消防车荷载计算
消防车荷载计算课件
该案例涉及到一个大型工业园区,包括各种厂房、仓 库和生产线等设施。由于工业园区的建筑结构和用途 较为特殊,因此需要进行专业的消防车荷载计算。在 计算过程中,需要考虑设备的重量、建筑物的结构形 式和材料、以及消防车的工作方式和特点等因素。此 外,还需根据实际情况对计算结果进行校核和调整, 以确保建筑物结构的安全性和稳定性。
消防车荷载的应用场景
消防车荷载主要应用于消防通道、消防车道、桥梁、隧道等 场景的计算中,以确保这些结构物在消防车行驶或停放时能 够满足承载要求,保障安全。
在进行消防车荷载计算时,需要考虑多种因素,如消防车的 重量、尺寸、轮胎压力和接触面积等,以及路面材料的抗压 强度和抗剪强度等参数。
02 消防车荷载计算方法
有限元分析方法
定义
有限元分析方法是一种数值分析 方法,通过将结构物离散化为有 限个单元,利用数学模型描述其 受力状态,从而求解结构物的内 力和变形。
适用范围
适用于复杂结构物的受力分析, 如桥梁、隧道等。
计算步骤
建立有限元模型、施加边界条件 和载荷、进行有限元分析、输出 结果。
计算结果的校核与调整
04 消防车荷载的规范与标准
国家相关规范与标准
01
《建筑设计防 火规范》
02
《消防车通道 技术要求》
《消防车荷载 规范》
03
04
《消防车通道 设计规范》
地方相关规范与标准
01
北京市《消防车通道技术要求(暂行)》
02
上海市《消防车通道设计规范(试行)》
广东省《消防车通道技术要求(试行)》
03
国际相关规范与标准
消防车荷载计算课件
目录
Contents
• 消防车荷载概述 • 消防车荷载计算方法 • 消防车荷载对结构的影响 • 消防车荷载的规范与标准 • 实际应用案例分析
消防车荷载计算导则
消防车等效均布荷载的计算适用范围:仅适用于井字梁楼盖或十字梁楼盖,其板跨为2.2m×2.2m~3.9m×3.9m的消防车荷载取值。
1.消防车的布置消防车按单列布置进行等效均布荷载计算。
两车车尾对车尾的排列,两车尾间净距按500㎜计,消防车总重量按《荷载规范》要求,以300 kN计算。
消防车荷载前、后桥轮压及车列布置见图1~图3, 轮压面积按200㎜X600㎜计。
2.楼板计算2.1. 有填土结构布置如图4。
填土厚度600~1200㎜,计算时考虑了填土层压力扩散影响,其压力扩散角θ取22°,钢筋混凝土顶板厚度按160㎜计, 压力扩散角θ取45°。
当采用井字梁楼盖板的等效均布荷载取值,见表2. 1. 1。
表2. 1. 1填土厚㎜后桥扩散面积㎡板等效均布荷载kN/㎡600 2.4X3.2=7.68 31700 2.48X3.28=8.13 30800 2.56X3.36=8.6 28900 2.64X3.44=9.1 261000 2.72X3.52=9.57 251100 2.8X3.6=23.8 23.61200 2.88X3.68=10.6 22.6当采用十字梁楼盖板的等效均布荷载取值,见表2. 1. 2:表2. 1. 2板跨(m) 3.3 3.45 3.6 3.75 3.9等效均布荷载(kN/㎡)22 20 18.5 17 162.2 无填土当板上无填土时, 板厚度仍按160㎜计, 扩散角θ取45°,楼板的等效均布荷载取值见表2. 2. 1。
表2. 2. 1板跨(m) 2.2 2.3 2.4 2.5 2.6 3.3 3.45 3.6 3.75 3.9 等效均布荷载(kN/㎡)47 43 40 36 34 32 31 30 29 283. 框架梁等效均布荷载取值可按《荷载规范》20 kN/㎡。
消防车荷载计算PPT
考虑了车辆动态效应,更接近实际情况。
计算复杂,需要更多的数据和参数支持,可能存在不确定性。
有限元分析法
定义
有限元分析法是一种数值分析方法,通过将结构离散化为 有限个小的单元(有限元),对每个单元进行受力分析, 进而得到整个结构的受力状态。
优点
可以模拟结构的复杂性和细节,得到更精确的计算结果。
某高层住宅楼的消防车荷载计算
总结词
高层住宅楼的消防车荷载计算需要结合建筑物的特点,考虑消防车停放位置和消防通道的特殊要求。
详细描述
在进行某高层住宅楼的消防车荷载计算时,需要考虑高层住宅楼的特点,如楼层高度、楼面用途等。同时,需要 结合当地的消防规范和标准,考虑消防车停放位置和消防通道的特殊要求。根据这些因素,可以确定各楼层楼面 的活荷载和消防车荷载。
新型消防车及装备研发
高效灭火装备
研发新型高效灭火装备,提高灭 火效率,减少灭火过程中对消防 车的载重压力。
多功能集成
将多种功能集成于消防车及装备 中,如救援、运输、通信等,提 高消防车的综合性能和应对复杂 灾害的能力。
绿色环保的消防车荷载技术
节能减排
采用绿色环保的发动机和传动系统,降低消防车的能耗和排放,减少对环境的影 响。
消防车荷载计算
目录
• 消防车荷载概述 • 消防车荷载计算方法 • 消防车荷载实例分析 • 消防车荷载的优化设计 • 消防车荷载的未来发展
01
消防车荷载概述
消防车荷载的定义
01
消防车荷载是指在消防车行驶或 停放时,对路面或结构物产生的 垂直压力或水平推力。
02
消防车荷载属于可变作用,其值 随消防车的类型、载重、轮胎压 力和路面状况等因素而变化。
消防车荷载计算
消防车荷载对基础的影响
基础沉降
消防车荷载可能引起基础的不均 匀沉降,导致建筑物倾斜或开裂。
基础承载力
消防车荷载对基础承载力有要求, 如果基础承载力不足,可能发生破 坏。
基础稳定性
消防车荷载可能影响基础的稳定性, 导致基础失稳,影响建筑物安全。
消防车荷载对道路的影响
道路承载力
消防车荷载对道路的承载力有要求, 如果道路承载力不足,可能发生沉陷 或损坏。
中型消防车
介于轻型和重型之间,适 用于城市和乡镇的灭火救 援工作。
重型消防车
载水量大,设备齐全,适 用于大型火灾的扑救和救 援工作。
消防车荷载的组成
01
02
03
04
消防车自重
指消防车本身的重量,包括车 体、设备、水箱等。
消防员及装备重量
指参与灭火救援的消防员及其 携带的装备重量。
灭火剂重量
指消防车水箱中的水量或干粉 、泡沫等灭火剂的重量。
谢谢
THANKS
要点一
总结词
要点二
详细描述
工业设施、特殊设备、复杂环境
工业园区通常包含各种工业设施和特殊设备,这些设施和 设备的布局和结构对消防车荷载计算产生一定影响。此外 ,工业园区的环境相对复杂,地面状况、建筑物之间的距 离等也会对消防车的行驶和作业造成一定影响。因此,在 计算消防车荷载时,需要充分考虑这些因素,以确保消防 车在紧急情况下能够快速有效地进行灭火和救援工作。
动力有限元法
总结词
动力有限元法是一种基于数值模拟的计算方法,通过建立结 构的有限元模型,模拟消防车行驶时对结构的动态响应。
详细描述
动力有限元法考虑了消防车行驶过程中产生的动荷载,能够 模拟结构在不同频率和幅值的振动下的响应。该方法精度高 ,适用于复杂结构和非线性分析,但计算量大,需要高性能 计算机和专业的数值分析软件。
消防车荷载计算
01
02
03
04
Hale Waihona Puke 0506消防车荷载计算的主要参数
消防车总重量:包括车辆自重、水箱、泡沫罐、消防器材等
消防车最大载水量:水箱的最大容量
消防车最大泡沫量:泡沫罐的最大容量
消防车最大灭火剂量:灭火剂罐的最大容量
消防车最大救援人数:车辆可容纳的救援人员数量
消防车最大救援设备数量:车辆可携带的救援设备数量
消防车最大行驶速度:车辆在满载状态下的最大行驶速度
定期对消防车进行清洗和打蜡,保持其外观整洁
定期对消防车的水泵、水箱等部件进行维护和保养,确保其正常工作
定期对消防车的电气系统进行维护和保养,确保其正常工作
5
火灾预防的基本原则
消除火灾隐患:定期检查和维护消防设施,确保消防设施完好有效
01
提高消防安全意识:加强消防安全教育,提高公众消防安全意识和自救互救能力
消防车最大爬坡能力:车辆在满载状态下的最大爬坡能力
消防车荷载计算的计算方法
确定消防车的类型和规格
01
计算消防车的总重量和重心位置
02
计算消防车的荷载分布和荷载系数
03
计算消防车的最大荷载和荷载极限
04
计算消防车的稳定性和抗倾覆能力
05
计算消防车的制动距离和制动性能
06
3
消防车荷载计算中的常见错误
运输:消防车可运输消防队员和消防器材,快速到达火灾现场。
03
指挥:消防车配备通信设备,可进行现场指挥和调度。
宣传:消防车可进行消防知识宣传,提高公众消防安全意识。
05
消防车的维护和保养
定期检查消防车的各种设备,确保其正常工作
定期更换消防车的机油、机滤、空滤等零部件
消防车等效均布荷载的计算
消防车等效均布荷载的计算【摘要】消防车荷载的取值,一直比较混乱,为使消防车荷载有一个较为合理的取值,笔者对消防车等效荷载进行了常见的几种情况的计算,供设计界同仁参考。
【关键词】消防车等效荷载轮压扩散角动力系数消防车荷载的取值,就目前来说,一直比较混乱, 有按《建筑结构荷载规范》(下面简称《荷载规范》)要求单向板(板跨度≥2m)取35kN/㎡、双向板(板跨度≥6m)取20kN/㎡的,也有取等效均布荷载为26kN/㎡的, 还有主梁取0.8X20=16kN/㎡次梁为0.95X20=19kN/㎡的,如此等等,各种取法都有。
而消防车荷载的取值又属“强条”。
《荷载规范》表4.1.1注第3条:“……;当不符合本表的要求的时候,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。
”即消防车荷载的取值大小应按等效均布荷载计算。
这些对每一个设计人员来说,都是清楚的。
但是在实际工程中,由于等效均布荷载计算过程较为繁琐, 设计周期又短等各种原因,大都未进行等效均布荷载的计算。
一般来说,凡取等效均布荷载的,都没有相应的计算资料, 大都采取“估算”的办法。
就目前成都建筑市场而言,基本上都采用大底盘地下室,其上部修建若干栋多、高层建筑,这样必然出现小区内的消防通道置于地下室的顶板上。
而地下室的顶板设计,一般采用井字梁楼盖或十字梁楼盖,板跨大都小于6.0mX6.0m,故消防车荷载是不能取20kN/㎡。
而应按规范要求进行等效均布荷载计算(单向板或密肋楼盖较少采用,所以此处仅就双向板进行分析)。
为使消防车荷载有一个较为合理的取值,笔者对消防车等效均布荷载进行了常见的几种情况的计算,供设计界同仁参考,以飨读者。
1.荷载计算消防车荷载均沿消防车道布置。
小区道路通常不是很宽,一般在5m左右,所以消防车按单列布置(当小区消防通道宽度≥6 m时,应按并列两辆消防车的布置进行等效均布荷载计算。
此种情况,不在本文叙述范围)。
为求最不利情况,按两车车尾对车尾的排列,两车尾间净距按500㎜计,消防车总重量按《荷载规范》要求,以300 kN计算。
06消防车均布荷载计算书
局部均布荷载:
编号荷载属性荷载数值(kN/m2)
1活载19.20
配筋条件:
材料类型:混凝土__支座配筋调整系数: 1.00
混凝土等级: C30__跨中配筋调整系数: 1.00
纵筋级别: HRB400__跨中配筋方向(度): 0.00
纵筋保护层厚:15mm
2计算结果
2.1单位说明
弯矩:kN.m/m_钢筋面积:mm2/m
根据以上轮压扩散后后轴四轮重合。则
沿行车方向(短边)的计算宽度bcx:
bcx=btx+2s=1.6+2x0.78=3.16m
垂直行车方向(长边)的计算宽度bcy:
bcy=bty+2s=2.4+2x0.78=3.96m
三、车轮作用面的局部荷载q:
q=1.0*n*Q/( bcx*bcy)=1.0*4*60/(3.16x3.96)=19.2KN/m2
二、车轮作用面的计算宽度:
s= h1*tg30°+ h2* tg45°=780mm>(Lk1-btx)/2=600mm
故后轴前后两轮应合并计算,btx应取Lk1+btx=1.4+0.2=1.6m。
s= h1*tg30°+ h2* tg45°=780mm>(W-bty)/2=600mm
故后轴左右两轮应合并计算,bty应取W+bty=1.8+0.6=2.4m。
3.车轮轮压动力系数1.0;
4.人员活动荷载2.0KN/m2, (人员活动)空隙率按n=25%。
5.沿行车方向的计算跨度Lx=8.1m;
垂直行车方向的计算跨度Ly=8.1m;
6.板面覆土厚h1=1000mm,混凝土道路厚h2=200mm;
消防车荷载计算课件
适用范围
适用于当地的消防车通道建设和管理工作,以及相关企业 的消防车使用和管理。
05 实际案例分析
CHAPTER
某大型商业综合体的消防车荷载计算
总结词:复杂多样
详细描述:该大型商业综合体包括商场、办公楼、酒店等多种功能,其消防车荷 载计算需要考虑不同建筑物的特点和使用功能,同时需结合当地的消防规范和标 准,进行细致的分析和计算。
02 消防车荷载计算方法
CHAPTER
静态计算方法
计算公式
消防车总荷载 = 总重量 × 载重系 数 + 附加重量 × 附加系数
适用范围
适用于对精度要求不高的消防车 荷载计算,如初步设计或概念设 计阶段。
动态计算方法
计算公式
消防车总荷载 = (总重量 + 附加重量) × (1 + 动载系数)
适用范围
适用于对精度要求较高的消防车荷载 计算,如施工图设计或详细设计阶段。
有限元分析方法
计算过程
建立消防车的有限元模型 → 定义材料属性和边界条件 → 施加荷载 → 求解有 限元方程 → 分析结果
适用范围
适用于对精度要求极高的消防车荷载计算,如复杂结构或特殊工况下的消防车 设计。
03 消防车荷载对结构的影响
04 消防车荷载规范与标准
CHAPTER
国家标准《建筑结构荷载规范》
概述
国家标准《建筑结构荷载规范》 是用于规定建筑结构荷载要求的 国家强制性标准,其中对消防车 的荷载要求也进行了明确规定。
主要内容
规定了消防车的静载、动载和冲 击载等不同工况下的荷载值,以 及相应的计算方法和安全系数要 求。
适用范围
谢谢
THANKS
消防车荷载计算[1]
2、特点:一一对应 等效一定是针对某个特定的效应进行,效应不同时, 等效均布活载的数值也不同。 比如按剪力相等原则确定的等效均布活荷载,与按 跨中弯矩相等原则确定的等效均布活荷载不同。 不同效应之间,等效均布活载的数值一般不能通用。 如果采用,也只能是近似计算。 不同构件计算时的等效均布活荷载不能通用。如计 算楼板的等效均布活荷载与计算梁、柱及基础等的 等效均布活荷载不能通用。
2)对于第1(2)~7项的建筑,则应计算两次: 算梁时,按第一界面第二条折减,PKPM可以实现 (屋面活荷载除外) ; 算柱、墙、基础时,第一界面不折减,第二界面 折减,对于有错层及有主群楼的建筑,PKPM软件无 法正确折减。
消防车荷载计算[1]
消防车荷载计算[1]
消防车荷载计算[1]
3rew
1)设计楼板时的消防车荷载 查表5.1.1,按照线性插值法计算得32.5kN/m2, 查表B.0.2,考虑覆土厚度影响的折减系数为
0.905 32.5x0.905=29.41kN/m2,取30kN/m2
2)设计楼面梁时的消防车荷载 按照5.1.2,双向板楼盖的梁取0.8 30x0.8=24kN/m2
消防车荷载计算
2020/11/25
消防车荷载计算[1]
一、等效均布活荷载
1、概念 荷载规范2.1.18 等效均布荷载:结构设计时,楼面上不连续分布的 实际荷载,一般采用均布荷载代替;等效均布荷载 系指其在结构上所得的荷载效应能与实际的荷载效 应保持一致的均布荷载。
消防车荷载计算[1]
在结构设计控制部位,将复杂荷载或无规律分布活 荷载,根据其荷载效应与“假想的均布活荷载”效 应相等的原则来确定这一“假想均布活荷载”的数 值,其中的“假想均布活荷载”就是等效均布活荷 载。 采用等效均布活荷载的目的在于将复杂的荷载作用 情况予以简化,在保证荷载效应总值不变的情况下, 用等效均布活荷载来代替实际的复杂荷载,以解决 结构设计中的复杂问题,简化设计。
消防车轮压等效荷载计算3页word
消防车轮压等效荷载计算规范明确规定了等效均布荷载的计算原则,但由于消防车轮压位置的不确定性,实际计算复杂且计算结果有时与规范数值出入很大,对双向板问题更加突出.为方便设计,并应网友的要求,此处提供满足工程设计要求的等效荷载计算表(此为博主正在编辑整理的书稿内容),供设计者选择使用。
1.不同板跨时,双向板等效均布荷载的简化计算表格表1中列出了在消防车(300kN级)轮压直接作用下,不同板跨的双向板其等效均布荷载简化计算数值,供读者参考。
表1 消防车轮压直接作用下双向板的等效均布荷载板跨(m)2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ≥6.0等效均布荷载(kN/m2) 35.0 33.1 31.3 29.4 27.5 25.6 23.8 21.9 20.02. 不同覆土厚度时,消防车轮压等效均布荷载的简化计算不同覆土厚度时,对消防车轮压等效均布荷载数值的计算可采取简化方法,考虑不同覆土厚度对消防车轮压等效均布荷载数值的影响,近似可按线性关系按表2确定。
表2 消防车轮压作用下,不同覆土厚度时的等效均布荷载调整系数覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00≥2.50调整系数 1.00 0.92 0.83 0.75 0.66 0.58 0.49 0.41 0.323. 综合考虑板跨和不同覆土层厚度时,消防车轮压等效均布荷载的确定考虑板跨和不同覆土层厚度确定消防车轮压作用下的等效均布荷载数值时,可采用简化计算方法,参考表-3,表-4确定不同板跨、不同覆土层厚度时的等效均布荷载数值。
表3 消防车轮压作用下单向板的等效均布荷载值(kN/m2)板跨(m)覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.50≥2 35.0 32.0 29.1 26.1 23.2 20.2 17.2 14.3 11.3表4 消防车轮压作用下双向板的等效均布荷载值(kN/m2)板跨(m)覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.502.0 35.0 32.0 29.1 26.1 23.2 20.2 17.2 14.3 11.32.5 33.1 30.4 27.7 24.9 22.2 19.5 16.8 14.0 11.33.0 31.3 28.8 26.3 23.8 21.3 18.8 16.3 13.8 11.33.5 29.4 27.1 24.9 22.6 20.3 18.1 15.8 13.6 11.34.0 27.5 25.5 23.5 21.4 19.4 17.4 15.4 13.3 11.34.5 25.6 23.8 22.0 20.3 18.5 16.7 14.9 13.1 11.35.0 23.8 22.2 20.6 19.1 17.5 16.0 14.4 12.9 11.35.5 21.9 20.6 19.2 17.9 16.6 15.3 14.0 12.6 11.3≥6.0 20.0 18.9 17.8 16.7 15.7 14.6 13.5 12.4 11.34. 等效均布荷载属于结构估算的范畴,追求过高的计算精度对工程设计而言没有必要。
消防车等效荷载折算
申明一下,我也正好想搞懂这个问题,只知道要按等效荷载折算。
一下是我找到的资料,我觉得有用。
关于消防车道楼盖设计:1、楼板采用等效均布荷载方法按目前国内最大的“火鸟”版登高消防车计算作用于多跨单向板上的最大等效均布荷载为:跨度L 1800 2000 2200 2400 2600板厚h 150 180 150 180 150 180 200 180 200 220 200 220 240qe 42.9 42.5 36.9 36.6 32.2 31.9 31.7 28.1 27.9 27.8 24.8 24.7 24.52、次梁采用活动荷载影响线方法以多部消防车后轮同时作用于一次梁上为不利情况:轮距1800,不同车轮距1300,每轮压力120KN。
分别以一轮作用于跨中及一轮作用于支座附近两种情况计算等效荷载。
3、主梁采用折算荷载方法以主梁承担面积内布满消防车计算300X0.8(0.9)/2.5*8=12(13.5)kN/m*m,主梁间距大时取折减系数为0.8,反之取0.94、软件计算时输入的荷载值建议按主梁采用的折算荷载输入,这样可以保证框架梁的配筋准确,然后附加手算单向板和次梁配筋,由于板、次梁种类不多,工作量比较小。
以板跨为4.0X4.0m计算如下:一、已知基本条件:1.由《荷载规范》条文说明第4.1.2条(P140):车轮轮压:Q=60KN,作用面积:btx*bty=0.6*0.2m;2.车轮轮距:W=1.8m,车轮轴距:Lk=4.0m,Lk1=1.4m,L=3.3m,a=1.4m;3.车轮轮压动力系数1.15;4.人员活动荷载2.0KN/m2,(人员活动)空隙率按n=25%。
5.沿长边方向的计算跨度Lx=4.0m;沿短边方向的计算跨度Ly=4.0m;6. 板厚h=160mm,板面覆土厚s1=500mm,混凝土道路厚s2=200mm;7. 轮压在混凝土中的扩散角取45°;轮压在土中的扩散角取30°。
消防车轮压等效荷载计算
消防车轮压等效荷载计算规范明确规定了等效均布荷载的计算原则,但由于消防车轮压位置的不确定性,实际计算复杂且计算结果有时与规范数值出入很大,对双向板问题更加突出.为方便设计,并应网友的要求,此处提供满足工程设计要求的等效荷载计算表(此为博主正在编辑整理的书稿内容),供设计者选择使用。
1.不同板跨时,双向板等效均布荷载的简化计算表格表1中列出了在消防车(300kN级)轮压直接作用下,不同板跨的双向板其等效均布荷载简化计算数值,供读者参考。
表1 消防车轮压直接作用下双向板的等效均布荷载板跨(m)2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ≥6.0等效均布荷载(kN/m2) 35.0 33.1 31.3 29.4 27.5 25.6 23.8 21.9 20.02. 不同覆土厚度时,消防车轮压等效均布荷载的简化计算不同覆土厚度时,对消防车轮压等效均布荷载数值的计算可采取简化方法,考虑不同覆土厚度对消防车轮压等效均布荷载数值的影响,近似可按线性关系按表2确定。
表2 消防车轮压作用下,不同覆土厚度时的等效均布荷载调整系数覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.50调整系数 1.00 0.92 0.83 0.75 0.66 0.58 0.49 0.41 0.323. 综合考虑板跨和不同覆土层厚度时,消防车轮压等效均布荷载的确定考虑板跨和不同覆土层厚度确定消防车轮压作用下的等效均布荷载数值时,可采用简化计算方法,参考表-3,表-4确定不同板跨、不同覆土层厚度时的等效均布荷载数值。
表3 消防车轮压作用下单向板的等效均布荷载值(kN/m2)板跨(m)覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.50≥2 35.0 32.0 29.1 26.1 23.2 20.2 17.2 14.3 11.3表4 消防车轮压作用下双向板的等效均布荷载值(kN/m2)板跨(m)覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.502.0 35.0 32.0 29.1 26.1 23.2 20.2 17.2 14.3 11.32.5 33.1 30.4 27.7 24.9 22.2 19.5 16.8 14.0 11.33.0 31.3 28.8 26.3 23.8 21.3 18.8 16.3 13.8 11.33.5 29.4 27.1 24.9 22.6 20.3 18.1 15.8 13.6 11.34.0 27.5 25.5 23.5 21.4 19.4 17.4 15.4 13.3 11.34.5 25.6 23.8 22.0 20.3 18.5 16.7 14.9 13.1 11.35.0 23.8 22.2 20.6 19.1 17.5 16.0 14.4 12.9 11.35.5 21.9 20.6 19.2 17.9 16.6 15.3 14.0 12.6 11.3≥6.0 20.0 18.9 17.8 16.7 15.7 14.6 13.5 12.4 11.34. 等效均布荷载属于结构估算的范畴,追求过高的计算精度对工程设计而言没有必要。
消防车等效荷载计算
二、消防车等效荷载计算:
(取1排消防车计算)
取土体扩散角为300计算:
bcy=0.6+1.2tg30×2 +1.8+0.6+0.4=4.785 m
bcx=0.2+1.2tg30×2+1.4+0.4=3.385 m
则:局部均布荷载为:
4×60/(4.785×3.385)=14.82 kN/m2
θx=0.556;θy=0.517
计算等效均布荷栽:
qx=0.556×14.82=8.24 kN/m2
qy=0.517×14.82=7.66 kN/m2
该典型柱网等效均布荷载取为:q=8.24 kN/m2
参考资料:
1、《建筑结构设计规范应用图解手册》(有计算简图)
2、《建筑结构荷载设计手册》(第二版)
日期
2008年12月29日
设计人
页数
1
计算内容、简图、依据:
计算过程:
一、已知资料:
1、消防车各基本计算参数:
1)消防车轮距、轴距及轮压详左图;
2)根据地下室顶板覆土厚度确定消防车荷载的动力
系数:
车库顶覆土(最不利处):1.20m>0.70m,
则:动力系数ξ=1.00
3)板厚t=450mm,
2、按结构梁系布置取最不利分布位置计算:
由已知资料得:
Ly=8.4 m; Lx=8.4 m
则:k= Lx/ Ly=8.4/8.4=1.0
α= bcx/ Ly=3.385/8.4=0.403
β= bcy/ Ly=4.785/8.4=0.570
ζ=x/ Ly=4.2/8.4=0.500
η= y/ Ly=4.2/8.4=0.500
关于消防车荷载的简化计算
关于消防车荷载的简化计算规范明确规定了等效均布荷载的计算原则,但由于消防车轮压位置的不确定性,实际计算复杂且计算结果有时与规范数值出入很大,对双向板问题更加突出.为方便设计,并应网友的要求,此处提供满足工程设计要求的等效荷载计算表(此为博主正在编辑整理的书稿内容),供设计者选择使用。
1.不同板跨时,双向板等效均布荷载的简化计算表格表1中列出了在消防车(300kN级)轮压直接作用下,不同板跨的双向板其等效均布荷载简化计算数值,供读者参考。
表1 消防车轮压直接作用下双向板的等效均布荷载2. 不同覆土厚度时,消防车轮压等效均布荷载的简化计算不同覆土厚度时,对消防车轮压等效均布荷载数值的计算可采取简化方法,考虑不同覆土厚度对消防车轮压等效均布荷载数值的影响,近似可按线性关系按表2确定。
表2 消防车轮压作用下,不同覆土厚度时的等效均布荷载调整系数3. 综合考虑板跨和不同覆土层厚度时,消防车轮压等效均布荷载的确定考虑板跨和不同覆土层厚度确定消防车轮压作用下的等效均布荷载数值时,可采用简化计算方法,参考表-3,表-4确定不同板跨、不同覆土层厚度时的等效均布荷载数值。
表3 消防车轮压作用下单向板的等效均布荷载值(kN/m2)表4 消防车轮压作用下双向板的等效均布荷载值(kN/m2)4. 等效均布荷载属于结构估算的范畴,追求过高的计算精度对工程设计而言没有必要。
实际工程中应注意效应的统一性,即注意在不同效应时,等效荷载不可通用。
自从我的《建筑结构设计规范应用图解手册》出版以来,常有读者就第13页表4.1.1-3的“覆土厚度足够”提出量化要求,今补充说明如下:表4.1.1-3 覆土厚度足够时消防车的荷载足够的覆土厚度指:汽车轮压通过土层的扩散、交替和重叠,达到在某一平面近似均匀分布时的覆土层厚度。
足够的覆土厚度数值应根据工程经验确定,当无可靠设计经验时,可按后轴轮压的扩散面积不小于按荷重比例划分的汽车投影面积确定(如:300kN级汽车,汽车的合理投影面积为(8+0.6)×(2.5+0.6)=26.66m2,后轴轮压占全车重量的比例为240/300=0.8,取后轴轮压的扩散面积为0.8×26.66=21.33m2,相应的覆土厚度为hmin,当实际覆土厚度h≥hmin时,可认为覆土厚度足够)取表中hmin 数值。
消防车荷载计算
一.
问题的由来
1.荷载规范GB 50010-2002条文 汽车通道及停车库: (1)单向板楼盖(板跨不小于2m) 客车 4 kN/m2 消防车 35 kN/m2 (2)双向板楼盖和无梁楼盖(柱网尺寸不小于 6m×6m) 客车 2.5 kN/m2 消防车 20 kN/m2
计算结果汇总如下表
等效活荷载q e 值 0.0 0.2 0.4 0.6 0.8 覆 土 厚 度 1.0 1.2 1.3 1.4 1.5 1.6 1.8 2.0 单向板跨度(m) 2.0 35.8 34.6 33.5 32.5 31.7 31.1 30.4 30.4 30.4 30.4 30.4 30.4 30.4 2.5 27.2 26.4 25.6 24.8 24.1 23.5 23.1 22.9 22.7 22.2 22.2 22.2 22.2 3.0 23.1 22.4 21.7 21.1 20.5 20.0 19.4 19.3 19.1 19.0 18.8 18.5 18.2 3.5 21.2 20.6 20.0 19.5 19.0 18.5 18.0 17.8 17.6 17.4 17.3 17.0 16.8 4.0 19.3 18.7 18.2 17.7 17.3 16.9 16.4 16.2 16.1 15.9 15.7 15.4 15.2 4.5 17.4 16.9 16.5 16.1 15.7 15.3 14.9 14.8 14.6 14.4 14.3 14.0 13.7 5.0 15.7 15.3 14.9 14.6 14.2 13.9 13.6 13.4 13.3 13.1 13.0 12.7 12.4
显然,这是按荷重等效的结果,取值的理由不够充分。 2.另一种方案是规范提出来的: 根据板中弯矩等效的原则定出来的 (这是比较合理的,但 消防车的排列方式
4X4板块消防车等效荷载计算
1楼面等效均布荷载: B-11.1基本资料1.1.1工程名称: 50吨四轮(280T)消防车轮压等效均布荷载计算1.1.2周边支承的双向板,板的跨度 L x= 3000mm,L y= 3000mm,板的厚度 h = 400mm,垫层压力扩散角θ = 30°1.1.3周边支承的双向板,板的跨度 L x= 3000mm,L y= 3000mm,板的厚度 h = 400mm,垫层压力扩散角θ = 30°局部集中荷载 N = 280kN,荷载作用面的宽度 b tx= 600mm,荷载作用面的宽度 b ty= 2000mm;垫层厚度 s = 600mm荷载作用面中心至板左边的距离 x = 1500mm,最左端至板左边的距离 x1= 1200mm,最右端至板右边的距离 x2= 1200mm荷载作用面中心至板下边的距离 y = 1500mm,最下端至板下边的距离 y1= 500mm,最上端至板上边的距离 y2= 500mm1.2荷载作用面的计算宽度1.2.1 b cx= b tx + 2s·tanθ + h = 600+2*600*tan30°+400 = 1693mm1.2.2 b cy= b ty + 2s·tanθ + h = 2000+2*600*tan30°+400 = 3093mm当 0.5b cy> y 且 0.5b cy> 0.5b ty + y2时,取 b cy= L y= 3000mm1.3局部荷载的有效分布宽度1.3.1按上下支承考虑时局部荷载的有效分布宽度当 b cy≥ b cx, b cx≤ 0.6L y时,取 b x= b cx + 0.7L y= 1693+0.7*3000 = 3793mm1.3.2按左右支承考虑时局部荷载的有效分布宽度当 b cx< b cy, b cy≤ 2.2L x时,取b y= 2b cy / 3 + 0.73L x= 2*3000/3+0.73*3000 = 4190mm1.4绝对最大弯矩1.4.1按上下支承考虑时的绝对最大弯矩1.4.1.1将局部集中荷载转换为 Y 向线荷载q y= N / b ty= 280/2 = 140kN/m1.4.1.2 M maxY= q y·b ty·(L y - y)·[y1 + b ty·(L y - y) / 2L y] / L y= 140*2*(3-1.5)*[0.5+2*(3-1.5)/(2*3)]/3 = 140kN·m1.4.2按左右支承考虑时的绝对最大弯矩1.4.2.1将局部集中荷载转换为 X 向线荷载q x= N / b tx= 280/0.6 = 466.67kN/m1.4.2.2 M maxX= q x·b tx·(L x - x)·[x1 + b tx·(L x - x) / 2L x] / L x= 466.67*0.6*(3-1.5)*[1.2+0.6*(3-1.5)/(2*3)]/3 = 189kN·m1.5由绝对最大弯矩等值确定的等效均布荷载1.5.1按上下支承考虑时的等效均布荷载2) = 8*140/(3.793*32) = 32.81kN/mq1.5.2按左右支承考虑时的等效均布荷载2) = 8*189/(4.19*32) = 40.1kN/mq1.5.3等效均布荷载 qe= Max{q ex, q ey} = Max{32.81, 40.1} = 40.1kN/m1.6由局部荷载总和除以全部受荷面积求得的平均均布荷载qe' = N / (L x·L y) = 280/(3*3) = 31.11kN/m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双向板跨度(m*m) 2.0x2.0 2.5x2.5 3.0x3.0 3.5x3.5 4.0x4.0 4.5x4.5 5.0x5.0 57.0 46.0 37.0 30.0 24.0 19.0 16.0 14.0 12.0 11.0 9.5 8.5 7.0 41.0 34.0 29.0 24.0 21.0 17.0 14.0 13.0 12.0 11.0 10.0 8.5 7.0 31.0 27.0 23.0 20.0 17.0 14.5 12.5 12.0 11.0 10.5 9.5 8.5 7.0 24.0 21.0 18.3 16.0 14.3 12.5 11.0 10.3 9.6 9.2 8.6 7.7 7.0 19.1 17.0 15.2 13.5 12.0 10.6 9.5 9.0 8.5 8.0 7.8 7.0 6.5 15.5 14.2 13.0 11.5 10.2 9.2 8.3 7.8 7.5 7.3 7.0 6.5 6.0 13.0 12.0 10.8 10.0 9.0 8.0 8.0 7.3 6.7 6.5 6.2 5.6 5.3
二、设计取值及审查意见 如果是小于6mx6m板跨的双向板,怎么样 取值呢? 荷载取值为20kN/m2,按2006版荷载规范是 偏小的,也就会认为是不安全的。而设计 中多数是这样的板。 如果按规范的另一取值则为35 kN/m2。在 做梁板设计时会因荷载较大而变得困难, 配筋会偏大。
三、解决办法
1.有些地方工程师提出了一种解决方案建议用10。理由 如下: 一部消防车的最大重量为32吨,其平面尺寸2.5M×8.0M, 即每平方米的重量:,这个值相当于把消防车密密密麻麻排 在结构板上,毫无空隙。如果空隙一米,则,
320KN 2 10.15KN / m (2.5 1) (8.0 1)
计算方法
1. 单向板按<荷载规范>GB50009-2001之附录B计算, 适用于消防车满载总重为300kN的大型车辆.按车辆最 大轮压为60kN,作用在0.6mx0.2m的局部面积上的条件 并按最不利组合确定。 2. 双向板按弹性薄板小挠度理论并按最不利组合确定。
本表的适用范围:
1. 设计楼板可以直接采用本表数据。 2. 设计楼面梁:1)对单向板楼盖的次梁和槽形 板的纵肋可乘以0.8的折减系数。2) 对单向板楼盖 的主梁可乘以0.6的折减系数。3) 对双向板楼盖的 梁可乘以0.8的减系数。 3. 设计墙、柱和基础时:1)对单向板楼盖可乘 以0.5的折减系数。2) 对双向板楼盖和无梁楼盖可 乘以0.8的折减系数。
显然,这是按荷重等效的结果,取值的理由不够充分。 2.另一种方案是规范提出来的: 根据板中弯矩等效的原则定出来的 (这是比较合理的,但 计算较为繁琐。)消防车的平面尺寸
消防车的排列方式
单向板 1.行驶方向平行于支座
2.行驶方向垂直于支座
消防车的动力效应
1.车辆荷载尤其是消防车对楼面的荷载作用,主要应考虑 车辆满载重量及汽车轮压的动荷载效应,动和系数与楼面 覆土厚度等因素有关, 汽车轮压荷载传至楼板和梁的动力系数如下 覆土厚度(m) 0.25 0.40 0.60 0.65 ≥0.70 动力系数 1.30 1.20 1.07 1.04 1.00 注:覆土厚度不为表中数值时,其动力系数可按线性内插法 确定. 2. 表4.1.1中第8项实际上是汽车轮压直接作用在楼板上 的等效均布活荷载,对于跨度较大的楼板还应考虑多辆汽 车的共同作用. 3. “荷载规范”条文说明中指出,”对20-30t的消防车,可按 最大轮压为60kN作用在0.6mx0.2m的局部面积上的条件 确定”,为此,应按规范的图示确定汽车纵横方向的排列间 距.
2.荷载规范GB 50010-2002 (2006年版)条文 汽车通道及停车库: (1)单向板楼盖(板跨不小于2m) 客车 4 kN/m2 消防车 35 kN/m2 (2)双向板楼盖(板跨不小于6m×6m)和无梁楼盖(柱 网尺寸不小于6m×6m) 客车 2.5 kN/m2 消防车 20 kN/m2
计算结果汇总如下表
等效活荷载q e 值 0.0 0.2 0.4 0.6 0.8 覆 土 厚 度 1.0 1.2 1.3 1.4 1.5 1.6 1.8 2.0 单向板跨度(m) 2.0 35.8 34.6 33.5 32.5 31.7 31.1 30.4 30.4 30.4 30.4 30.4 30.4 30.4 2.5 27.2 26.4 25.6 24.8 24.1 23.5 23.1 22.9 22.7 22.2 22.2 22.2 22.2 3.0 23.1 22.4 21.7 21.1 20.5 20.0 19.4 19.3 19.1 19.0 18.8 18.5 18.2 3.5 21.2 20.6 20.0 19.5 19.0 18.5 18.0 17.8 17.6 17.4 17.3 17.0 16.8 4.0 19.3 18.7 18.2 17.7 17.3 16.9 16.4 16.2 16.1 15.9 15.7 15.4 15.2 4.5 17.4 16.9 16.5 16.1 15.7 15.3 14.9 14.8 14.6 14.4 14.3 14.0 13.7 5.0 15.7 15.3 14.9 14.6 14.2 13.9 13.6 13.4 13.3 13.1 13.0 12.7 12.4
谢谢大家 !
消防车等效荷载分析
一.
问题的由来
1.荷载规范GB 50010-2002条文 汽车通道及停车库: (1)单向板楼盖(板跨不小于2m) 客车 4 kN/m2 消防车 35 kN/m2 (2)双向板楼盖和无梁楼盖(柱网尺寸不小于 6m×6m) 客车 2.5 kN/m2 消防车 20 kN/m2