化工原理 下册 天津大学柴诚敬 35-36学时

合集下载

化工原理下册天津大学柴诚敬43-44学时

化工原理下册天津大学柴诚敬43-44学时
2020/6/3
一、热量衡算基本方程
物料的焓值
I1 cm1
湿物料的 平均比热

I2 cm2
I2 I1 cm (2 1)
绝干料的 平均比热

水的比 热容
cm csXw ccs 4 .18 X7
2020/6/3
一、热量衡算基本方程
由 Q Q P Q D L ( I 2 I 0 ) G ( I 2 I 1 ) Q L
作业题: 3、4、5
2020/6/3
=100 % 饱和空气线 ❖ 水汽分压线( p 线) 范围 0~26 kPa
2020/6/3
二、 H -I 图的应用
1.已知状态点求湿空气的参数
已知状态点可由 H-I 图求出湿空气的各参数值:
❖ 湿度 H ❖ 相对湿度
❖ 温度
❖焓I ❖ 水汽分压 p
干球温度t 露点td 绝热饱和冷却温度tas(湿球温度 tW)

预热器
QP
L t1
I1 H 1
干燥器




G 2
I
2
QD
干燥器热量衡算示意图
Qp— 预热器消耗热量,kW QD— 干燥器补充热量,kW Q — 2020/6L/3 热损失速率,kW
QL
L t2
废 气
I2 H 2 湿
G
I
1
1
物 料
一、热量衡算基本方程
预热器热量衡算
LI0 Qp LI1
干燥器热量衡算
2020/6/3
一、湿物料的含水量
1.湿基含水量 湿基含水量是指湿物料中水分的质量分率。
湿物料中水分质量
w
湿物料的总质量

化工原理天大下册第一部分

化工原理天大下册第一部分

p p

BM
p /p

BM
1
NA
p /p p /p

BM

1
~ 总体流动影响
BM
N A J A 无总体流动
三、液体中的稳态分子扩散
1.等分子反方向扩散 参照气体中的等分子反方向扩散过程,可写出
NA
D
AB
z
( c A1 c A 2 )
z z 2 z1
D —组分A在溶剂B中的扩散系数,m2/s
N=NA+NB=NA
N A D dc A
AB
dz
yAN A D
dc A
AB

c c
A
dz
NA

整理得
NA D c
总 AB 总
dc A
c c A dz
二、气体中的稳态分子扩散
边界条件 (1) z = z1 cA = cA1 ( pA= pA1 ) (2) z = z2 c A= cA2 ( pA= pA2 )
c B 2 c B1 c ln
B2 B1
停滞组分 B 对数平均物 质的量浓度
c
x BM
x B 2 x B1 x ln
B2 B1
停滞组分 B 对数平均摩 尔分数
x
四、扩散系数
1.气体中的扩散系数 通常,扩散系数与系统的温度、压力、浓度以 及物质的性质有关。对于双组分气体混合物,组分 的扩散系数在低压下与浓度无关,只是温度及压力 的函数。气体扩散系数可从有关资料中查得,某些 双组分气体混合物的扩散系数列于附录一中。气体 中的扩散系数,其值一般在 1 10 4 ~ 1 10 5 m2/s 范 围内。

化工原理下册天津大学柴诚敬33-34学时

化工原理下册天津大学柴诚敬33-34学时

能量消耗
对热敏性物系的分离,应采用较低的塔板压降。
2020/3/30
一、板式塔的流体力学性能
3. 液面落差 当液体横向流过塔板时,为克服板上的摩擦阻
力和板上部件(如泡罩、浮阀等)的局部阻力,需 要一定的液位差,则在板上形成由液体进入板面到 离开板面的液面落差。
液面 落差
2020/3/30
塔板上的液面 落差示意图
2020/3/30
一、塔有效高度的计算
气相单板效率
EMV
yn yn1 y*n yn1
液相单板效率
EML
xn1 xn xn1 x*n
2020/3/30
t n 1
x
tn n1
tn1
y
n1
yn
(
y
n
)
y
n1
(
x n
)
x
n
x n 1
单板效率分析
一、塔有效高度的计算
(3)点效率
点效率是指塔板上 各点的局部效率。
❖ 鼓泡接触状态 ❖ 蜂窝接触状态 ❖ 泡沫接触状态 ❖ 喷射接触状态
2020/3/30
一、板式塔的流体力学性能
(1)鼓泡接触状态 气速较低时,气
体以鼓泡形式通过液 层。由于气泡的数量 不多,形成的气液混 合物基本上以液体为 主,气液两相接触的 表面积不大,传质效 率很低。
2020/3/30
鼓泡接触状态
❖ 两组分理想物系的气液平衡关系 ❖ 平衡蒸馏与简单蒸馏 ❖ 两组分连续精馏的计算
理论板与恒摩尔流的概念 物料衡算与操作线方程 进料热状况的影响 理论板层数的计算 回流比的影响及选择 简捷法求理论板层数 连续精馏装置的热量衡算
2020/3/30

化工原理天大柴诚敬

化工原理天大柴诚敬

所以
2
或 gz1u212p1 gz2u222p2
适用条件:不 可压缩理想流

伯努利 (Bernoulli)方程
34
三、对伯努利方程的讨论
1.
gz1u212p1 gz2u222p2
(1-38a)
式1-38表明,理想流体在管路中作定态流动而又 无外功加入时,在任一截面上单位质量流体所具 有的总机械能相等,换言之,各种机械能之间可 以相互转化,但其总量不变。
注意:以上各式的适用条件
例10、例11(P26)
10
11
12
第一章 流体流动
1.4 流体流动的基本方程 1.4.1 总质量衡算-连续性方程 1.4.2 总能量衡算方程
13
一、流动系统的总能量衡算方程
选取如图1-12所示的定态流动系统作为衡算 的控制体,控制体内装有对流体作功的机械 (泵或风机)以及用于与外界交换热量的装置。 流体由截面1-1流入,经粗细不同的管道,由截 面2-2流出
在不可压缩流体的情况下:
故:
表明:流体压力能的损失转变为流体的内能, 从而使流体的温度略微升高。从流体输送角度看, 这部分机械能“损失”了。
30
二、流动系统的机械能衡算方程
2. 流动系统的机械能衡算方程
假设流动为稳态过程,1-1到2-2截面,由热力
学第一定律可知
UQe
v2 v1
pdv
1kg流体在截面1-1与2-2之间所获得的克总服热流量动阻
41
机械能衡算方程的应用
在应用机械能衡算方程与质量衡算方程解题时, 要注意下述几个问题: 1.衡算范围的划定 2. 控制面的选取 3. 基准面的确定 4. 单位一致性
42
第一章 流体流动

最新化工原理上册天津大学柴诚敬29-30学时

最新化工原理上册天津大学柴诚敬29-30学时

流化床实际操作速度与临界流化速度的比值称 固体流态化
3.4 固体流态化 3.4.1 流态化的基本概念 3.4.2 流化床的流体力学特性 3.4.3 流化床的浓相区高度与分离高度 (自学)
33
第三章、非均相混合物 分离及固体流态化
3.4 固体流态化 3.4.1 流态化的基本概念 3.4.2 流化床的流体力学特性 3.4.3 流化床的浓相区高度与分离高度 3.4.4 气力输送简介
36
一、概述
混合比R(或固气比) 单位质量气体所输送的固体质量,即
R Gs G
混合比在25以下(通常R=0.1~5)的气力输 送称为稀相输送。混合比大于25的气力输送称为 密相输送。
37
二、稀相输送
1. 稀相输送的分类 (1)吸引式 (2)压送式
2. 稀相输送的流动特性 (1)水平管内输送 (2)垂直管中的输送 (3)倾斜管中输送
θ ψT 60ψ n
浸没度
代入恒压过滤方程,得每小时所得滤液体积, 即生产能力为:
Q 6 0 n V 6 0 [6 0 K A 2 ψ n V e 2 n 2 ) V e n ]
9
二、连续过滤机的生产能力
当滤布阻力可以忽略时, Ve=0,则上式简化为:
Q60n KA260ψ 465AKnψ n
化工原理上册天津大学柴 诚敬29-30学时
滤饼的洗涤
洗涤滤饼的目的是回收滞留在颗粒缝隙间 的滤液,或净化构成滤饼的颗粒。
洗涤速率 单位时间内消耗的洗水容积
洗涤时间
dV
( d
)W
W
VW
(dV d
)W
2
二、连续过滤机的生产能力
在一个过滤周期内,转筒表面上任何一块过 滤面积所经历的过滤时间均为:

化工原理 下册 天津大学柴诚敬 35-36学时_OK

化工原理 下册 天津大学柴诚敬 35-36学时_OK

用质量比 计算方便
萃取相中溶 质的质量比
分 配


萃余相中溶 质的质量比
22
三、分配曲线
以xA为横坐标,yA为纵坐标,在直角坐标图上,
每一对共轭相可得一个点,将这些点联结起来,得 到曲线称为分配曲线。
溶解度曲线
分配曲线
23
y yx
P P
x
分配曲线的作法
24
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.2 液-液相平衡关系 10.2.1 液-液平衡相图 10.2.2 液-液平衡方程与分配曲线 10.2.3 萃取剂的选择
第十章 液-液萃取和液-固浸取
学习目的 与要求
通过本章学习,应掌握液-液相平衡在三角形 相图上的表示方法,能用三角形相图对单级萃取过 程进行分析和计算。了解多级萃取过程的流程与计 算方法;萃取设备的类型及结构特点。
1
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.1.1 萃取的原理与流程
气液平衡方程 yA k A xA
液液平衡方程 y A k A xA
萃取相

溶质分

kA
yA xA




kB
yB xB
萃余相 中 溶质分 数
21
二、以质量比表示的平衡方程
若 S与 B完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变
液液平衡方程 YA KA X A
25
一、萃取剂的选择性与选择性系数
萃取剂的选择性是指萃取剂 S对原料液中两个组 分溶解能力的差异。 选择性系数
萃取相中A的质量分数 萃取相中B的质量分数

化工原理天大柴诚敬学时

化工原理天大柴诚敬学时

第—草流体输送机械O 、通过本章学习,拿握化工中常用流体输送机械的基本结构、工作原理和操作特性,能够根据生产工艺要求和流体特性,合理地选择和正确操作流体输送机械,并使之在高效下安全可靠运行。

第二章流体输送机械2. 1概述2.1.1流体输送机械的作用管路对流体输送机械的能量要求由伯努利方程计算。

对于液体,采用以单位重量(1N)流体为基准的伯努利方程式+眷等 + 輕J/" —(2-1)K =立+也Pg7T2dA g心z+誉等+沪方程对于通风机的气体输送系统,在风机进出口截面间采用以单位体积(1m3)为基准的伯努利方程式,乩=Q£AZ+A D +卫-Q + Q 好G ・l/m3HVPa(2-6)流体输送机械除满足工艺上对流量和压头(对气体为风压与风量)两项主要技术指标要求外, 还应满足如下要求:①结构简单,重量轻,投资费用低。

②运行可靠,操作效率高,日常操作费用低。

③能适应被输送流体的特性,如黏度、可燃性、第二章流体输送机械2. 1概述2.1.1流体输送机械的作用2. 1.2流体输送机械的分类r输送液体泵按输送流体J的状态分类1 C通风机I输送气体鼓风机I压缩机动力式(叶轮式)按工作原理分类Y容积式(正位移式)流体作用式第二章流体输送机械2. 2离心泵2. 2. 1离心泵的工作原理和基本结构—・离心泵的工作原理是工业生产中应用最为广泛的液体输送机械。

其突出是结构简单、体积小、流量均匀、调节控制方便、故障少、寿命长、适用范围广(包括流量、压头和介质性质)、购置费和操作费用均较低。

—・离心泵的工作原理122-1离心泵装置简图g :斗r F离心泵的工作原理077//////////离心泵的叶轮吸液方式单吸式双吸式平衡图2-3离心泵的吸液方式图2-4泵壳和导轮泵轴与泵壳之间的密封称为轴封,其作用 是防止泵内高压液体从间隙漏出,或避免外界 空气进入泵内。

常用的轴封装置有填料密封和 机械密封两大类。

化工原理上册天津大学柴诚敬25-26学时

化工原理上册天津大学柴诚敬25-26学时

42
颗粒的圆周 运动速度
颗粒与流体 在径向上的 相对速度
2
一、离心沉降速度及分离因数
上述三个力达到平衡时:
6d3su R T26d3
u T2 d2 R4
u r20 2
平衡时颗粒在径向上相对于流体的运动速
度ur便是它在此位置上的离心沉降速度:
离心沉降速度 ur
4d(s ) uT2 3 R
第三章、非均相混合物 分离及固体流态化
3.1 沉降分离原理及设备 3.1.1 颗粒相对于流体的运动 3.1.2 重力沉降 3.1.3 离心沉降
1
一、离心沉降速度及分离因数
惯性离心力作用下实现的沉降过程称为离心沉降。
颗粒受到三个力
惯性离心力

6
d 3 s
u2 T R
向心力=
d 3
u
2 T
6R
阻力 = d 2 ur2
(3-49)
25
三、流体通过固体颗粒床层 (固定床)的压降
流体通过固定床的压力降主要有两方面: 一是流体与颗粒表面间的摩擦作用产生的压力降。 二是流动过程中,孔道截面积突然扩大和突然缩 小以及流体对颗粒的撞击产生的压力降。
26
三、流体通过固体颗粒床层 (固定床)的压降
采用计算床层当量直径时所用的简化模型,
n
0 xi p i i 1
7
二、离心沉降设备
粒级效率曲线
通过实测旋风分离器进、出气流中所含尘粒
的浓度及粒度分布,可得粒级效率与颗粒直径di
的对应关系曲线,该曲线称为粒级效率曲线。
分割粒径 d 5 0
粒级效率恰为50%的颗粒直径,称为分割粒
径。
d50 0.27

化工原理第二版下册答案(柴诚敬主编)

化工原理第二版下册答案(柴诚敬主编)
2
wA
(2)
xA
MA wA MA wB MB
1
A MA dw A dx
(
wA MA

wB MB
MA MA wA wB 2 ( ) MA MB
Hale Waihona Puke wB MB)wA(
1

1
MB
)
1 ( w A w B) M M A B wA wB 2 ( ) MA MB
MAMB(
1
wA MA )
3
×10-4 m/s。假设操作条件下平衡关系服从亨利定律,溶解度系数 H=0.725 kmol/(m3·kPa)。 (1)试计算以 p 、 c 表示的总推动力和相应的总吸收系数; (2)试分析该过程的控制因素。 解:(1) 以气相分压差表示的总推动力为
p p p* pt y
c 1.06 (110.5 0.032 )kPa 2.074 kPa H 0.725
(0.085 0.022)kmol/(m s) 9.179 10 kmol/(m s)
2
7
2
6. 试用式(7-41)估算在 105.5 kPa、288 K 条件下,氢气(A)在甲烷(B)中的扩散系数 DAB 。 解:查表 7-1,得
v A 7.07 cm3/mol
查表 7-2,计算出
c 总 ( 1 + 2 )= ( )kmol/m 3 55.58kmol/m 3 2 M M 2 17.92 17.98 1 2 故氨的摩尔通量为 D c 总 N A AB ( x A1 x A2 ) z x
BM

1.24 10
9
55.577
0.005 0.946

《化工过程设计Ⅰ》教学大纲

《化工过程设计Ⅰ》教学大纲

《化工过程设计Ⅰ》课程教学大纲课程代码:CHET3048课程性质:专业必修课程授课对象:化工专业开课学期:春总学时:36学时学分:2.00学分讲课学时:36学时实验学时:0学时实践学时:0学时指定教材:梁志武、陈声宗,《化工设计》,化学工业出版社,2015年付家新,《卓越工程师教育培养计划系列教材:化工原理课程设计》,化学工业出版社,2016年参考书目(五号黑体)陈砺、王红林,《教育部高等学校化工类专业教学指导委员会推荐教材:化工设计》,化学工业出版社,2017年李国庭、陈焕章,《教育部高等学校化工类专业教学指导委员会推荐教材:化工设计概论》,化学工业出版社,2015年王要令,《普通高等教育"十三五"规划教材:化工原理课程设计》,化学工业出版社,2016年柴诚敬、贾绍义、王玥, 《化工原理课程设计》,高等教育出版社,2015年王卫东、庄志军,《化工原理课程设计》,化学工业出版社,2015年教学目的:设计是工程技术的起点,设计是工程师的基本技能。

本课程是为使学生将所学知识与化工设计和生产实际相衔接,使学生逐步实现由学生向工程师的转变,强化对学生设计能力的培养,提高学生毕业后上岗的工作能力。

本课程重点介绍化工设计的基本程序、基本方法、主要规范和基本思维方式;工艺方案选择和工艺流程设计的原则、方法和步骤;工艺流程图的表达内容、绘制方法和阅读方法;物料衡算、热量衡算及设备的选型与工艺计算的原理和方法;第一章化工过程设计课时:1周,共2课时教学内容第一节化学工业的发展历史、化学工业覆盖的范围及其在现代经济体系中的地位教学要点:过程工业第二节什么是化工过程设计?教学要点:化工过程设计的定义、核心目标和内容第三节《化工过程设计》课程的性质和内容教学要点:课程的性质、内容和特点第四节化工厂概论教学要点:化工厂的分类,化工生产的特点和组成第五节工程伦理学教学要点:工程中的道德问题思考题:1、试述化学工程师的责任及责任关怀的主要内容。

最新化工原理上册天津大学柴诚敬25-26学时

最新化工原理上册天津大学柴诚敬25-26学时
19
一、固体颗粒群的特性
2. 颗粒群的平均直径 粒群的平均直径计算式为
dp
1 xi
d pi
(3-46)
20
பைடு நூலகம்、固体颗粒床层的特性
1. 床层的空隙率 空隙率以ε表示,即
床层体 床积 层-体 颗积 粒体积
21
二、固体颗粒床层的特性
2. 床层的自由截面积
床层截面上未被颗粒占据的流体可以 自由通过的面积,称为床层的自由截面积。
可压缩滤饼
当滤饼两侧的压力差增大时,颗粒的形状和 颗粒间的空隙会有明显的改变,单位厚度饼层的 流动阻力随压力差增大而增大。
34
三、滤饼的压缩性和助滤剂
助滤剂 助滤剂是某种质地坚硬而能形成疏松饼层
的固体颗粒或纤维状物质,将其混入悬浮液或 预涂于过滤介质上,可以改善饼层的性能,使 滤液得以畅流。
35
练习题目
L
3
(3-55)
欧根(Ergun)方程
0.17Reb330
L P f 150(13 (s)d 2e u ) 21.75(1 3()sd eu )2 (3-58)
28
第三章、非均相混合物 分离及固体流态化
3.2 过滤分离原理及设备 3.2.1 流体通过固体颗粒床层的流动 3.2.2 过滤操作的原理
29
过滤 过滤是在外力作用下,使悬浮液中的液体
通过多孔介质的孔道,而固体颗粒被截留在介 质上,从而实现固、液分离的操作。
30
图3-17 过滤操作示意图
动画16
31
一、过滤方式
1.饼层过滤 √ 2.深床过滤 3.膜过滤 饼层过滤时发生“架桥”现象
图3-18 32
二、过滤介质
(1)对过滤介质的性能要求 具有足够的机构强度和尽可能小的流动阻力,

化工原理下册天津大学柴诚敬49-50学时

化工原理下册天津大学柴诚敬49-50学时
A
D
G B
G F F
FE
稳定区
超溶 解度 曲线
溶解 度曲
线
溶液的过饱和与 超溶解度曲线
EFG EFG
EFG
冷却法 蒸发法 真空绝热蒸发法(冷却-蒸发法)
2020/6/3
第十二章 其他分离方法
12.1 结晶 12.1.1 结晶的基本概念 12.1.2 结晶热力学简介 12.1.3 结晶动力学简介
2020/6/3
初级成核 二级成核
初级成核速率 > 二级成核速率
超细粒子制造
初级成核
大粒子制造
二级成核
2020/6/3
二、晶体的生长
1.晶体生长的过程 晶体成长系指过饱和溶液中的溶质质点在过饱
和度推动力作用下,向晶核或加入晶种运动并在其 表面上层层有序排列,使晶核或晶种微粒不断长大 的过程。
2020/6/3
晶体 生长
一、晶核的形成
1.晶核产生
溶液中快速运动的 溶质元素(原子、离 子或分子)
相互碰撞
线体单元
线体单元增长
晶胚分解
晶核
晶胚增长
晶胚
晶核直径:数十纳米至几微米
2020/6/3
一、晶核的形成
2.初级成核与二级成核
没有晶体存在的过饱和溶 液中自发产生晶核的过程
有晶体(晶种)存在过饱 和溶液中产生晶核的过程
2020/6/3
第十二章 其他分离方法
12.1 结晶 12.2 膜分离(选读) 12.3 吸附(选读) 12.4 离子交换(选读)
2020/6/3
练习题目
思考题 1.何为晶格、晶系和晶习? 2.何为溶解度和超溶解度? 3.结晶动力学包括哪些内容?

最新化工原理上册天津大学柴诚敬35-36学时

最新化工原理上册天津大学柴诚敬35-36学时
推荐值。这些推荐值是从实践中积累或通过实 验测定获得的。
26
二、总传热系数
在选用总传热系数的推荐值时,应注意以下 几点: ①设计中管程和壳程的流体应与所选的管程和壳 程的流体相一致; ②设计中流体的性质(黏度等)和状态(流速等) 应与所选的流体性质和状态相一致; ③设计中换热器的类型应与所选的换热器的类型 相一致;
29
结束语
谢谢大家聆听!!!
30
减小控制热阻。
24
二、总传热系数
2.总传热系数的测定 对于已有的换热器,可以通过测定有关数
据,如设备的尺寸、流体的流量和温度等,然 后由传热基本方程式计算值。显然,这样得到 的总传热系数值最为可靠。
25
二、总传热系数
3.总传热系数的推荐值 附录二十中列出了管壳式换热器的推荐值,
可供设计时参考。 在实际设计计算中,总传热系数通常采用
dQ
T t
dS o
d bd 1 o o
d d
ii
m
o
15
一、总传热速率微分方程
1

K
o
d
bd
1
o o
d d
ii
m
o
则 dQKo(Tt)dSo
同理可得 dQKi(Tt)dSi
总传热速率微分方程 总传热速率微分方程
dQKm(Tt)dSm 总传热速率微分方程
16
一、总传热速率微分方程
1
K i 1 bd d i i
d d
i
m
oo
1
K
m
d
m
b
d m
d d
ii
oo
1
K
o
d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液液平衡方程 y A k A xA
萃取相

溶质分

kA
yA xA




kB

yB xB
萃余相 中 溶质分 数
二、以质量比表示的平衡方程
若 S与 B完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变
液液平衡方程 YA KA X A
用质量比 计算方便
萃取相中溶

一、萃取剂的选择性与选择性系数
萃取剂的选择性是指萃取剂 S对原料液中两个 组分溶解能力的差异。 选择性系数
萃取相中A的质量分数 萃余相中A的质量分数
萃取相中B的质量分数 萃余相中B的质量分数
yA xA yA yB yB xB xA xB
一、萃取剂的选择性与选择性系数
因为 yA k A xA
三、液-液平衡相图(溶解度曲线)
2. 温度对溶解度曲线的影响不利于萃 取操作
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.2 液-液相平衡关系 10.2.1 液-液平衡相图 10.2.2 液-液平衡方程与分配曲线
一、以质量分数表示的平衡方程
气液平衡方程 yA k A xA
二、各组分量之间的关系-杠杆规则
M = MA + MB
M A OB M B OA M A OB M AB
M B OA M AB
MA
A
差点
M
O 和点
MB
B
差点
杠杆规则
A xS
xA R zA yA
zS
M
yS
液相 R r kg xA、xS、xB
液相 E e kg yA、yS、yB
E
B
xB zB yB
质的质量比



萃余相中溶 质的质量比
三、分配曲线
以xA为横坐标,yA为纵坐标,在直角坐标图上,
每一对共轭相可得一个点,将这些点联结起来,得 到曲线称为分配曲线。
溶解度曲线
分配曲线
y yx
P P
x
分配曲线的作法
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.2 液-液相平衡关系 10.2.1 液-液平衡相图 10.2.2 液-液平衡方程与分配曲线 10.2.3 萃取剂的选择
所以


kA
xB yB
kA
kB
萃取操作
xB >1 1
yB
~ β
萃取效果
β =1 不能实现萃取分离
二、萃取剂的选择
萃取剂选择考虑的主要因素
选择性系数β 原溶剂 B与萃取剂 S的互溶度 萃取剂回收的难易 萃取剂的其他物性
密度 表面张力 黏度 萃取剂的稳定性、安全性、经济性
第十章 液-液萃取和液-固浸取
学习目的 与要求
通过本章学习,应掌握液-液相平衡在三角形 相图上的表示方法,能用三角形相图对单级萃取过 程进行分析和计算。了解多级萃取过程的流程与计 算方法;萃取设备的类型及结构特点。
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.1.1 萃取的原理与流程
双溶剂萃取 萃取 膜萃取
超临界萃取 凝胶萃取 反向胶团萃取
按萃取组分数目分类
萃取
单组分萃取√
多组分萃取
二、萃取操作的应用
萃取操作应用场合
相对挥发度 1物系的分离
溶质浓度很低 ,且为难挥发组分物系的分离 热敏性物系的分离
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.2 液-液相平衡关系 10.2.1 液-液平衡相图
S min
=
F× GS
FH
S max
=
F× HS
Smin < S < Smax
练习题目
思考题 1.萃取操作的基本原理是什么? 2.共轭相、联结线、临界混溶点、辅助曲线各表
示何意义? 3.分配系数和选择性系数各表示何意义? 4.溶解度曲线和分配曲线有何联系?
第十章 液-液萃取和液-固浸取
10.1 萃取过程概述 10.2 液-液相平衡关系 10.3 液-液萃取过程的计算 10.3.1 单级萃取的计算
一、B 与 S 部分互溶物系
已知:原料量 F 、原料组成 xF
溶剂组成 yS
规定:萃余相组成 xR
计算:萃取剂量 S
萃取相量 E 、组成 yE
萃余相量 R
萃取液量 E、组成 yE 萃余液量 R、组成 xR
E
y E
xF
F
xR
R R
xR
E M
单级萃取图解
yE
纯溶剂
一、B 与 S 部分互溶物系
M FS RE
MF S =F×
MS
R M E
E M RM RE
E F RF R F E
R E
FG
萃取操作示意图
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.1.1 萃取的原理与流程 10.1.2 萃取的分类与应用
一、萃取过程的分类
按有无化学反应分类
萃取
物理萃取
化学萃取√
按萃取级数分类
萃取
单级萃取
多级萃取√
多级逆流萃取 多级并流萃取
一、萃取过程的分类
按萃取技术分类
单溶剂萃取√
一、萃取过程的原理
分离物系 液体混合物 形成两相体系的方法 引入一液相(萃取剂)
萃取原理
液体混合物 (A + B)
引入另一液相 (萃取剂S)
各组分在萃取剂 中溶解度不同
液相E(萃取相) (S + A+微量B)
液相R(萃余相) (B + 微量A、S)
示例 用苯萃取分离醋酸和水混合物
二、萃取操作流程
一、组成在三角形相图上的表示方法
萃取为三元物 系的分离过程
溶质 A 原溶剂 B 萃取剂 S
三角形坐标图
等边三角形坐标图 等腰三角形坐标图√ 非等腰三角形坐标图
A
D点
xA 0.40
xS 0.60
M
D
B
S
组成在三角形坐标图上的表示方法
M点 x A 0.40 xB 0.30 xS 0.30
Ⅰ类物系√
③ A完全溶于B,A与S部分互溶 B与S部分互溶
Ⅱ类物系
临界 混溶 点
共轭相
均相 区
溶解 度曲 线
联结
两相
线

溶解度曲线 (1)-已知联结线
溶解 度曲
线
辅助 曲线
溶解度曲线 (2)-已知辅助曲线
由联结线求辅助曲线
两种溶解度曲线的互换
由辅助曲线求联结线
E1
R1
E2
R2
两种溶解度曲线的互换
S
杠杆规则的应用
液相 M m kg zA、zS、zB
mre
e MR r ME
xA zA zA yA
e MR
m RE xA zA xA yA
三、液-液平衡相图(溶解度曲线)
1. 溶解度曲线的两种形式 根据萃取操作中各组分的互溶性,三元物系分
为以下情况,即
① A完全溶于B及S,B与S不互溶 ② A完全溶于B及S,B与S部分互溶
相关文档
最新文档