平面向量共线问题

合集下载

平面向量共线向量定理

平面向量共线向量定理

平面向量共线向量定理1. 什么是共线向量?说到平面向量,咱们先得搞明白什么是共线向量。

共线向量,简单来说,就是一群向量,它们的方向一致,就像一群小鸟齐齐飞向同一个方向。

想象一下,如果你和朋友们都朝同一个地方走,那你们就是共线的。

这样的向量在数学上可不是随便说说,它们有着特别的关系,甚至可以通过一些简单的计算来证明。

1.1 向量的定义向量其实就像一条有方向的箭,箭头指的地方就是它的方向,而箭的长度就是它的大小。

想象一下,如果你在操场上朝一个方向跑,跑的快慢、方向都可以用向量来表示。

平面向量则是在二维平面上的向量,咱们日常生活中的位置、速度等都可以用平面向量来描述。

1.2 向量的加法与数乘现在,咱们再聊聊向量的加法和数乘。

就像把两根同样的手指放在一起,你的总长度就变大了。

向量加法也是如此,把两个向量的起点连起来,最后的箭头指向的地方就是它们的和。

而数乘,就像你把这根手指伸长了几倍,方向不变,但大小却变大了。

这些操作在数学上是基础,但实际上它们的用途可多了去了。

2. 共线向量的性质接下来,咱们得看看共线向量的性质。

首先,共线向量的方向是一致的,换句话说,它们的方向角是相同的。

如果你把两根共线向量放在一起,你会发现它们可以重合,仿佛它们就是亲兄弟。

其次,任何一个共线向量都可以表示成其他向量的倍数,听起来有点复杂,其实就像是你把一道菜用不同的调料做成的风味,但本质上还是那道菜。

2.1 数学表达说到数学表达,咱们可以用公式来理解这一点。

如果有两个向量 ( vec{a ) 和( vec{b ),它们是共线的,那就意味着存在一个非零的实数 ( k ),使得 ( vec{a = k cdot vec{b )。

简单来说,就是你可以通过某种方式把一个向量变成另一个向量,这就叫共线。

2.2 生活中的例子在生活中,我们也能找到共线向量的例子。

比如说,两个车沿着同一条道路行驶,不管它们的速度多快或慢,只要方向一致,它们就可以看作是共线向量。

平面向量的共线与共面

平面向量的共线与共面

平面向量的共线与共面平面向量是在平面上有大小和方向的矢量,可以用有向线段表示。

共线是指两个或多个向量具有相同的方向或相反的方向;共面是指多个向量所在的直线都在同一个平面上。

本文将从定义、判定条件、性质和几何意义等方面探讨平面向量的共线与共面。

一、定义平面向量是具有大小和方向的有序对。

用有向线段AB表示向量,表示为AB。

向量有起点A和终点B,起点和终点相同的向量为零向量,记作0。

在平面上,如果两个向量的起点或终点相同,则这两个向量是共线向量。

二、共线的判定条件两个向量共线的判定条件有两种:一种是通过向量的倍数关系判定,另一种是通过向量的坐标表示判定。

1. 倍数关系判定:给定两个向量a和b,如果存在一个数k,使得a=k·b,则a和b共线。

根据这一判定条件,可以得出两个向量共线的必要条件为它们的方向相同或相反。

2. 坐标表示判定:设向量a的坐标表示为a=(x1, y1),向量b的坐标表示为b=(x2, y2)。

如果a、b不是零向量且有x1/x2=y1/y2,则a、b共线。

三、平面向量共线的性质共线向量具有以下性质:1. 共线向量的线性运算:对于共线向量a、b和任意实数k,有a+b和ka也是共线向量。

2. 共线向量的倍点共线:给定向量a和b,那么a和b的中点与a之间的向量、a和b的中点与b之间的向量也共线。

3. 共线向量的加法:对于共线向量a和b,它们之和等于共线化简为k个单位向量(k为实数),即a+b=k。

四、共面的判定条件三个平面向量A、B和C共面的判定条件为:存在实数x、y和z,使得A=x·B+y·C。

五、平面向量共面的性质共面向量具有以下性质:1. 共面向量的线性运算:对于共面向量A、B和任意实数x、y,有x·A+y·B也是共面向量。

2. 共面向量的线性组合:对于共面向量A1、A2、A3和任意实数x1、x2、x3,有x1·A1+x2·A2+x3·A3也是共面向量。

共线定理以及三点共线

共线定理以及三点共线

共线定理以及三点共线一、向量共线定理平面向量共线定理:对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=例1.设与是两个不共线的向量,且向量与共线,则A. 0B.C.D.【解答】 解:因为向量与共线,所以存在实数x 有,则,解得故选D .例2.已知向量,,且与共线,,则 A.B.C.或D.或【解答】 解:与共线,,, , 或.故选:D .例3.若、是不共线向量,,,且,则k等于A. 8B. 3C.D.【解析】解:,是不共线向量,,,且,存在实数使得..,解得.故选D.例4.向量,,若与共线且方向相反,则______.【解答】解:,,解得,又与方向相反,.故答案为.例5.已知点P在线段AB上,且,设,则实数______.【解析】解:如图所示,点P在线段AB上,且,;又,.故答案为:.例6.已知向量______.【解析】解:,,则有,解得,故答案为.例7.已知是平面内两个不共线向量,,若A,B,D三点共线,则k的值为A. 2B.C.D. 3【解答】解:,,、B、D三点共线,与共线,存在唯一的实数,使得即解得.故选A.例8.已知、是两个不共线向量,设,,,若A,B,C三点共线,则实数的值等于A. 1B. 2C.D.【解答】解:,,,,,,B,C三点共线,不妨设,,,解得.故选C.例9.设,是两个不共线的向量,已知,,,若三点A,B,D共线,则k的值为A. B. 8 C. 6 D.【解答】解:,因为三点A,B,D共线,所以与共线,则存在实数,使得,即,由向量相等的条件得,所以.故选A.例10.设,是不共线向量,与共线,则实数k为______ .【解答】解:与共线,且,是不共线向量,存在实数满足:,且,.故答案为.例11.设向量,不平行,向量与平行,则实数________.【解答】解:向量,不平行,向量与平行,,,解得实数.故答案为.二、三点共线定理在平面中A、B、P三点共线的充要条件是:对于该平面内任意一点的O,存在唯一的一对实数x,y使得:OP xOA yOB=+且1x y+=。

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。

平面向量的共线与共面

平面向量的共线与共面

平面向量的共线与共面在数学中,平面向量是指具有大小和方向的量,而共线和共面则是用来描述向量之间的关系的。

共线指的是多个向量在同一直线上,共面则意味着多个向量在同一平面上。

平面向量的共线与共面是一种重要的概念,在几何学和物理学中都有广泛的应用。

一、共线向量共线向量是指多个向量位于同一直线上的情况。

为了判断向量是否共线,我们可以通过以下两种方法:方法一:向量的数量积法对于两个向量a和b来说,如果它们共线,那么它们的数量积(又称为点积)的结果为0。

数量积的计算公式如下:a·b = |a| × |b| × cosθ其中,θ表示向量a和b之间的夹角。

如果两个向量的数量积为0,则它们共线。

方法二:向量的比例法对于两个向量a和b来说,如果它们共线,那么它们之间存在一个实数k,使得a=kb。

也就是说,如果一个向量是另一个向量的k倍,那么它们是共线的。

二、共面向量共面向量是指多个向量位于同一平面上的情况。

为了判断向量是否共面,我们可以通过以下方法:方法一:向量的数量积法对于三个向量a、b和c来说,如果它们共面,那么它们的数量积的结果为0。

数量积的计算公式如下:(a × b)·c = 0其中,×表示向量的叉积运算。

如果三个向量的数量积为0,则它们共面。

方法二:向量的混合积法对于三个向量a、b和c来说,如果它们共面,那么它们的混合积的结果为0。

混合积的计算公式如下:(a × b)·c = 0同样,如果三个向量的混合积为0,则它们共面。

三、应用举例1. 平面几何中的共线与共面在平面几何中,通过判断点是否共线或者判断线段是否相交,我们可以应用共线和共面的概念来求解几何问题。

例如,当我们需要判断三个点A、B和C是否共线时,可以计算向量AB和向量AC,然后判断这两个向量是否共线。

如果它们共线,则说明三个点在同一直线上。

同样地,如果我们需要判断四个点A、B、C和D是否共面,可以计算向量AB、向量AC和向量AD,然后判断它们的混合积是否为0。

用平面向量坐标表示向量共线条件

用平面向量坐标表示向量共线条件
∵2×8-4 ×4=0, 所以 AB//AC 因此A,B,C三点共线.
练习: 1. 已知a=(4, 2),b=(6, y),且a//b,求y.
y=3
已知a=(3, 4), b=(cosα, sinα), 且a//b, 求tanα. tanα=4 /3
1
已知a=(1, 0), b=(2, 1), 当实数k为何值时,向量 ka-b与a+3b平行? 并确定它们是同向还是反向.
线,则B( )
A.x =-1
B.x=3
C.x=9
D.51
2
6.设a=(23
, sinα),b=(cosα1 ,
3
则锐角α为 (C )
),且a// b,
A.30o
B.60o
C.45o
D.75o
△ABC的三条边的中点分别为(2, 1)和(-3, 4),(-1,-1), 则△ABC的重心坐标为 _______
解:利用⑴式可求出y的值,
1×5-2×y=0 所以y 5
2
说明:利用向量的线性运算求出向量
的坐标,再
利用向量平行的条件式 ,就可知A、B、C三点共线。
AB, AC
例2. 在直角坐标系xOy内,已知A(-2,-3)、B(0,1)、 C(2,5),求证:A、B、C三点共线。
解:A B ( 0 ,1 ) ( 2 , 3 ) ( 2 ,4 ) A C ( 2 ,5 ) ( 2 , 3 ) ( 4 ,8 )
单击添加副标题
用平面向量坐标表 示 向量共线条件
单击此处添加文本具体内容,简明扼要地阐述你的观点
两个向量a, b平行的条件:
a=λb,b≠0.
那么当向量a的坐标为(a1, a2), b的坐 标为(b1, b2)时,代入上式,得

平面向量的共线与垂直

平面向量的共线与垂直

平面向量的共线与垂直平面向量是数学中的一个重要概念,在几何学、力学、物理学等领域都有广泛的应用。

本文将重点讨论平面向量的共线和垂直关系,旨在帮助读者更好地理解和应用平面向量的性质。

1. 共线向量共线向量是指两个或多个向量在同一条直线上的情况。

如果两个向量都是零向量,则它们必然共线;否则,我们可以通过计算向量的比例关系来判断它们是否共线。

设有两个非零向量A和A,在二维平面中的坐标表示为:A = (A₁, A₁) A = (A₂, A₂)若向量A和A共线,则它们可以表示为一个比例关系:A = AA其中,A为常数。

我们可以通过比较两个向量的坐标分量之间的比值来确定A的值。

如果A的值等于两个向量对应坐标分量之间的比值,则向量A和A共线。

例如,若有两个向量A = (2, 4)和A = (4, 8),我们可以进行如下计算:A₁/A₂ = 2/4 = 1/2A₁/A₂ = 4/8 = 1/2由于A₁/A₂ = A₁/A₂ = 1/2,因此向量A和A共线。

2. 垂直向量垂直向量是指两个向量之间存在直角关系的情况。

如果两个向量的数量积为零,则它们必然垂直;否则,我们可以通过计算向量的数量积来判断它们是否垂直。

设有两个非零向量A和A,在二维平面中的坐标表示为:A = (A₁, A₁) A = (A₂, A₂)若向量A和A垂直,则它们的数量积为零:A·A = 0我们可以通过计算向量的数量积来判断是否垂直。

向量的数量积计算公式为:A·A = A₁A₂ + A₁A₂例如,若有两个向量A = (2, 4)和A= (−4, 2),我们可以进行如下计算:A·A = 2 × (−4) + 4 × 2 = −8 + 8 = 0由于A·A = 0,因此向量A和A垂直。

需要注意的是,垂直向量的判断与向量的顺序有关,即A·A = 0并不意味着A·A = 0。

平面向量的共线与共面性质

平面向量的共线与共面性质

平面向量的共线与共面性质平面向量是在二维平面上具有大小和方向的矢量。

在研究平面向量时,我们经常会遇到共线与共面性质,这些性质在数学和物理学中都具有重要的应用。

本文将深入探讨平面向量的共线与共面性质及其相关概念。

一、共线性质共线是指存在于同一条直线上。

对于平面向量而言,如果两个向量共线,它们具有以下性质:1. 向量的乘法:若向量a与向量b共线,则它们的乘积为0。

即a·b = 0。

2. 向量行列式:若向量a、b、c共线,则它们的行列式为0。

即[a,b,c] = 0。

根据上述性质,我们可以通过向量的内积(点乘)和向量的行列式(叉乘)判断向量之间的共线性关系。

若两个向量的内积为0,则它们共线;若三个向量的行列式为0,则它们共线。

二、共面性质共面是指存在于同一平面上。

对于平面向量而言,如果三个向量共面,它们具有以下性质:1. 向量的叉乘:若向量a、b、c共面,则它们的叉乘为零向量。

即a×b×c = 0。

2. 向量行列式:若向量a、b、c在同一平面上,则它们的行列式为零。

即[a,b,c] = 0。

通过向量的叉乘和行列式,我们可以判断向量是否共面。

若三个向量的叉乘为零向量,则它们共面;若三个向量的行列式为零,则它们共面。

三、证明共线与共面性质1. 共线性证明:假设有两个向量a和b,并且它们的内积为0,即a·b = 0。

我们可以使用向量的坐标表示进行推导。

设a = (x1, y1)和b = (x2, y2),则a·b = x1x2 + y1y2 = 0。

如果x1和x2不同时为0,则y1必须为0才能满足等式。

反之亦然,如果y1和y2不同时为0,则x1必须为0才能满足等式。

因此,a和b在坐标系中可表示为(0, y1)和(x2, 0)。

根据上述坐标表示,我们可以得出结论:向量a和b的起点和终点都位于同一条直线上,即它们共线。

2. 共面性证明:假设有三个向量a、b、c,并且它们的叉乘为零向量,即a×b×c = 0。

平面向量的共点与共线定理

平面向量的共点与共线定理

平面向量的共点与共线定理平面向量是数学中重要的概念,它们可以描述平面上的位移、力等物理量。

在研究平面向量时,共点与共线定理是一个重要的概念,本文将详细介绍平面向量的共点与共线定理及其应用。

一、平面向量的基本概念在平面直角坐标系中,平面向量通常由有序实数对(a, b)表示,其中a为向量在x轴上的分量,b为向量在y轴上的分量。

平面向量可以用箭头(或有向线段)表示,箭头从向量起点指向终点,长度表示向量的大小,方向表示向量的方向。

二、平面向量的共点与共线1. 共点向量若有两个或多个向量的起点都相同,则这些向量称为共点向量。

2. 共线向量若有两个或多个向量都能够通过平移将它们重合在同一直线上,则这些向量称为共线向量。

共线向量除了在同一直线上的位置相同外,其大小和方向都可以不同。

三、平面向量的共点定理如果三个平面向量a, b, c共点,则存在实数λ, μ,使得a = λb + μc。

即,一个向量可以用其他两个向量的线性组合表示。

四、平面向量的共线定理1. 三个向量共线的充分必要条件给定三个平面向量a, b, c,它们共线的充分必要条件是存在实数λ, μ,使得a = λb + μc。

2. 两个向量共线的判定方法给定两个非零向量a和b,它们共线的充分必要条件是存在实数λ,使得a = λb。

五、平面向量的应用平面向量的共点与共线定理在许多问题中有广泛的应用。

下面以几个例子来说明其应用。

例1:证明三角形的垂心、重心和外心共线。

解析:设O为三角形的外心,M为三角形的中心,D为三角形的垂心。

连接OM、OD。

根据共点与共线定理,只需证明OM和OD共线即可。

例2:证明四边形的对角线的交点与中点共线。

解析:设ABCD为四边形,连接AC和BD,并设交点为E。

根据共点与共线定理,只需证明AE和DE共线即可。

例3:证明四边形的对角线和中线共点。

解析:设ABCD为四边形,连接AC和BD,并设交点为E。

根据共点与共线定理,只需证明AC和BD的中点与交点E共线即可。

平面向量的共线和垂直关系

平面向量的共线和垂直关系

平面向量的共线和垂直关系平面向量是数学中重要的概念,它们在几何学和物理学中有广泛的应用。

共线和垂直关系是平面向量之间的基本关系,它们在解决问题和计算中起到了重要的作用。

本文将介绍平面向量的共线和垂直关系以及它们的性质和应用。

一、共线关系共线关系是指两个或多个向量在同一直线上的情况。

如果两个向量的方向相同或相反,并且它们的起点和终点在同一直线上,那么这两个向量就是共线的。

我们可以使用向量的数乘运算来判断两个向量是否共线。

具体来说,如果向量A=kB,其中k为一个实数,那么向量A 和向量B是共线的。

共线向量具有以下性质:1. 共线向量的数乘:如果两个向量A和B共线,那么它们的数乘之间也具有共线性质。

即,若向量A和向量B共线,那么对于任意实数k,向量kA也与向量B共线。

2. 共线向量的加法:如果向量A和向量B是共线的,那么它们的和向量A+B也与它们共线。

3. 共线向量的零向量:向量0与任意向量都共线。

共线向量的判定方法:通过比较两个向量的分量来判断它们是否共线,即判断它们的方向和大小是否相同或相反。

共线向量的应用:共线向量的应用非常广泛,特别是在物理学和工程学中。

例如,力的合成和分解问题就可以利用共线向量的性质进行分析和计算。

二、垂直关系垂直关系是指两个向量之间的夹角为90度(直角)。

如果两个向量的点积为0,则它们是垂直的。

具体来说,如果向量A·向量B=0,则向量A和向量B是垂直的。

垂直向量具有以下性质:1. 零向量的垂直性:零向量与任意向量都垂直。

2. 垂直向量的加法:如果向量A和向量B是垂直的,那么它们的和向量A+B也与它们垂直。

3. 垂直向量的数量乘法:如果向量A与向量B垂直,那么对于任意实数k,向量kA也与向量B垂直。

垂直关系的判定方法:通过比较两个向量的点积是否为0来判断它们是否垂直。

垂直向量的应用:垂直向量在几何学和物理学中具有广泛的应用。

例如,计算两个向量的夹角、求解直线的垂线方程等问题都需要使用垂直向量的概念。

《两向量共线的充要条件及应用》平面向量及其应用

《两向量共线的充要条件及应用》平面向量及其应用

推论三:向量的三角形法则
总结词
三角形法则是指两个向量共线时,可以通过第三个向 量形成一个三角形。
详细描述
如果向量$overset{longrightarrow}{a}$、向量 $overset{longrightarrow}{b}$和向量 $overset{longrightarrow}{c}$共线,那么这三个向量 可以形成一个三角形。具体来说,从起点出发,沿着 $overset{longrightarrow}{a}$、 $overset{longrightarrow}{b}$和 $overset{longrightarrow}{c}$的方向分别作相同长度 的线段,连接三个终点,形成一个三角形。这个三角形 满足三角形的法则,即任意两边之和大于第三边,任意 两边之差小于第三边。
《两向量共线的充要条件及 应用》平面向量及其应用
汇报人: 2023-12-29
目录
• 平面向量的基本概念 • 两向量共线的充要条件 • 两向量共线的应用 • 两向量共线定理的证明 • 两向量共线定理的推论
01
平面向量的基本概念
向量的定义
总结词ห้องสมุดไป่ตู้
向量是一个既有大小又有方向的量, 通常用有向线段表示。
定理的证明方法三
总结词
利用向量的模的性质证明
详细描述
第三种证明两向量共线的方法是利用向量的 模的性质。如果两向量共线,则它们的模之 比是一个常数。通过比较两个向量的模,我 们可以找到这个常数。如果两个向量的模之 比等于这个常数,则它们共线。
05
两向量共线定理的推论
推论一:向量的倍数关系
总结词
向量的倍数关系是指两个向量共线时,一个 向量是另一个向量的倍数。
03

平面向量中三点共线

平面向量中三点共线

知识梳理(一)、对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=由该定理可以得到平面内三点共线定理:(二)、三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且OP xOA yOB =+。

特别地有:当点P 在线段AB 上时,0,0x y >>当点P 在线段AB 之外时,0xy <典例剖析例1、 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是 分析:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:44y x x y +≥=,取等号时4y xx y=224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例2、在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211分析:,,B P N三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+8111m ∴+=311m ∴=,故选C例3、在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+ 又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=变式、直线l 过ABCD 的两条对角线AC 与BD 的交点O ,与AD 边交于点N,与AB 的延长线交于点M 。

6.2平面向量共线定理的坐标表示

6.2平面向量共线定理的坐标表示

授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。

有关平面向量三点共线问题的求解

有关平面向量三点共线问题的求解

有关平面向量三点共线问题的求解
三点共线向量公式:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。

三点共线指的是三点在同一条直线上。

可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。

三点共线证明方法:
方法一:挑两点奠定一条直线,排序该直线的.解析式.代入第三点座标看看与否满足用户该解析式(直线与方程)。

方法二:设三点为a、b、c,利用向量证明:λab=ac(其中λ为非零实数)。

方法三:利用点差法求出来ab斜率和ac斜率,成正比即为三点共线。

方法四:用梅涅劳斯定理。

方法五:利用几何中的公理“如果两个不重合的平面存有一个公共点,那么它们存有且只有一条过该点的公共直线”.所述:如果三点同属两个平行的平面则三点共线。

方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法。

第9讲 平面向量共线定理、平面向量基本定理的应用问题

第9讲  平面向量共线定理、平面向量基本定理的应用问题

第9讲 平面向量共线定理、平面向量基本定理的应用问题一、共线向量定理1.对空间任意两个向量a ,b (a ≠0),a 与b 共线的充要条件是存在实数λ,使得b =λa .2.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.例1 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →. 例2如图,在△ABC 中,3BAC π∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若△ABC 的面积为AP 的最小值为( )A. C. 3D.43【针对练习 】如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.例3 在△ABC 中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM mAB =,AN nAC =(m >0,n >0),则m +2n 的最小值为( ) A .3 B .4C .83D .103例4 已知数列{a n }为等差数列,且满足32015BA a OB a OC =+,若()AB AC R λλ=∈,点O 为直线BC 外一点,则12017a a += ( ) A. 0 B. 1C. 2D. 4例5 已知圆O 的半径为2,A ,B 是圆上两点且∠AOB 23π=,MN 是一条直径,点C 在圆内且满足(1)(01)OC OA OB λλλ=+-<<,则CM CN ⋅的最小值为( )A .-3B .C .0D .2例6 O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λAB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心【针对练习】 1.已知点G 为ABC △的重心,过点G 作直线与AB ,AC 两边分别交于,M N两点,且,AM xAB = ,AN y AC = ,x y R ∈,则2.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM xAB AN y AC ==,则x y +的最小值为( )A .2BC D3.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c ,0),D (d ,0)(c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上二、平面向量基本定理如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e ,平面内选定两个不共线向量为基底,可以表示平面内的任何一个向量.例7 如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,3||2,||,||23OA OB OC ===若(,)OC OA OB λμλμ=+∈R ,则( )A. 4,2λμ==ABCO例8 两个非零向量OA →,OB →不共线,且OP →=mOA →,OQ →=nOB →(m ,n >0),直线PQ 过△OAB 的重心,则m ,n 满足( )A .m +n =32B .m =1,n =12 C.1m +1n=3 D .以上全不对例9 如图,AB 是圆O 的直径,C ,D 是圆O 上的点,60CBA ∠=,45ABD ∠=,CD xOA yBC =+,则x y +的值为( )A .13-B.3- C .23D.【针对练习】 1.在△ABC 中,点D ,E 分别在边BC ,AC 上,且2BD DC =,3CE EA =,若AB a =,AC b =,则DE =( ) A 15a b +B 113a b -C 15a b -D 113a b +2.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB→=λAM →+μAN →,则λ+μ=________.3.已知平面向量,m n 的夹角为3π且1,2m n ==,在△ABC 中,22AB m n =+,26AC m n =-,D 为BC 中点,则AD =( )A. B. C.6 D.12三、利用平面向量基本定理确定参数的值、取值范围问题例10 已知向量,OA OB 满足1OA OB ==,,(,,)OA OB OC OA OB R λμλμ⊥=+∈若M 为AB 的中点,1MC =,则λμ+的最大值是( )A例11 在Rt ABC ∆中,AB AC ⊥,1AB =,2AC =,点P 为△ABC 内(包含边界)的点,且满足AP xAB y AC =+(其中x ,y 为正实数),则当xy 最大时,yx的值是( ) A .12B .1 C.2 D .与∠A 的大小有关例12 △ABC 中,35,5==BC AB ,3π=A ,点P 是ABC ∆内(包括边界)的一动点,且)(5253R AC AB AP ∈-=λλ的最大值为____________例13 如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若动点P 从点A 出发,沿正方形及三角形的边按如下路线运动:A →B →C →D →E →A →D ,其中AP →=λAB →+μAE →.给出下列说法:①当P 为BC 的中点时λ+μ=2; ②满足λ+μ=1的点P 恰有3个;③λ+μ的最大值为3;④若满足λ+μ=k 的点P 有且只有2个,则k ∈(1,3). 其中,说法正确的序号是________.【针对练习】 1.如图所示,A ,B ,C 是圆O 上不同的三点,线段CO 的延长线与线段BA 交于圆外的一点D ,若OC OA OB λμ=+(R λ∈,R μ∈),则λμ+的取值范围是( )A .(0,1)B .(1,)+∞C .(),1-∞-D .()1,0-2.如图,已知,B C 是以原点O 为圆心,半径为1的圆与x 轴的交点,点A 在劣 弧PQ (包含端点)上运动,其中30POx ∠=,OP OQ ⊥,作AH BC ⊥于H .若记AH xAB y AC =+,则xy 的取值范围是( )A. 1(0,]4B. 11[,]164C. 13[,]1616 D. 31[,]164四、平面向量基本定理在解析几何中的应用例14 F ,过点F 与x 轴垂直的直线l 交两渐近线于A ,B 两点,与双曲线的其中一个交点为P ,设坐标原点为O,若OP mOA nOB =+(,)m n R ∈,则该双曲线的渐近线为( )A B C D【针对练习】已知A 是双曲线(0a >,0b >)的左顶点,1F 、2F 分别为左、右焦点,P 为双曲线上一点,G 是12F F ∆P 的重心,若1G F λA =P ,则双曲线的离心率为( ) A .2 B .3 C .4 D .与λ的取值有关【精品练习】1.在△ABC 中,点D 是线段BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC =+λμ,则λμ+= .2.已知平面直角坐标系内的两个向量()3,2a m =-,()1,2b m =-,且平面内的任一向量c 都可以唯一地表示成c a b λμ=+(λ,μ为实数),则实数m 的取值范围是( ) A.(-∞,2)B.6,5⎛⎫+∞ ⎪⎝⎭C.(-∞,-2)∪(-2,+∞)D.66,,55⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭3.如图,在△ABC 中,点D ,E 是线段BC 上两个动点,且AD AE x AB y AC +=+,则14x y+的最小值为( )A . 32B .2C .52D .924.已知3AB =uu u v ,A ,B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+uu u v uu v uu u v,点P 的轨迹方程为( )A.2214x y +=B.2214y x +=C.2219x y +=D.2219y x += 5.如图4-25-1所示,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3DE →,BC →=3BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.6.如图4-25-3,在四边形ABCD 中,AB =BC =CD =1,且∠B =90°,∠BCD =135°,记向量AB →=a ,AC →=b ,则AD →=( )图4-25-3A.2a -1+22b B .-2a +1+22b C .-2a +1-22b D.2a +1-22b7.已知A ,B ,C 是圆x 2+y 2=1上不同的三点,且OA →·OB →=0(O 为坐标原点),若存在实数λ,μ满足OC →=λOA →+μOB →,则实数λ,μ的关系满足( ) A.1λ+1μ=1 B .λ2+μ2=1 C .λμ=1 D .λ+μ=1。

初中数学知识归纳平面向量的共线与共面关系

初中数学知识归纳平面向量的共线与共面关系

初中数学知识归纳平面向量的共线与共面关系在初中数学中,学习平面向量是一个重要的内容,而平面向量的共线与共面关系也是其中的基础概念之一。

本文将对初中数学中关于平面向量的共线与共面关系进行归纳与总结。

一、平面向量的定义与表示平面向量是指在平面上具有大小和方向的量,一般由有序的两个实数或复数表示。

在坐标平面内,平面向量可以表示为一个有向线段,其中线段的起点指向线段的终点。

二、平面向量的共线关系1. 平面向量共线的定义设有向线段AB和AC两个平面向量,若它们的起点A相同或者它们的终点B、C相同,那么则称向量AB与AC共线。

2. 平面向量共线的判断方法判断两个平面向量AB和AC是否共线,可以计算它们的方向向量,即向量AB和向量AC,如果它们是平行向量,则向量AB与向量AC共线。

3. 平面向量共线的性质若向量AB与向量AC共线,则存在实数k,使得AB=kAC。

其中k 为比值,称为共线向量的比值。

若k>0,则向量AB与向量AC同向;若k<0,则向量AB与向量AC反向。

三、平面向量的共面关系1. 平面向量共面的定义设有向线段AB,AC和AD三个平面向量,若它们位于同一个平面内,则称向量AB,AC和AD共面。

2.平面向量共面的判断方法判断三个平面向量AB,AC和AD是否共面的一种方法是通过计算它们的混合积。

若混合积为零,则向量AB,AC和AD共面。

3. 平面向量共面的性质若向量AB,AC和AD共面,则存在实数x、y和z,使得AB=xAC+yAD。

其中x、y和z称为共面向量的线性组合系数。

四、平面向量的应用平面向量的共线与共面关系在数学中具有广泛的应用。

其中,共线关系常常用于解决几何问题,如直线的相交、角平分线等。

共面关系则常常用于解决平面几何问题,如平面上的三角形、四边形的性质等。

在物理学中,平面向量的共线与共面关系也被广泛应用,如力的合成、力的平衡等。

总结平面向量的共线与共面关系是初中数学中的重要概念,对于理解几何图形和解决几何问题有着重要的作用。

平面向量之两点共线

平面向量之两点共线

平面向量之两点共线
引言
在平面几何中,向量是研究平面上点和点之间的关系的重要工具。

而了解两点是否共线是其中一个基本问题。

本文将介绍平面向量的概念,并讨论如何判断两点是否共线。

平面向量的定义
平面向量是具有大小和方向的量。

在平面上,向量通常用线段来表示,起点和终点分别为向量的起点和终点。

两点共线的判断方法
判断两点是否共线最简单的方法是通过计算它们之间的向量。

具体步骤如下:
1. 假设有两点A和B,它们的坐标分别为A(x1, y1)和B(x2, y2)。

2. 计算向量AB的坐标差:AB = (x2 - x1, y2 - y1)。

3. 如果向量AB的坐标差可以写成一个常数乘以另一个向量,则说明点A和点B共线。

举例说明
为了更好地理解共线判断的方法,我们举一个具体例子。

假设有点A(1, 2)和点B(3, 4)。

我们可以计算向量AB的坐标差为AB = (3 - 1, 4 - 2) = (2, 2)。

由于向量AB的坐标差可以写成2乘以向量(1, 1),所以点A和点B是共线的。

结论
通过计算向量的坐标差,我们可以判断两点是否共线。

这是一个简单而有效的方法,可以应用于平面向量中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量共线问题的探讨
摘要:平面向量的平行与垂直是高中数学新课程向量部分的重要内容,本文旨在对平面向量平行(即共线)相关定理进行推广,得到两个更加具有一般性的结论,并举例说明它们的应用,使问题的解决更简捷。

关键词:平面向量、共线定理、推广、应用。

平面向量的共线,这部分内容比较重要,在各种考试中也频频出现,教材上就两个向量共线已给出两个定理:
(1) 向量()≠与向量共线⇔存在唯一实数λ,使得a b λ=成
立。

(2) 向量()11,y x a =与向量()22,y x b =,则∥⇔01221=-y x y x
在此基础之上,笔者对向量共线问题,再做进一步探讨及推广,若有不当之处,请各位老师指正。

对于定理(2)给出的结论,向量,b 的基底是单位正交向量:,j ,下面我们给出的结论中,涉及到的基底不一定是单位正交向量:i ,,而是任意一组基底:1e 与2e ,它更具有一般性。

推论1:若1e ,2e 是不共线的两个向量,2111e y e x a +=,2212e y e x +=,与b 共线 ⇔01221=-y x y x 证明:与b 共线,当且仅当=λ, ⇔2111e y e x +()
2212e y e x +=λ ⇔2111e y e x +2212e y e x λλ+=
由平面向量基本定理得:⎩⎨⎧==2121y y x x λλ ①2y ⨯-②2x ⨯消去λ得:01221=-y x y x ① ②
所以,a 与b 共线⇔01221=-y x y x 。

上述结论还可以进一步推广为:
推论2:对于任意向量1e ,2e ,若2111e y e x +=,2212e y e x +=,那么与共线 ⇔1e ∥2e 或01221=-y x y x
证明:分两种情况: 1e 与2e 平行和1e 与2e 不平行
(1)1e 与2e 平行时,结论成立。

(2)1e 与2e 不平行时,a 与共线,当且仅当a =b λ, 有:2111e y e x +()
2212e y e x +=λ 即:2111e y e x +2212e y e x λλ+=
由平面向量基本定理得:⎩⎨⎧==2121y y x x λλ ①2y ⨯-②2x ⨯消去λ得:01221=-y x y x
即:当且仅当01221=-y x y x 时,与b 共线
综合(1)(2)知:与b 共线⇔1e ∥2e 或01221=-y x y x
上述两个结论,尤其第二个,对向量共线的问题阐述得比较完备。

在高考、模拟考、联考等一系列考试中,常出现向量共线的问题,下面是两个结论针对一些考题的应用,所有例题都给出多种解法,其中“另解”应用了上述结论,多种解法进行对比后,我们可以看出应用上述结论可以使问题的解决更简捷,从而节省时间。

例1.(2009重庆卷文)已知向量)1,1(=a ,),2(x b = 若b a +与24-平行,则实数x 的值是 ( )
A .-2
B .0
C .1
D .2
解法1:因为)1,1(=a ,),2(x b = ,所以)1,3(+=+x b a ,① ②
)24,6(24-=-x a b 由于b a +与a b 24-平行,得
6(1)3(42)0x x +--=,解得2x =,选D 。

解法2: 因为b a +与a b 24-平行,则存在常数λ,使
)24(a b b a -=+λ,即:)14()12(-=+λλ,根据向量共线的条件知,向量与共线,故2x =,选D 。

另解:因为b a +与24-平行,即b a +与42+-平行,但
01)2(41≠⨯--⨯,所以根据已知结论得:∥,所以有,
0121=⋅-⋅x ,即得2x =,选D 。

例2.已知)2,1(=,)2,3(-=,当k 为何值时,向量k +与b a 3-平
行?平行时它们是同向还是反向? 解:∵)2,1(=,)2,3(-=。

∴)22,3(+-=+k k k ,)4,10(3-=-b a ∵k +与3-平行
∴0)22(10)3(4=+⋅--⋅-k k 解得3
1-=k . 此时()
k 33
131-⋅-=+-=+ ∴当3
1-=k 时,向量k +与b a 3-平行,并且反向. 另解:∵)2,1(=a 与)2,3(-=b 不平行,且向量b a k +与3-平行。

∴013=--k ,即3
1-=k
此时()k 33
131-⋅-=+-=+ ∴当3
1-=k 时,向量k +与b a 3-平行,并且反向.
例 3.设两个非零向量1e 和2e 不共线,如果21e e AB +=,2132e e BC -=,212e k e CD -=,且A 、C 、D 三点共线,求k 的值. 解:=+=()()2121212332e e e e e e -=-++,
∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得CD AC λ=,即:()
2121223e k e e e -=-λ, 得⎩
⎨⎧-=-=k λλ223,解得23=λ,34=k . 另解:2123e e BC AB AC -=+=
由A 、C 、D 三点共线,知2123e e AC -=与212e k e CD -=共线。

所以,
0)2(2)(3=-⨯--k ,故3
4=k
例4.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t ,()+3
1三向量的终点在同一条直线上? 解:设a OA =,b t OB =,()
+=31, ∴b a OA OC AC 3
132+-=-=,t -=-= 要使A 、B 、C 三点共线,只需λ=.
即: 3
132+-a b t λλ-=.
∴有⎪⎩⎪⎨⎧=-=-t λλ3
132 ⇒ ⎪⎩⎪⎨⎧==2132t λ。

∴当2
1=t 时,三向量终点在同一直线上. 另解:令=,t =,()+=31。

要使,b t ,()
b a +31三向量的终点在同一条直线上,只需A 、B 、C 三点在同一条直线上.
∵b a OA OC AC 3
132+-=-=,b t a OA OB AB +-=-=。

∴0)1(3132=-⨯--t ,即2
1=t ∴当2
1=t 时,,b t ,()
+31三向量终点在同一直线上.
例5.已知点G 是△ABO 的重心,M 是AB 边的中点,PQ 过△ABO 的重心G ,且a OA =,b OB =,a m OP =,11证明:因为M 是AB 边的中点 所以()
+=21 又因为G 是△ABO 的重心,
所以()b a OM OG +==3132. 由P 、G 、Q 三点共线,得PG ∥GQ ,
所以,有且只有一个实数λ,使λ=.
而()
m m 313131+⎪⎭
⎫ ⎝⎛-=-+=-=,
()b n a b a b n OG OQ GQ ⎪⎭⎫ ⎝
⎛-+-=+-=-=313131, 所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-=+⎪⎭⎫ ⎝⎛-b n a b a m 313
13131λ. 又因为、不共线,所以⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-=-=-313
13131n m λλ, 消去λ,整理得n m mn +=3,故311=+n
m . 另证:∵G 是△ABO 的重心,所以()
b a OG +=31. 又∵a OA =,b OB =,m =,n = ∴b a m OG OP GP 3131-⎪⎭⎫ ⎝
⎛-=-= b n a OG OQ GQ ⎪⎭⎫ ⎝
⎛-+-=-=3131 由P 、G 、Q 三点共线,得GP ∥ ,所以,0913131=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝
⎛-n m 去括号,整理得:mn n m 3=+
等式两边同时除以mn 得:311=+n
m 结语:从以上5个例题可以看出灵活应用定理及推论的重要性,一方面可使学生对向量共线理解得更深刻,另一方面可使向量共线问题得到快捷的解答,以增强学生思维的灵活性。

相关文档
最新文档