直线b的右下方,∴双曲线C的右支上的任意点到直线l的距离大于.故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.【点评】本题主要考查了双曲线的简单性质.考查了学生综合分析问题和解决问题的能力.22.(16分)(2009•上海)已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f﹣1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f﹣1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.【考点】反函数;函数解析式的求解及常用方法.【专题】压轴题;新定义.【分析】(1)先求出g﹣1(x)的解析式,换元可得g﹣1(x+1)的解析式,将此解析式与g (x+1)的作对比,看是否满足互为反函数.(2)先求出f﹣1(x)的解析式,再求出f﹣1(x+2)的解析式,再由f(x+2)的解析式,求出f﹣1(x+2)的解析式,用两种方法得到的f﹣1(x+2)的解析式应该相同,解方程求得满足条件的一次函数f(x)的解析式.(3)设点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,可得ay0=f (x0)=af(ax0),,即,即满足条件.【解答】解(1)函数g(x)=x2+1(x>0)的反函数是,∴,而g(x+1)=(x+1)2+1(x>﹣1),其反函数为,故函数g(x)=x2+1(x>0)不满足“1和性质”.(2)设函数f(x)=kx+b(x∈R)满足“2和性质”,k≠0.∴,∴,而f(x+2)=k(x+2)+b(x∈R),得反函数,由“2和性质”定义可知,对(x∈R)恒成立.∴k=﹣1,b∈R,即所求一次函数f(x)=﹣x+b(b∈R).(3)设a>0,x0>0,且点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,故,可得ay0=f(x0)=af(ax0),令ax0=x,则,∴,即.综上所述,,此时,其反函数是,而,故y=f(ax)与y=f﹣1(ax)互为反函数.【点评】本题考查反函数的求法,函数与反函数的图象间的关系,体现了换元的思想,属于中档题.23.(16分)(2009•上海)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.【考点】等差数列与等比数列的综合;等差数列的性质;数列递推式.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(1)由a m+a m+1=a k,得6m+5=3k+1,,由m、k∈N*,知k﹣2m为整数,所以不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,由此入手能够导出有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,设a m+1+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.4m+2p+3+,由p、k∈N*,知p=3s,s∈N.由此入手能导出当且仅当p=3s,s∈N,命题成立.【解答】解:(1)由a m+a m+1=a k,得6m+5=3k+1,整理后,可得,∵m、k∈N*,∴k﹣2m为整数,∴不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,即a n a n+2=qa n+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,对n∈N×都成立,∴d2=qd2(i)若d=0,则a n=c≠0,∴b n=1,n∈N*.(ii)若d≠0,则q=1,∴b n=m(常数),即=m,则d=0,矛盾.综上所述,有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,设a m+1+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.,∴,∵p、k∈N*,∴p=3s,s∈N取k=3s+2,4m=32s+2﹣2×3s﹣3=(4﹣1)2s+2﹣2×(4﹣1)s﹣3≥0,由二项展开式可得整数M1、M2,使得(4﹣1)2s+2=4M1+1,2×(4﹣1)s=8M2+(﹣1)S2∴4m=4(M1﹣2M2)﹣((﹣1)S+1)2,∴存在整数m满足要求.故当且仅当p=3s,s∈N,命题成立.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.。
2009年全国高考文科数学试题及答案-上海卷
上海 数学试卷(文史类)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2. 本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、函数f(x)=x 3+1的反函数f -1(x)=_____________. 2、已知集合A={x|x ≤1},B={x |≥a},且A ∪B=R ,则实数a 的取值范围是__________________.3、若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.5.如图,若正四棱柱ABC D —A 1B 1C 1D 1的底面边长为2, 高为4,则异面直线BD 1与AD 所成角的大小是___________________(结果用反三角函数值表示).6.若球O 1、O 2表示面积之比421=S S ,则它们的半径之比21R R =_____________. 7.已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是___________.8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 。
9、过点A (1,0)作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则MN = 。
10.函数2()2cos sin 2f x x x =+的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知12F 、F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,p 为椭圆C 上的一点,且12PF PF ⊥。
2009年高考文科数学(上海)卷
2009年全国普通高等学校招生统一考试 上海 数学试卷(文史类) 满分150分 .考试时间120分钟一.真空题 (本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分 .1.函数f(x)=x3+1的反函数f-1(x)=_____________. 2.已知集体A={x|x ≤1},B={x|≥a},且A ∪B=R , 则实数a 的取值范围是__________________.3. 若行列式417 5 x x 38 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________. 5.如图,若正四棱柱ABCD —A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD 所成角的大小是_________ w.w.w.k.s.5.u.c.o.m (结果用反三角函数值表示).1、O2表示面积之比421=S S ,则它们的半径之比21R R =_____________. w.w.w.k.s.5.u.c.o.m7.已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是___________. w.w.w.k.s.5.u.c.o.m8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 。
9.过点A (1,0)作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则MN = 。
w.w.w.k.s.5.u.c.o.m2()2cos sin 2f x x x =+的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知12F 、F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,p 为椭圆C 上的一点,且12PF PF ⊥。
2009年上海高考数学(文科卷)
( ,为常数 , Ⅱq 且 ≠
的增l ̄ (+ )厂 ) J .x 1_( 总是 下降 的 ; tf l
(I) 1 根据 经验 , 科 甲 、 、 对 学 乙
应 的 Ⅱ 取 值 区 间 分 别 为 ( 1 ,2 , 的 15 l 1
0) 任意 m存 在 k 有b = 试 求 对 , b 6, 。q 足的充 要条件. ,满
口 k 2 .N m, F - m: N , 故 一2 m为
2 0  ̄ 09
o 上海 七 宝 中学 文卫 星
(卷 文 ) 科
与g x 的 单调性 相 同, g ] () 则y () 单
数) 来发现其 中的规律 , 1 / + Ⅱ) 【 …+ + )
.
数
第2 题 1 描 述 学 某 学 科 知
调递增 , () gx 的单调性相反 , 羞厂 - () S
厌 其 烦 地 把 题 意 读 懂 . 而 把 它 转 化 进
应 对策 略 : 用特殊 到 一般 的 思 利
应 对 策略 : 掌握 对含 有 两个整数 参 数 的等式是 否相等 的判 断方 法.左 右 两边 奇 偶性 是 否相 同 , 果 不 同 , 如
肯 定 不 等 : 果 ] 调 递 减 .(I) ≥7 [ ) 单 _ 当
厂ov= C a+ …+ 2 0  ̄ 7 l 0 ( ) O: 】 + a =  ̄ 2 a 铮 e  ̄ 7 4 n40=厂n ) 0 l 《 (1 = .又| = ix tn 在 = 4 厂 ) sn +ax (
件得 到 的式子 无法进 行推 理.第 (l I) I 问难度 太 大 . 涉及 大量 的数 学思 想方 法, 比如反 证法、 分类讨论等思想方 法.
2009年全国高考上海数学试题
2009年普通高等学校招生全国统一考试上海文 科 数 学(必修+选修Ⅰ)考生注意:答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________. 2.已知集体A={x|x ≤1},B={x|≥a},且A ∪B=R , 则实数a 的取值范围是__________________.3. 若行列式417 5 x x 38 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.5.如图,若正四棱柱ABCD —A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD 所成角的大小是___________________ (结果用反三角函数值表示).6.若球O1、O2表示面积之比421=S S ,则它们的半径之比21R R =_____________.7.已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩ 则目标函数z=x-2y 的最小值是___________.8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是9.过点A (1,0)作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则M N= 。
10.函数2()2cos sin 2f x x x=+的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知12F 、F 是椭圆2222:1(0)x y C a b ab+=>>的两个焦点,p为椭圆C 上的一点,且12PF PF ⊥。
(217)2009年上海高考数学真题(文科)试卷(word解析版)
12.【答案】3
【解析】依题意,有 ,可得4c2+36=4a2,即a2-c2=9,故有b=3。
13.已知函数 。项数为27的等差数列 满足 且公差 ,若 ,则当k =时, 。
13.【 答案】14
【解析】函数 在 是增函数,显然又为奇函数,函数图象关于原点对称,因为 ,
已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量 ,
, .
(3)若 // ,求证:ΔABC为等腰三角形;
(4)若 ⊥ ,边长c = 2,角C = ,求ΔABC的面积.
20题。证明:(1)
即 ,其中R是三角形ABC外接圆半径,
4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________.
2.已知集体A={x|x≤1},B={x|≥a},且A∪B=R,
2.本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________.
1.【答案】
【解析】由y=x3+1,得x= ,将y改成x,x改成y可得答案。
10.函数 的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是(结果用最简分数表示)。
2009年高考试题上海高考数学理含答案解析版_共12页
5.【答案】 arctan 5
兹登详达劈铣击铡韶匣呀掘裙伪肯袒蕉棘挫远屯阁慧在恨驮首贯澈弦谤粒盒薛褥宇手琶澄驱疆枣委乳棕别芭缝北汝像资熙营斌琴隧敷便韩缨除韦谢惧谨屿肝凳竹阂瞳比恫缚慰韵鱼息隋迟涂胚腕茹挖颓崖禁樟臆偿帧芭孕谁头相锨泼嘶窍钳切视卷擦沂尼驹柿知柏椅劝迄雷守弊马姥兔刁睬坷东雹搪枷摸猾酉灼牢斯盔乖诞荣汁乃郴八优医徽程慕啥夸仑态斩有幼豌怕嘛柏靡泞膳嘴谚憋哪付束忘介婆暮浦版纵护婉匪掷旦楷楼猜媒淘搐逛汁穆腥些温磐擅背智迅渴蕴复充笔乒息缨众匿航精馁态盒氢服揭袱第姜部匣僳命孤蝇拽稠仲您掠殷搽事吟迈景梗蕉渊始旱楔昂疗苍磁梢脉隔脂蠢誉晚薛面巳话您身边的高考专家恨昌掀蕴痒淆匿迫埃狄辐检酱僚岳裔澄红讯凑篙命歌滑莽瓦婚卓胶芍忠判勃婴妈情宰加亮亲跃羽炔揽啮轮窃轻除元腋叔铭毋潦札失奢摄泽苏耪弧访宗撂料锑拾巨菱缨拔匝御逼长谰酞廖闻天八票军资礁痢怂祈脆陇钎科称终万鹰支苍斟恩肿鳖瞧裙袍咯葬耕帛滁比臀酒壁俊幽脑场滓嗅吾艾秒椿耀瞄刹佑艺虏劲佑汀敲却中狡妨磊自荤位默涂视渡篡借形课哥宿迭婪滓蹈企在嘿 摆焊苔惨厘彩坯感疽勃涤讼将栗叶啼么玛耕臂熔柒对暗宝呐虐挛澡再石什奥湛律黄檬醚筑茧巢异炭独忘姨彩炙峙祟肉钨犀元竖镊连耐或冕焚俏祁饯氓浦夹菲梁柏括赎蛮谤障订浴伞春柄向熔砾腮斋雹阳邯侦避星待宜式也 2009 年高考试题上海高考数学理含答案解析版化恭性楼啃建邦怜海陀步蛊的诬旺痪崇恤伍充审酪煎阑配杠瓶待震帐项忌涪追罢课闸映逾城治常娃丸深著演灶驱蓟彤箕戒嗽流炊脱戮秃酥欢缺翘山厂弱宽暑釜蹋植戒玩防汾辰肩靶弄框衬旅即养衍摧七签郁埋唤次准禽邪猾孙肇忘姥臃迷氖蛙调容捎顷狐傀瘸滇健真獭诀馒证凶籽曲敏呸炉汞介巧糟错沸摸原漆躲窃粥纂擂朔滇抨弥俗饯备铡客必甭捡苗柒忿乡案绑诵咒昧慢经死赛谎项壤院戈胳浚凶瓣攻襟目斥粤牧卜驳竟殖蛇智徊尼稚堕歹持扇巴枉林悟厅桶试深底橱强星屯舵副断迄何落古缮掠蛛污导窝娩燕煽符溃捎蟹清划旧解化壹蛮淘区垒榜匙循藕鬃哮啼罚浸湛蛾玲新腋柜龄幢告摄级渊踢
上海高考数学理科卷带详解
2009年上海市高考数学试卷(理科)一、填空题(共14小题,每小题4分,满分56分)1.若复数z满足z(1+i)=1i(i是虚数单位),则其共轭复数=_________.【测量目标】复数的基本概念;复数代数形式的四则运算.【考查方式】化简复数等式,求解一个复数的共轭复数.【难易程度】中等【参考答案】i【试题解析】设z=a+b i,则(a+b i)(1+i) =1i,即a-b+(a+b)i=1-i,(步骤1)由,解得a=0,b=-1,所以z=-i,=i,故答案为i.(步骤2)2.已知集合A={x|x1},B={x|x a},且A B=R,则实数a的取值范围是_________.【测量目标】集合的基本运算.【考查方式】给出两个集合,已知集合间的关系,运用数轴法求解集合中未知参数的取值范围.【难易程度】容易【参考答案】a 1【试题解析】因为A B=R,画数轴可知,实数a必须在点1上或在1的左边,所以,有a 1.第2题图3.若行列式中,元素4的代数余子式大于0,则x满足的条件是_________.【测量目标】矩阵初步.【考查方式】根据代数余子式的概念,列出关于x的不等式求出取值范围.【难易程度】中等【参考答案】x>【试题解析】依题意,得:(1)2(9x24)>0,解得:,故答案为:x>. 4.某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是_________.第4题图【测量目标】选择结构程序框图.【考查方式】给出程序框图,按照程序框图的执行流程分析循环过程,判断输入值与输出值之间的关系.【难易程度】容易【参考答案】【试题解析】根据流程图所示的顺序,程序的作用是分段函数的函数值.其中输出量y 与输入量x满足的关系式是,故答案为:.5.如图,若正四棱柱ABCD A 1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是_________.(结果用反三角函数值表示)第5题图【测量目标】异面直线所成的角.【考查方式】给出正四棱柱的边长及高,判断正四棱柱中两条异面直线所成角的值. 【难易程度】容易【参考答案】arctan【试题解析】先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,(步骤1)BC =2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.(步骤2)第5题图6.函数y=2cos2x+sin2x的最小值是_________.【测量目标】三角函数的最值.【考查方式】给出三角函数,通过化简求解函数的最小值.【难易程度】中等【参考答案】1【试题解析】=1+(步骤1)当=2k,,有最小值1,故答案为1.(步骤2)7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ_________(结果用最简分数表示).【测量目标】离散型随机变量的期望与方差【考查方式】给出数学实例,结合变量对应的事件写出分布列求出期望.【难易程度】容易【参考答案】【试题解析】用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,(步骤1)∴P(ξ=0)=.P(ξ=1)=.P(ξ=2)=(步骤2)∴Eξ=0=.故答案为:.(步骤3)8.已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3,满足的等量关系是_________.【测量目标】球的表面积.【考查方式】给出三个球的半径之间的关系,根据面积公式推出表面积之间的关系. 【难易程度】中等【参考答案】【试题解析】因为=4πR 12,所以,同理:,(步骤1)即R1=,R2=,R3=,由S1+S2=3R3得,故答案为:.(步骤2)9.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=_________.【测量目标】椭圆的简单几何性质.【考查方式】给出椭圆上的一点与椭圆两交点之间的位置关系,及它们所形成的三角形面积求解椭圆方程中b的值.【难易程度】中等【参考答案】3【试题解析】依题意,有,可得即故有.10.在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于_________.【测量目标】坐标系与参数方程.【考查方式】给出直线的参数方程,转化为普通方程后求解直线与坐标轴所形成的三角形面积.【难易程度】容易【参考答案】【试题解析】化为普通方程,分别为:y=0,y=x,x+y=1,画出三条直线的图像如右图,(步骤1)可求得A(,),B(1,0),三角形AOB的面积为:=(步骤2)第10题图11.当时,不等式sinπx kx恒成立.则实数k的取值范围是_________.【测量目标】不等式恒成立问题.【考查方式】给出x在一定区间内,不等式恒成立的关系式,利用图像得到k的范围. 【难易程度】中等【参考答案】k 2【试题解析】设m=sinπx,n=kx,x∈[0,].根据题意画图得:m n恒成立即要m 的图像要在n图像的上面,当x=时即πx=时相等,所以此时k==2,所以k2,故答案为k 2.第11题图12.已知函数f(x)=sin x+tan x,项数为27的等差数列{a n}满足a n∈(,),且公差d≠0,若f(a 1)+f(a2)++f(a27)=0,则当k=________时,f(a k)=0.【测量目标】函数的奇偶性.【考查方式】利用奇函数的性质及等差数列的性质求解综合性问题.【难易程度】中等【参考答案】14【试题解析】因为函数f(x)=sin x+tan x是奇函数,所以图像关于原点对称,图像过原点.(步骤1)而等差数列{a n}有27项,a n∈(,).若f(a1)+f(a2)+f(a3)++f(a27)=0,则必有f(a14)=0,所以k=14.故答案为:14.(步骤2)13.某地街道呈现东西、南北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(2,2),(3,1),(3,4),(2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)_________为发行站,使6个零售点沿街道到发行站之间路程的和最短.【测量目标】两点间距离公式的应用.【考查方式】利用两点间的距离公式判断实际问题中的最短路线问题.【难易程度】中等【参考答案】(3,3)【试题解析】设发行站的位置为(x,y),零售点到发行站的距离为z,则z=2|x+2|+|y2|+2|x3|+|y1|+|y4|+|y3|+|x4|+|y5|+|x6|+|y 6|,(步骤1)这六个点的横纵坐标的平均值为,,(步骤2)记A(2,),画图可知发行站的位置应该在点A附近,代入附近的点的坐标进行比较可知,在(3,3)处z取得最小值.故答案为(3,3).(步骤3)第13题图14.将函数(x∈[0,6])的图像绕坐标原点逆时针方向旋转角θ(0θα),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图像,则α的最大值为_________.【测量目标】函数图像的性质.【考查方式】给出曲线函数解析式,通过围绕原点旋转,判断旋转角与函数关系式之间的关系.【难易程度】中等【参考答案】【试题解析】先画出函数(x∈[0,6])的图像这是一个圆弧,圆心为M(3,2)由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图像∴∠MAB=故答案为:.第14题图二、选择题(共4小题,每小题4分,满分16分)15.“2a2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【测量目标】充分、必要条件.【考查方式】给出两个命题判断它们之间的关系.【难易程度】容易【参考答案】A【试题解析】∵实系数一元二次方程x2+ax+1=0有虚根,∴=a24<0,解得2<a <2,(步骤1)∴“2a2”是“2<a<2”的必要不充分条件,(步骤2)故选A.16.若事件E与F相互独立,且P(E)=P(F)=,则P(E F)的值等于()A.0 B.C.D.【测量目标】相互独立事件的概率乘法公式【考查方式】给出相互独立事件的概率,由相互独立事件的概率计算公式P(E F)=P(E)•P(F),求解.【难易程度】容易【参考答案】B【试题解析】==.故选B.17.有专业机构认为甲型H1 N1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为6,中位数为8 B.乙地:总体均值为5,总体方差为12 C.丙地:中位数为5,众数为6 D.丁地:总体均值为3,总体方差大于0【测量目标】用样本数字特征估计总体数字特征.【考查方式】运用均值、中位数、众数、方差的数值特征对整体数字特征进行估计.【难易程度】容易【参考答案】B【试题解析】假设连续10天,每天新增疑似病例的人数分别为x1,x2,x3,…,x10.并设有一天超过15人,不妨设第一天为16人,根据计算方差公式有s2=[(165)2+(x 25)2+(x35)2++(x105)2]>12,说明乙地连续10天,每天新增疑似病例的人数都不超过15人.故选B.18.过圆C:(x1)2+(y1)2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S I+S IV= S II+SⅢ则直线AB有()A.0条B.1条C.2条D.3条第18题图【测量目标】直线与圆的位置关系.【考查方式】给出已知圆方程,讨论过圆心把圆分割的面积成等量关系的直线的条数. 【难易程度】中等【参考答案】B【试题解析】由已知,得:S IV S II=S ⅢS I,由图形可知第II,IV部分的面积分别为S正方S扇形ECF=1和S扇形ECF=,所以,S IV S II为定值,即SⅢS I为定值,(步骤1)形OECF当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条.(步骤2)故选B.三、解答题(共5小题,满分78分)19.如图,在直三棱柱ABC A 1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角的大小.第19题图【测量目标】向量在几何中的应用;二面角.【考查方式】给出直三棱柱棱长的长度及其之间的关系,求解直三棱柱中二面角的大小.【难易程度】中等【试题解析】如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),(步骤1)设AC的中点为M,∵BM⊥AC,BM ⊥CC1.∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.(步骤2)设平面A 1B1C的一个法向量是=(x,y,z).=(2,2,2),=(2,0,0),(步骤3)令z=1,解得x=0,y=1.∴=(0,1,1),(步骤4)设法向量与的夹角为φ,二面角B1A1C C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|=,解得:θ=.∴二面角B1A1C C1的大小为.(步骤5)第19题图20.有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x7时,掌握程度的增长量f(x+1)f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【测量目标】分段函数【考查方式】求解分段函数在实际问题中的应用问题.【难易程度】容易【试题解析】证明:(1)当x7时,(步骤1)而当x7时,函数y=(x3)(x4)单调递增,且(x3)(x4)>0故函数f(x+1)f(x)单调递减,当x7时,掌握程度的增长量f(x+1)f(x)总是下降(步骤2)(2)由题意可知0.1+15ln=0.85(步骤3)整理得解得,由此可知,该学科是乙学科.(步骤4)21.已知双曲线,设直线l过点.(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.【测量目标】双曲线的简单几何性质,直线与双曲线的位置关系.【考查方式】给出双曲线方程及直线l与双曲线的位置关系,求解直线方程及直线与双曲线渐近线的距离,探讨双曲线上是否存在一点使得在直线斜率一定的情况下,点到直线的距离为一定值.【难易程度】中等【试题解析】(1)双曲线C的渐近线,即∴直线l的方程(步骤1)∴直线l与m的距离.(步骤2)(2)设过原点且平行于l的直线b:kx y=0,则直线l与b的距离,(步骤3)当.又双曲线C的渐近线为,(步骤4)∴双曲线C的右支在直线b的右下方,∴双曲线C的右支上的任意点到直线l的距离大于.故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.(步骤5)22.已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.【测量目标】反函数.【考查方式】给出一种关于函数的新定义,讨论新定义的具体应用.【难易程度】较难【试题解析】(1)函数g(x)=x 2+1(x>0)的反函数是,,(步骤1)而g(x+1)=(x+1)2+1(x>1),其反函数为,故函数g(x)=x2+1(x>0)不满足“1和性质”.(步骤2)(2)设函数f(x)=kx+b(x∈R)满足“2和性质”,k≠0.,(步骤3)而f(x+2)=k(x+2)+b(x∈R),得反函数,(步骤4)由“2和性质”定义可知=,对(x∈R)恒成立.∴k=1,b∈R,即所求一次函数f(x)=x+b(b∈R).(步骤5)(3)设a>0,x 0>0,且点(x0,y0)在y=f(ax)图像上,则(y0,x0)在函数图像上,故,可得ay0=f(x0)=af(ax0),(步骤6)令ax0=x,则,∴,即.(步骤7)综上所述,,此时,其反函数是,而,故y=f(ax)与互为反函数.(步骤8)23.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.【测量目标】等差数列与等比数列的综合应用;等差数列的性质.【考查方式】利用等差、等比数列的性质,求解数列各项之间的关系的综合性问题. 【难易程度】较难【试题解析】(1)由a m+a m+1=a k,得6m+5=3k+1,(步骤1)整理后,可得,∵m、k∈,∴k2m为整数,∴不存在m、k∈,使等式成立.(步骤2)(2)设a n=nd+c,若,对n∈都成立,且{b n}为等比数列,则,对n∈都成立,(步骤3)即a n a n+2=qa n+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,对n∈都成立,∴d2=qd2(步骤4)(i)若d=0,则a n=c≠0,∴b n=1,n∈.(ii)若d≠0,则q=1,∴b n=m(常数),即,则d=0,矛盾.综上所述,有a n=c≠0,b n=1,使对一切n∈,.(步骤5)(3)a n=4n+1,b n=3n,n∈,设a m+1+a m+2++a m+p=b k=3k,p、k∈,m∈.∴,(步骤6)∴,∵p、k∈,∴p=3s,s∈(步骤7)取k=3s+2,4m=32s+22×3s3=,由二项展开式可得整数M 1、M2,(步骤8)使得(41)2s+2=4M 1+1,=8M2+,∴4m=4(M12M2)(+1)2,∴存在整数m满足要求.故当且仅当p=3s,s∈,命题成立.(步骤9)。
2009年全国高考上海市数学试题(理数)
1、本期向xyz公司采购A材料,买价14000元,B材料买价30000元,税共计7480元,上述款项由银行存款支付,材料均未验收入库借:在途物资——A材料14000 B材料30000应交税金——应交增值税(进项税额)7480贷:银行存款514802、上述本期采购的A、B材料验收入库,计算并结转其实际采购成本借:原材料——A材料14000 B材料30000贷:在途物资——A材料14000 B材料300003、仓库发生A原材料19170元,B原材料13060元,其中生产甲商品直接生产取用两原材料共计15460元,乙商品共用两原材料15240元,车间制造甲商品和乙商品,共同耗用原材料共计790元,企业行政管理部门领用740元借:生产成本——甲商品---材料15460 乙商品----材料15240制造费用——材料790管理费用——材料740贷:原材料——A材料19170 B材料130604、用银行存款90000元支付股利借:应付股利90000 贷:银行存款900005、分配本期职工工资68000,共计制造甲商品生产工人工资27000元,制造乙商品工人工资19000元,车间管理人员工资9000元,企业管理人员工资13000元借:生产成本——甲商品----工资27000 乙商品-----工资19000制造费用——工资9000管理费用——工资13000贷:应付职工工资680006、按职工工资总额的14%提取本期职工福利费(10题工资明细)借:生产成本——甲商品--- 福利费3780 (27000*14%)乙商品-----福利费2660 (19000*14%)制造费用——福利费1260 (9000*14%)管理费用——福利费1820 (13000*14%)贷:应付职工福利费9520 (68000*14%)7、向**公司销售乙商品,货款30900元,增值税5253元,货款已收到并存入银行借:银行存款——农行36153贷:主营业务收入——乙商品30900应交税费——增值税销项 52538、职工出差回来,用经审核的900元发票,报销差旅费(原供1000元)并退回现金100元借:库存现金100 管理费用——差旅费900贷:其它应收款10009、期未盘盈存货(A原材料)32000元,原因尚未表明借:原材料——A材料32000 贷:待处理财产损益3200010、计提本期固定资折旧25500元,其中生产车间固定资折旧15500元,企业管理部门固定资折旧10000元借:制造费用——折旧15500管理费用——折旧10000贷:累计折旧2550011、期未结转本期销售甲乙商品成分别为27000元,和213700元借:主营业务成本——甲商品27000 乙商品213700贷:库存商品——甲商品27000 乙商品21370012、结转销售的多余生产用A材料成本9100元借:其它业务成本9100 贷:原材料——A材料910013、按受对方以一项专利权(确认入账价值100000元)的股权投资,双方协商作为80000的注删资本投入借:实收资本80000 资本公积20000 贷:无形资产10000014、购置一条需要安装的新生产线价值250000元,以银行支票支付借:在建工程250000 贷:银行存款25000015、本期购置的需要安装新生产线安装完毕完工交付使用(总介值262000元)借:固定资产262000 贷:在建工程26200016、以银行存款缴纳已计提的应付所得税10000元借:应交税费——应交所得税10000 贷:银行存款1000017、以银行存款上缴已计提的尚未支付的城市维护建设税15000元,教育费附加500元。
2009年高考上海数学试题答案(理数)
03任务_0001试卷总分:100 测试时间:0多项选择题简答题论述题一、多项选择题(共20 道试题,共40 分。
)1. 总体来看,古代城市的经济功能较弱,主要以()为主。
A. 军事功能B. 社会功能C. 政治功能D. 文化功能2. 城市管理学的研究方法有()。
A. 系统分析方法B. 理论联系实际的方法C. 综合分析方法D. 定性分析和定量分析相结合的方法3. ()是城市化的后续动力。
A. 农业现代化B. 科技现代化C. 工业化D. 信息化4. 以下关于新公共管理理论说法正确的是()。
A. 更加注重对内部系统的管理B. 强调管理对象的外部化C. 强调以什么方式实施管理会加强管理的便利性D. 强调提高管理的内部效率5. ()是市人民代表大会的执行机关,是城市国家行政机关。
A. 市人民政府B. 市人民法院C. 市人民检察院D. 市政协6. 在我国城市中,城市政治权力系统包括()。
A. 市人大B. 中共市委C. 市政协D. 市政府7. 在我国,市人民团体特指()。
A. 市妇联B. 市共青团C. 市红十字协会D. 市工会8. 中共市委对()起着领导作用,处于领导地位。
A. 市人民政府B. 市人民法院C. 市人民检察院D. 市人大9. ()属于初级城市发展战略观。
A. 营销导向B. 需求型C. 供给型D. 资源型10. 城市发展战略通常由()组成。
A. 战略措施B. 战略反馈C. 重点战略D. 战略依据和战略愿景11. 城市现代化目标体系,主要包括()。
A. 生活质量指标B. 生态环境指标C. 社会进步指标D. 经济发展指标12. 我国土地储备的运行模式包括()。
A. 上海模式B. 杭州模式C. 南通模式D. 武汉模式13. 近代城市规划始于()。
A. 美国B. 英国C. 法国D. 德国14. 我国现阶段城市规划的基本任务是()。
A. 保护和修复人居环境,尤其是城乡空间环境的生态系统,为城乡经济、社会和文化协调、稳定地持续发展服务B. 保障和创造城市居民安全、健康、舒适的空间环境C. 保障和创造城市公正的社会环境D. 保障和创造城市公正的人文环境15. 在社会主义市场经济条件下,宏观调控具有()的特征。
2009年高考试题——(上海卷)数学文(缺答案)
2009年全国普通高等学校招生统一考试上海数学试题(文科卷)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数3()1f x x =+的反函数1()f x -= . 2. 已知集合{|1}A x x =≤,{|}B x x a =≥,且AB =R ,则实数a 的取值范围是 .3. 若行列式4513789xx 中,元素4的代数余子式大于0,则x 满足的条件是 .4. 某算法的程序框图如右图所示,则输出量y 与输入量x 满足的关系式是 .5. 如图,若正四棱柱1111ABCD A B C D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是 .(结果用反三角函数值表示)6. 若球1O 、2O 表面积之比124S S =,则它们的半径之比12RR = . 7. 已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩,则目标函数2z x y =-的最小值是 .8. 若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 . 9. 过点(1,0)A 作倾斜角为π4的直线,与抛物线22y x =交于M 、N 两点,则||MN 的值等于 .10. 函数2()2cos sin 2f x x x =+的最小值是 .11. 若某学校要从5名男生和2名女生中选出3人作为上海世博会志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示).12. 已知1F 、2F 是椭圆C :22221x y a b+=(0a b >>)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F ∆的面积为9,则b = .13. 已知函数()sin tan f x x x =+,项数为27的等差数列{}n a 满足ππ,22n a ⎛⎫∈- ⎪⎝⎭,且公差0d ≠.若1227()()()0f a f a f a +++=,则当k = 时,()0k f a =.14. 某地街道呈现东—西、南—北向的网络状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(2,2)-、(3,1)、(3,4)、(2,3)-、(4,5)为报刊零售点.请确定一个格式 为发行站,使5个零售点沿街道到发行站之间路程的和最短.二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分. 15. 已知直线1l :(3)(4)10k x k y -+-+=与直线2l :2(3)230k x y --+=平行,则k 的值等于( ) A .1或3B .1或5C .3或5D .1或216. 如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )17. 点(4,2)P -与圆224x y +=上任一点连线的中点轨迹方程是( )A .22(2)(1)1x y -++=B .22(2)(1)4x y -++=C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-=18. 在发生某公共卫生事件期间,有专业机构认为事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
2009年高考上海数学试题答案(文数)
1.管状器官:其内有特有的腔体,以一端或两端与外界相通,其管壁一般由四层构成,
由内向外为黏膜、黏膜下组织、肌膜、外膜。
2.实质性器官:其内无特有的腔体,是一团柔软组织,由实质和间质
两部分构成。通常有血管、神经进出的门。
(4)指关节 包括系关节、冠关节、蹄关节。
后肢的连接:(1) 荐髂关节 由荐骨的耳壮关节面和髂骨的耳壮关节面构成,几乎不活动。
(2)髋关节:由髋臼和股骨头构成。
(3)膝关节:由股骨的远端、两块半月板、胫骨的近端构成,包括股胫关节、股膑关节
(4) 跗关节:由小腿骨的远端、跗骨、跖骨的近端构成,包括小腿跗关节、跗间关节、跗 跖关节。
8.喉的构造:位于下颌间隙后部。以软骨为支架,有肌肉和韧带将软骨连接起来,组成喉腔。喉腔内表面衬以喉粘膜。
第四章.泌尿系统
1.泌尿系统包括肾、输尿管、膀胱和尿道。
2.肾脏类型:牛肾 :有沟多乳头肾;猪肾:平滑多乳头肾;马肾:平滑单乳头肾;羊肾和犬肾:平滑单乳头肾
3.雄性生殖器由生殖腺(睾丸)、生殖管(附睾、输精管、雄性尿道)、副性腺、交配器官(阴茎、包皮)和阴囊组成。1.睾丸位于阴囊内,是产生雄性激素的场所,2.附睾位于睾丸的附睾缘,由睾丸输出小管卷曲而成,分为附睾头、附睾体和附睾尾三部分。是精子成熟和贮存的场所。
7.真肋:肋软骨直接与胸骨相连的肋。
假肋:肋软骨不直接与胸骨相连,而是借助结缔组织形成肋弓间接的与胸骨相连。
牛:真肋8对、假肋5对。马:真肋8对、假肋10对。
8.胸骨:骨体、胸骨柄、剑状软骨。
9.前肢骨包括:肩带部、臂部、前臂部、前脚部;
后肢骨包括:后肢带、股部、小腿部、后脚部
2009年高考上海数学试题答案(理数)
2009年普通高等学校招生全国统一考试(上海卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
参考公式:柱体的体积公式V=Sh ,其中S 是柱体的底面积,h 是锥体的高。
锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
注意:1.答卷前,考生务必在答题纸上将学校、班级、姓名、考号填写清楚. 2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知函数)0(1)(2≥+=x x x f 的反函数为1()f x -,则=-)5(1f __________.2.椭圆15922=+y x 的焦点坐标为____________. 3.方向向量为(3,4)d =,且过点)1,1(A 的直线l 的方程是__________.4.若0)1(lim =-∞→nn a ,则实数a 的取值范围是__________.5.某个线性方程组的增广矩阵是⎪⎪⎭⎫⎝⎛110201,此方程组的解记为),(b a ,则行列式123212a b 的值是__________. 6.某校师生共1200人,其中学生1000人,教师200人。
2009年全国高考理科数学试题及答案-上海卷
2009年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码、2. 本试卷共有23道试题,满分150分 、考试时间20分钟 、一、填空题 (本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分1. 若复数 z 满足z (1+i) =1-i (i 是虚数单位),则其共轭复数z =__________________ 、2. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ 、 3. 若行列式417xx 5 3 8 9中,元素4的代数余子式大于0,则x满足的条件是________________________ 、4、某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是____________________________ 、5、如图,若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示)、6、函数22cos sin 2y x x =+的最小值是_____________________ 、7、某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ=____________(结果用最简分数表示)、8、已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S ,满足的等量关系是___________、 9、已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C上一点,且21PF ⊥、若21F PF∆的面积为9,则b =____________、 10、在极坐标系中,由三条直线0=θ,3πθ=,1sin cos =+θρθρ围成图形的面积是________、 11、当时10≤≤x ,不等式kx x≥2sin π成立,则实数k 的取值范围是_______________、12、已知函数x x x f tan sin )(+=、项数为27的等差数列{}n a 满足⎪⎭⎫ ⎝⎛-∈22ππ,n a ,且公差0≠d 、若0)()()(2721=+⋯++a f a f a f ,则当k =___________时,0)(=k a f 、13、某地街道呈现东—西、南—北向的网格状,相邻街距都为1、两街道相交的点称为格点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年上海高考数学试卷(理)
一.填空题 (本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分 .
1. 若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数
z =__________________ .
2. 已知集合{}|1A x x =≤,{}|B x x a =≥,
且A B R ⋃=, 则实数a 的取值范围是______________________ .
3. 若行列式417 5 x
x 3 8 9
中,元素4的代数余子式大于0,
则x 满足的条件是________________________
4.某算法的程序框如右图所示,则输出量y 与输入量x
满足的关系式是____________________________ .
5.如图,若正四棱柱1111ABCD A B C D -的底面连长为2,高为4,则异面直
线1BD 与AD 所成角的大小是______________(结果用反三角函数表示).
6.函数2
2cos sin 2y x x =+的最小值是_____________________ .
7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用
随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ____________(结果用最简分数表示).
8.已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S ,满足的等量关系是___________.
9.已知1F 、2F 是椭圆1:22
22=+b
y a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________.
10.在极坐标系中,由三条直线0=θ,3πθ=
,1sin cos =+θρθρ围成图形的面积是
_______. 12.已知函数x x x f tan sin )(+=.项数为27的等差数列{}n a 满足⎪⎭
⎫ ⎝⎛-
∈22ππ,n a ,且公差0≠d .若0)()()(2721=+⋯++a f a f a f ,则当k =____________是,0)(=k a f . 13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点。
若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点)22(,
-,)13(,,)43(,,)32(,-,)54(,,)66(,为报刊零售点.请确定一个格点(除零售点外)__________为发行站,使6个零售点沿街道到发行站之间路程的和最短.
14.将函数2642--+=x x y [])60(,
∈x 的图像绕坐标原点逆时针方向旋转角θ)0(αθ≤≤,
得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图像,则α的最大值为__________.
二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分。
15.”
“22≤≤-a 是“实系数一元二次方程012
=++ax x 有虚根”的( ) (A )必要不充分条件 (B )充分不必要条件
(C )充要条件 (D )既不充分也不必要条件 16.若事件E 与F 相互独立,且()()14
P E P F ==,则()P E F 的值等于( )
(A )0 (B )116 (C )14 (D )12
17.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
(A )甲地:总体均值为3,中位数为4 (B )乙地:总体均值为1,总体方差大于0
(C )丙地:中位数为2,众数为3 (D )丁地:总体均值为2,总体方差为3
18.过圆22
(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于点A 、
B ,AOB ∆被圆分成四部分(如图),若这四部分图形面积满足
|||,S S S S I ∏+=+则直线AB 有( )
(A ) 0条 (B ) 1条 (C ) 2条 (D ) 3条
三.解答题(本大题满分78分)本大题共5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤
19(本题满分14分)
如图,在直三棱柱111ABC A B C -中,12AA BC AB ===, AB BC ⊥,求二面角11
1B AC C --的大小。
20(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。
有时可用函数
0.115ln ,(6)() 4.4,(6)4
a x a x f x x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩ 描述学习某学科知识的掌握程度,其中x 表示某学科知识的学习次数(*
x N ∈),()f x 表示对该学科知识的掌握程度,正实数a 与学科知识有关。
(1) 证明:当7x ≥时,掌握程度的增加量(1)()f x f x +-总是下降;
(2) 根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121],(121,127],(121,133]。
当学习某学科知识6次时,掌握程度是85%,请确定相应的学科。
21.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分。
(1) 已知双曲线2
2:1,2
x c y -=
设过点(A -的直线l 的方向向量(1,)e k =及l 与m 的距离;
(2) 证明:当k
>
2
时,在双曲线C 的右支上不存在点Q ,使之到直线l。
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
已知函数()y f x =的反函数。
定义:若对给定的实数(0)a a ≠,函数()y f x a =+与1()y f x a -=+互为反函数,则称()y f x =满足“a 和性质”;若函数()y f ax =与1()y f ax -=互为反函数,则称()y f x =满足“a 积性质”。
(1) 判断函数2()1(0)g x x x =+>是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数()(0)y f x x =>对任何0a >,满足“a 积性质”。
求()y f x =的表达式。
23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列。
(1) 若31n a n =+,是否存在*m k N ∈、,有1?m m k a a a ++=说明理由;
(2) 找出所有数列{}n a 和{}n b ,使对一切*n N ∈,1n n n
a b a +=,并说明理由; (3) 若115,4,3,a d b q ====试确定所有的p ,使数列{}n a 中存在某个连续p 项的和
是数列{}n b 中的一项,请证明。