2019-2020年高中数学《3.2.3直线的一般式方程》学案 新人教A版必修2

合集下载

3.2.2直线的两点式方程 3.2.3直线的一般式方程 教案(人教A版必修2)

3.2.2直线的两点式方程 3.2.3直线的一般式方程 教案(人教A版必修2)

3.2.2直线的两点式方程3.2.3直线的一般式方程●三维目标1.知识与技能(1)掌握直线方程的两点式的形式特点及适用条件.(2)了解直线方程截距式的形式特点及适用条件.(3)明确直线方程一般式的形式特点,会把直线方程的一般式同直线方程的其他形式互化.2.过程与方法(1) 让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.(2)通过探究直线与二元一次方程的关系,让学生积极、主动地参与观察、分析、归纳,进而得出直线的一般式方程,培养学生勇于探究的精神和学会用分类讨论的数学思想方法解决问题.3.情感、态度与价值观(1)认识事物之间的普遍联系与相互转化.(2)培养学生用联系的观点看问题.●重点难点重点:直线方程的两点式、一般式.难点:两点式的适用条件及直线方程一般式的形式特征.重难点突破:以具体案例“求过两点的直线方程”为切入点,通过学生解答,发现知识之间的联系,然后通过观察、思考和互相交流,归纳出直线方程的两点式的形式.针对其适用条件,教学时可引导学生从两点式的形式给予突破;从直线方程的点斜式、斜截式、两点式、截距式的形式出发,采用由特殊到一般的方式,通过学生观察、师生交流,寻其共性,得出直线方程一般式的形式特征,最后通过典例训练,熟练掌握直线方程的各种形式,突出重点的同时化解难点.●教学建议本节知识是上一节知识的拓展和补充,旨在培养学生多角度探求直线方程的求法.鉴于本节知识的特点,对于直线方程的两点式的教学,可引导学生由“点斜式方程”出发,探究“过两点的直线方程”求法,整个过程遵循由浅及深、由特殊到一般的认知规律,使学生在已有的知识基础上获得新结论,达到温故知新的目的.对于直线方程的截距式,教学时只需明确以下两点:(1)它是两点式的特殊情形;(2)讲清截距的几何含义和截距式方程的特征及适用条件.对于直线方程的一般式,教学时,可采取“分析法”“讨论法”“归纳法”与多媒体相结合进行教学,增强动感和直观性.在整个教学过程中,引导学生观察、分析、概括、归纳,使学生思维紧紧围绕“一般式的形式特征与直线点斜式方程的互化”层层展开,体现知识的相互交融性,同时为下一节研究直线的交点坐标及距离公式做好铺垫.●教学流程创设问题情境,引出问题:过两定点的直线方程,如何求解?⇒通过引导学生回忆直线的点斜式方程,探究得出直线的两点式方程,明确其适用条件.⇒通过引导学生回答所提问题理解直线方程的一般式与二元一次方程的关系.⇒通过例1及其互动探究,使学生掌握直线的两点式方程的求法.⇒通过例2及其变式训练,使学生掌握直线的截距式方程的求法.⇒1.利用点斜式解答如下问题:(1)已知直线l 经过两点P 1(1,2),P 2(3,5),求直线l 的方程;(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2,求通过这两点的直线方程. 【提示】 (1)y -2=32(x -1).(2)y -y 1=y 2-y 1x 2-x 1(x -x 1).2.过点(3,0)和(0,6)的直线能用x 3+y6=1表示吗?【提示】 能.直线方程的两点式和截距式若点12112212的中点,则⎩⎨⎧x =x 1+x 22,y =y 1+y 22.我们已经学习了直线的点斜式y -y 0=k (x-x 0),直线的斜截式y =kx +b ,直线的两点式y -y 1y 2-y 1=x -x 1x 2-x 1,直线的截距式x a +y b =1,并且掌握了它们的适用条件.1.上述方程的四种形式都能用Ax +By +C =0(A ,B 不同时为零)来表示吗? 【提示】 能.2.关于x ,y 的二元一次方程Ax +By +C =0(A ,B 不同时为0)一定表示直线吗? 【提示】 一定. 直线的一般式方程(1)定义:关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.(2)斜率:直线Ax +By +C =0(A ,B 不同时为0),当B ≠0时,其斜率是-AB ,在y 轴上的截距是-CB.当B =0时,这条直线垂直于x 轴,不存在斜率.三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.【思路探究】 由两点式直接求出三角形三边所在的直线的方程. 【自主解答】 由两点式,直线AB 所在直线方程为: y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.1.已知直线上的两点坐标时,通常用两点式求直线方程.2.利用两点式求直线方程的前提是x 1≠x 2,y 1≠y 2,切忌不注意坐标间的关系盲目套用公式.在题设条件不变的情况下,求AB 中点与点C 连线的方程. 【解】 设AB 边中点为D (x ,y ),则⎩⎨⎧x =-1+32=1,y =0+(-1)2=-12,C ,D 两点横坐标相同,所以直线CD 的方程为x =1.l 的方程. 【思路探究】 思路一:利用直线的截距式方程求解,需分截距“为零”和“不为零”两类分别求解;思路二:利用直线方程的点斜式求解.【自主解答】 法一 设直线l 在两坐标轴上的截距均为a . ①若a =0,则直线l 过原点,此时l 的方程为2x +3y =0; ②若a ≠0,则l 的方程可设为x a +ya =1,因为直线l 过点(3,-2),知3a +-2a =1,即a =1, 所以直线l 的方程为x +y =1, 即x +y -1=0.综上可知,直线l 的方程为x +y -1=0或2x +3y =0.法二 由题意可知,直线l 的斜率存在且不为0,设其斜率为k ,则可得直线的方程为y +2=k (x -3).令x =0,得y =-2-3k . 令y =0,得x =2k+3.由题意-2-3k =2k +3,解得k =-1或k =-23.所以直线l 的方程为y +2=-(x -3)或y +2=-23(x -3),即x +y -1=0或2x +3y =0.1.如果题目中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,若采用截距式求直线方程,则一定要注意考虑“零截距”的情况.2.应用截距式方程处理截距相等问题的一般思路:已知直线l 过点(1,1)且在y 轴上的截距是在x 轴上的截距的2倍,求直线l 的方程. 【解】 由条件知直线l 的斜率存在且不为0,可设直线l 的方程为y -1=k (x -1),则由条件知1-k =2(1-1k),解得k =1或k =-2.故l 的方程为y =x 或y =-2x +3.(1)斜率是3,且经过点A (5,3); (2)过点B (-3,0),且垂直于x 轴; (3)斜率为4,在y 轴上的截距为-2; (4)在y 轴上的截距为3,且平行于x 轴; (5)经过A (-1,5),B (2,-1)两点;(6)在x ,y 轴上的截距分别是-3,-1.【思路探究】 根据条件,选择恰当的直线方程的形式,最后化成一般式方程. 【自主解答】 (1)由点斜式方程得y -3=3(x -5), 整理得3x -y +3-53=0. (2)x =-3,即x +3=0. (3)y =4x -2,即4x -y -2=0. (4)y =3,即y -3=0.(5)由两点式方程得y -5-1-5=x -(-1)2-(-1),整理得2x +y -3=0. (6)由截距式方程得x -3+y-1=1, 整理得x +3y +3=0.直线方程的五种形式的比较:若直线Ax +By +C =0(不经过原点)不经过第三象限,则AB ________0,BC ________0. 【解析】 如图所示,若直线l 不经过第三象限,则斜率k <0且在y 轴上的截距大于零,∴B ≠0.由Ax +By +C =0, 得y =-A B x -CB .∴k =-A B <0,b =-CB >0.故AB >0且BC <0. 【答案】><利用坐标法解决实际问题(12分)如图3-2-1所示,某房地产公司要在荒地ABCDE 上划出一块长方形土地(不改变方向)建造一图3-2-1幢8层的公寓,如何设计才能使公寓占地面积最大?并求出最大面积.(精确到1 m 2) 【思路点拨】 本题考查坐标法的应用和二次函数的最值,关键是确定长方形中在AB 上的顶点的位置,可建立坐标系,运用直线的知识求解.【规范解答】 建立如图所示的坐标系,则B (30,0),A (0,20),∴由直线的截距式方程得到线段AB 的方程为: x 30+y20=1(0≤x ≤30).3分 设长方形中在AB 上的顶点为P ,点P 的坐标为(x ,y ), 则有y =20-23x (0≤x ≤30).4分∴公寓的占地面积为: S =(100-x )·(80-y ) =(100-x )·(80-20+23x )=-23x 2+203x +6 000(0≤x ≤30).8分∴当x =5,y =503时,S 取最大值,最大值为S =-23×52+203×5+6 000≈6 017(m 2).10分即当点P 的坐标为(5,503)时,公寓占地面积最大,最大面积约为6 017 m 2.12分本题是用坐标法解决生活问题,点P 的位置由两个条件确定,一是A ,P ,B 三点共线,二是矩形的面积最大.借助三点共线寻求x 与y 的关系,然后利用二次函数知识探求最大值是处理这类问题常用的方法.1.当直线没有斜率(x 1=x 2)或斜率为0(y 1=y 2)时,不能用两点式y -y 1y 2-y 1=x -x 1x 2-x 1求它的方程,此时直线的方程分别是x =x 1和y =y 1,而它们都适合(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1),即两点式的整式形式,因此过任意两点的直线的方程都可以写成(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)的形式.2.直线的截距式是两点式的一个特殊情形,用它来画直线以及判断直线经过的象限或求直线与坐标轴围成的三角形的面积比较方便.注意直线过原点或与坐标轴平行时,没有截距式方程,但直线过原点时两截距存在且同时等于零.3.直线方程的一般式同二元一次方程Ax +By +C =0(A ,B 不同时为零)之间是一一对应关系,因此研究直线的几何性质完全可以应用方程的观点来研究,这实际上也是解析几何的思想所在——用方程的思想来研究几何问题.1.过P 1(2,0),P 2(0,3)两点的直线方程是( ) A.x 3+y 2=0 B.x 2+y3=0C.x 2+y 3=1D.x 2-y 3=1 【解析】 由截距式,得所求直线的方程为x 2+y3=1.【答案】 C2.下列语句中正确的是( )A .经过定点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P (x 1,y 1),Q (x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示C .不经过原点的直线都可以用方程x a +yb =1表示D .经过定点的直线都可以用y =kx +b 表示【解析】 A 不正确,该方程无法表示x =x 0这条直线;C 不正确,该方程无法表示与坐标轴平行的直线;D 不正确,该方程无法表示与x 轴垂直的直线,B 正确.【答案】 B3.直线方程2x +3y +1=0化为斜截式为________;化为截距式为________. 【解析】 直线方程2x +3y +1=0化为斜截式为y =-23x -13.化为截距式为x -12+y-13=1.【答案】 y =-23x -13x-12+y-13=1 4.已知在△ABC 中,A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.【解】 (1)设点C (m ,n ),AC 中点M 在y 轴上,BC 的中点N 在x 轴上,由中点坐标公式得⎩⎨⎧m -12=0,n +32=0,解得⎩⎪⎨⎪⎧m =1,n =-3,∴C 点的坐标为(1,-3).(2)由(1)知:点M 、N 的坐标分别为M (0,-12)、N (52,0),由直线方程的截距式得直线MN 的方程是x 52+y-12=1,即2x -10y -5=0.一、选择题1.直线3x +y +6=0的斜率为k ,在y 轴上的截距为b ,则( ) A .k =3,b =6 B .k =-3,b =-6 C .k =-3,b =6 D .k =3,b =-6 【解析】 化为斜截式,得y =-3x -6, ∴k =-3,b =-6,故选B. 【答案】 B2.直线x 3+y4=1化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12【解析】 直线x 3+y4=1化成一般式方程为4x +3y -12=0.【答案】 C3.(2013·周口高一检测)已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x +2y =5 B .4x -2y =5 C .x +2y =5 D .x -2y =5【解析】 ∵A (1,2),B (3,1),∴线段AB 的中点坐标为(2,32).又k AB =1-23-1=-12,故线段AB 的垂直平分线方程为y -32=2(x -2),即4x -2y =5.【答案】 B4.(2013·威海高一检测)若直线ax +by +c =0经过第一、二、三象限,则( ) A .ab >0,bc >0 B .ab >0,bc <0 C .ab <0,bc >0 D .ab <0,bc <0【解析】 把直线ax +by +c =0化成斜截式得 y =-a b x -c b ,由题意可知⎩⎨⎧-ab >0,-cb >0,即ab <0且bc <0.【答案】 D5.(2013·德化高一检测)过点A (4,1)且在两坐标轴上截距相等的直线方程是( ) A .x +y =5 B .x -y =5C .x +y =5或x -4y =0D .x -y =5或x +4y =0【解析】 当直线过点(0,0)时,直线方程为y =14x ,即x -4y =0,当直线不过点(0,0)时,可设为x a +ya =1,把(4,1)代入,可解得a =5,∴直线方程为x +y =5.综上可知直线方程为x+y =5或x -4y =0.【答案】 C 二、填空题6.斜率为2,且经过点A (1,3)的直线的一般式方程为________. 【解析】 由点斜式得,所求直线方程为y -3=2(x -1), 整理得2x -y +1=0. 【答案】 2x -y +1=07.(2012·绵阳高一检测)直线y =23x -2与两坐标轴围成的三角形的面积是________.【解析】 令x =0,得y =-2;令y =0,得x =3.故直线y =23x -2与两坐标轴围成的三角形的面积是12×3×2=3.【答案】 38.在下列各种情况下,直线Ax +By +C =0(A ,B 不同时为零)的系数A ,B ,C 之间各有什么关系:(1)直线与x 轴平行时:________; (2)直线与y 轴平行时:________; (3)直线过原点时:________; (4)直线过点(1,-1)时:________.【解析】 ∵A ,B 不同时为零,故当A =0且B ≠0时(1)成立;当B =0且A ≠0时(2)成立;当C =0时(3)成立;当A -B +C =0时(4)成立.【答案】 (1)A =0且B ≠0 (2)B =0且A ≠0 (3)C =0且A ,B 不同时为0 (4)A -B +C =0三、解答题9.已知直线与x 轴、y 轴分别交于A ,B 两点且线段AB 的中点为P (4,1),求直线l 的方程.【解】 由题意可设A (x,0),B (0,y ),由中点坐标公式可得⎩⎨⎧x +02=4,0+y2=1,解得⎩⎪⎨⎪⎧x =8,y =2,∴A (8,0),B (0,2),由直线方程的截距式得l 方程为x 8+y2=1,即x +4y -8=0.10.设直线l :(m 2-2m -3)x +(2m 2+m -1)y -2m +6=0(m ≠-1),根据下列条件分别确定m 的值:(1)直线l 在x 轴上的截距为-3; (2)直线l 的斜率为1.【解】 (1)令y =0得x =2m -6m 2-2m -3(m 2-2m -3≠0),由题知,2m -6m 2-2m -3=-3,解得m =3(舍),m =-53.(2)∵直线l 的斜率为k =-m 2-2m -32m 2+m -1,∴-m 2-2m -32m 2+m -1=1,解得m =43.11.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)若直线l 不经过第二象限,求实数a 的取值范围.【解】 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为零,则当a =2时满足条件,此时方程为3x +y =0.当a =-1时,直线为平行于x 轴的直线,在x 轴上无截距,不合题意.当a ≠-1且a ≠2时,由a -2a +1=a -2,得a =0,则当a =0时,直线在x 轴、y 轴上的截距都为-2,此时方程为x +y +2=0.综上所述,当a =2或a =0时,直线l 在两坐标轴上的截距相等,此时方程为3x +y =0或x +y +2=0.(2)将直线l 的方程转化为y =-(a +1)x +a -2,则⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0,或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.解得a ≤-1.故a 的取值范围为(-∞,-1].求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线l 的方程.【思路探究】 要求直线方程,可结合题中的截距的绝对值相等来求,或求出直线的斜率获得直线方程.【自主解答】 法一 设直线在x 轴、y 轴上的截距分别为a ,b . ①当a ≠0,b ≠0时,设l 的方程为x a +yb =1.∵点(4,-3)在直线上,∴4a +-3b =1,若a =b ,则a =b =1,直线方程为x +y =1.若a =-b ,则a =7,b =-7,此时直线的方程为x -y =7. ②当a =b =0时,直线过原点,且过点(4,-3), ∴直线的方程为3x +4y =0.综上知,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0. 法二 设直线l 的方程为y +3=k (x -4), 令x =0,得y =-4k -3;令y =0,得x =4k +3k .又∵直线在两坐标轴上的截距的绝对值相等, ∴|-4k -3|=|4k +3k |,解得k =1或k =-1或k =-34.∴所求的直线方程为x -y -7=0或x +y -1=0或3x +4y =0.1.由于直线的截距式方程不能表示过原点的直线,因此法一首先考虑过原点的特殊情况,截距为0的直线很容易被遗忘,应引起重视.2.求直线在坐标轴上的截距的方法是:令x =0,所得y 值是在y 轴上的截距,令y =0,所得x 值是在x 轴上的截距.求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程.【解】 当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意.此时,直线的斜率为12,所以直线方程为x -2y =0.当直线不过原点时,由题意可设直线方程为x a +y b =1,过点A ,∴4a +2b =1.①∵直线在两坐标轴上的截距的绝对值相等,所以 |a |=|b |.②由①②联立方程组,解得⎩⎪⎨⎪⎧ a =6,b =6或⎩⎪⎨⎪⎧a =2,b =-2,∴所求直线的方程为x 6+y 6=1或x 2+y-2=1,化简即得直线l 的方程为x +y =6或x -y =2.综上,直线方程为x -2y =0或x +y -6=0或x -y -2=0.。

高中数学 必修二 3.2.3 直线的一般式方程教案 新人教A版必修2

高中数学  必修二   3.2.3 直线的一般式方程教案 新人教A版必修2

3.2.3 直线的一般式方程(一)导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题.思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77y x +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式.(二)推进新课、新知探究、提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线? ③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化?④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化? ⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零.结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-BC ,这就是直线的斜截式方程,它表示斜率为-BA ,在y 轴上的截距为-BC 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-A C ,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式.注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下: 0轴上的截距 例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6).化成一般式,得4x+3y-12=0.变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线?(2)系数满足什么关系时,与坐标轴都相交?(3)系数满足什么条件时,只与x 轴相交?(4)系数满足什么条件时,是x 轴?(5)设P(x 0,y 0)为直线Ax+By+C=0上一点,证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0.答案:(1)C=0;(2)A≠0且B≠0;(3)B=0且C≠0;(4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上,∴Ax 0+By 0+C+0,C=-Ax 0-By 0.∴A(x -x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________.答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ①移项,去系数得斜截式y=2x +3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6.即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”.变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程.答案:x+3y-3=0或x+2y=0.(四)知能训练课本本节练习1、2、3.(五)拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系.解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点.(六)课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系;(2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式;(3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练.(七)作业习题3.2 A 组11.。

新人教A版必修2.3.2.3直线的一般式方程教案

新人教A版必修2.3.2.3直线的一般式方程教案

课题:2.3.2.3直线的一般式方程
课型:新授课
教学目标:
1、知识与技能
(1)明确直线方程一般式的形式特征;
(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;
(3)会把直线方程的点斜式、两点式化为一般式。

2、过程与方法:学会用分类讨论的思想方法解决问题。

3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。

教学重点:直线方程的一般式。

教学难点:对直线方程一般式的理解与应用
归纳小结:
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。

(2)比较各种直线方程的形式特点和适用范围。

(3)求直线方程应具有多少个条件?(4)学习本节用到了哪些数学思想方法?作业布置:第101页习题3.2第10,11题课后记:。

2019年高中数学第三章直线与方程3.2.3直线的一般式方程课时作业(含解析)新人教A版必修2

2019年高中数学第三章直线与方程3.2.3直线的一般式方程课时作业(含解析)新人教A版必修2

3.2.3 直线的一般式方程1.直线2x+5y-10=0在x轴,y轴上的截距分别为a,b,则( B )(A)a=2,b=5 (B)a=5,b=2(C)a=-2,b=5 (D)a=-5,b=22.已知直线l的方程为x-y+2=0,则直线l的倾斜角为( A )(A)30° (B)45° (C)60° (D)150°解析:设直线l的倾斜角为θ,则tan θ=,则θ=30°.3.已知直线l1:ax-y+2a=0,l2:(2a-1)x+ay=0互相垂直,则a的值是( C )(A)0 (B)1(C)0或1 (D)0或-1解析:因为直线l1:ax-y+2a=0,l2:(2a-1)x+ay=0互相垂直,所以(2a-1)a+a(-1)=0,解得a=0或a=1.4.直线x+ay-7=0与直线(a+1)x+2y-14=0互相平行,则a的值是( B )(A)1 (B)-2(C)1或-2 (D)-1或2解析:由题1×2-a(a+1)=0,所以a2+a-2=0,所以a=-2或a=1,当a=-2时,直线x-2y-7=0与直线-x+2y-14=0互相平行;当a=1时,直线x+y-7=0与直线2x+2y-14=0重合,不满足题意;故a=-2.5.已知m≠0,则过点(1,-1)的直线ax+3my+2a=0的斜率为( D )(A)3 (B)-3(C)(D)-解析:由题意,得a-3m+2a=0,所以a=m,又因为m≠0,所以直线ax+3my+2a=0的斜率k=-=-.故选D.6.若直线Ax+By+C=0(A2+B2≠0)经过第一、二、三象限,则系数A,B,C满足的条件为( B )(A)A,B,C同号(B)AC>0,BC<0(C)AC<0,BC>0 (D)AB>0,AC<0解析:如图所示,若直线经过第一、二、三象限,应有所以A·B<0且B·C<0,A,B异号,B,C异号,从而A,C同号.选项B符合要求.7.直线l1:ax-y+b=0,l2:bx+y-a=0(ab≠0)的图象只可能是如图中的( B )解析:直线l1:y=ax+b,斜率为a,在y轴截距为b.直线l2:y=-bx+a,斜率为-b,在y轴截距为a.图中A选项:l1中a>0,b<0,则应有l2的斜率-b>0,不合适.B选项:l1中a>0,b<0,则应有l2中斜率-b>0,截距a>0,合适.类似可知C,D不合适,选B.8.已知点P(a,b)和点Q(b-1,a+1)是关于直线l对称的两点,则直线l的方程为( C )(A)x+y=0 (B)x-y=0(C)x-y+1=0 (D)x+y-1=0解析:因为点P(a,b)与Q(b-1,a+1)(a≠b-1)关于直线l对称,所以直线l为线段PQ的中垂线,PQ的中点为(,),PQ的斜率为=-1,所以直线l的斜率为1,即直线l的方程为y-=x-,化简可得 x-y+1=0.9.经过点(3,2)且与直线4x+y-2=0平行的直线方程是.解:设与直线4x+y-2=0平行的直线为4x+y+c=0,该直线过点(3,2),故有12+2+c=0,所以c=-14,所以该直线方程是4x+y-14=0.答案:4x+y-14=010.过点(-1,3),且与直线l:3x+4y-12=0垂直的直线l′的方程为.解析:设l′方程为4x-3y+n=0.将(-1,3)代入上式得n=13.则l′的方程为4x-3y+13=0.答案:4x-3y+13=011.若直线(2t-3)x+y+6=0不经过第一象限,则t的取值范围为.解析:方程可化为y=(3-2t)x-6,因为直线不经过第一象限,所以3-2t≤0,得t≥.。

高中数学《直线的方程》教案新人教A版必修

高中数学《直线的方程》教案新人教A版必修

直线方程的一般形式一、教学目标(一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点.二、教材分析1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多个二元一次方程是同解方程.三、活动设计分析、启发、讲练结合.四、教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。

它们都是二元一次方程.我们问:直线的方程都可以写成二元一次方程吗?反过来,二元一次方程都表示直线吗?(二)直线方程的一般形式我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:y=kx+b当α=90°时,它的方程可以写成x=x0的形式.由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.反过来,对于x、y的一次方程的一般形式Ax+By+C=0.(1)其中A、B不同时为零.(1)当B≠0时,方程(1)可化为这里,我们借用了前一课y=kx+b表示直线的结论,不弄清这一点,会感到上面的论证不知所云.(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为它表示一条与y轴平行的直线.这样,我们又有:关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0这个方程(其中A、B不全为零)叫做直线方程的一般式.引导学生思考:直线与二元一次方程的对应是什么样的对应?直线与二元一次方程是一对多的,同一条直线对应的多个二元一次方程是同解方程.(三)例题解:直线的点斜式是化成一般式得4x+3y-12=0.把常数次移到等号右边,再把方程两边都除以12,就得到截距式讲解这个例题时,要顺便解决好下面几个问题:(1)直线的点斜式、两点式方程由于给出的点可以是直线上的任意点,因此是不唯一的,一般不作为最后结果保留,须进一步化简;(2)直线方程的一般式也是不唯一的,因为方程的两边同乘以一个非零常数后得到的方程与原方程同解,一般方程可作为最终结果保留,但须化为各系数既无公约数也不是分数;(3)直线方程的斜截式与截距式如果存在的话是唯一的,如无特别要求,可作为最终结果保留.例2 把直线l的方程x-2y+6=0化成斜截式,求出直线l的斜率和在x轴与y轴上的截距,并画图.解:将原方程移项,得2y=x+6,两边除以2得斜截式:x=-6根据直线过点A(-6,0)、B(0,3),在平面内作出这两点连直线就是所要作的图形(图1-28).本例题由学生完成,老师讲清下面的问题:二元一次方程的图形是直线,一条直线可由其方向和它上面的一点确定,也可由直线上的两点确定,利用前一点作图比较麻烦,通常我们是找出直线在两轴上的截距,然后在两轴上找出相应的点连线.例3 证明:三点A(1,3)、B(5,7)、C(10,12)在同一条直线上.证法一直线AB的方程是:化简得 y=x+2.将点C的坐标代入上面的方程,等式成立.∴A、B、C三点共线.∴A、B、C三点共线.∵|AB|+|BC|=|AC|,∴A、C、C三点共线.讲解本例题可开拓学生思路,培养学生灵活运用知识解决问题的能力.例4 直线x+2y-10=0与过A(1,3)、 B(5,2)的直线相交于C,此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一些.如果先用定比分点公式设出点C的坐标(即满足点C 在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多.代入x+2y-10=0有:解之得λ=-3.(四)课后小结(1)归纳直线方程的五种形式及其特点.(2)例4一般化:求过两点的直线与已知直线(或由线)的交点分以这两点为端点的有向线段所成定比时,可用定比分点公式设出交点的坐标,代入已知直线(或曲线)求得.五、布置作业1.(1.6练习第1题)由下列条件,写出直线的方程,并化成一般式:(2)经过点B(4,2),平行于x轴;(5)经过两点P1(3,-2)、P2(5,-4);(6)x轴上的截距是-7,倾斜角是45°.解:(1)x+2y-4=0; (2)y-2=0; (3)2x+1=0;(4)2x-y-3=0; (5)x+y-1=0; (6)x-y+7=0.3.(习题二第8题)一条直线和y轴相交于点P(0,2),它的倾斜角4.(习题二第十三题)求过点P(2,3),并且在两轴上的截距相等的直线方程.5.(习题二第16题)设点P(x0,y0)在直线As+By+C=0上,求证:这条直线的方程可以写成A(x-x0)+B(y-y0)=0.证明:将点P(x0,y0)的坐标代入有C=-Ax0-By0,将C代入Ax+By+C=0即有A(x-x0)+B(y-y0)=0.6.过A(x1,y1)、B(x2,y2)的直线交直线l:Ax+By+C=0于C,六、板书设计[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。

2020-2021学年高中数学人教A版必修二第三章3.2.3《直线的一般式方程》同步教学设计

2020-2021学年高中数学人教A版必修二第三章3.2.3《直线的一般式方程》同步教学设计

教 学 设 计3.2.3 直线的一般式方程一、教学目标:1、知识与技能:⑴掌握直线方程的一般式Ax+By+C=0的特征(A 、B 不同时为0);⑵能将直线方程的五种形式进行转化,并明确各种形式中的一些几何量(斜率、截距等)。

2、过程与方法:⑴主动参与探究直线和二元一次方程关系的数学活动,通过观察、推理、探究获得直线方程的一般式;⑵学会应用分类讨论的数学思想讨论问题。

3、情感、态度与价值观:体验数学发现和探索的历程,发展创新意识。

二、任务分析:1、重点:直线方程一般式Ax+By+C=0(A 、B 不同时为0)的理解;2、难点:⑴直线方程一般式Ax+By+C=0(A 、B 不同时为0)与二元一次方程关系的深入理解; ⑵直线方程一般式Ax+By+C=0(A 、B 不同时为0)的应用; 3、突破点:直线方程形式的相互转化。

三、教学方法:学案教学,引导探究法、讨论法; 四、教具: 多媒体 五、教学过程:(一)复习创设情境,引入新课: 1、练习: (课堂小测)根据下列条件,写出直线方程。

(1)经过点()2,8-A ,斜率是21-;(2)斜率为2,在y 轴上截距是2-; (3)经过点()2,31-P ,()4,52-P ; (4)在x 轴上,y 轴上的截距分别是23,3-; (5)经过点()2,4B ,平行于x 轴; (6)经过点()1,8C -,且倾斜角为90︒.答案:(1)()8212--=+x y ;(2)2y x =-;(3)2322-=-+x y ;(4)1323=-+yx ;(5)2y =;(6)1x =- 2、提问:上述直线的方程是用的什么形式的方程?为什么用这种形式的方程?(使1、 思考直线和二元一次方程的关系:问题(1):上述直线方程可否整理成形如0=++C By Ax 的形式? 学生动手整理问题(2):平面内任意一条直线是否都可以用形如0=++C By Ax (A 、B 不同时为0)的二元一次方程来表示? 分析:在平面直角坐标系中,每一条直线在斜率k 存在和k 不存在两种情况下,直线方程可分别写为b kx y +=和1x x =两种形式,它们又都可以变形为0=++C By Ax (A 、B 不同时为0)的形式。

高中数学 第三章 直线与方程 3.2.3 直线的一般式方程学案(含解析)新人教A版必修2(2021

高中数学 第三章 直线与方程 3.2.3 直线的一般式方程学案(含解析)新人教A版必修2(2021

山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2的全部内容。

3.2.3 直线的一般式方程学习目标1。

掌握直线的一般式方程;2.理解关于x,y的二元一次方程Ax+By+C=0(A,B 不同时为0)都表示直线;3。

会进行直线方程的五种形式之间的转化.知识点一直线的一般式方程思考1 直线的点斜式、斜截式、两点式、截距式这四种形式都能用Ax+By+C=0(A,B不同时为0)来表示吗?答案能.思考2 关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)一定表示直线吗?答案一定.思考3 当B≠0时,方程Ax+By+C=0(A,B不同时为0)表示怎样的直线?B=0呢?答案当B≠0时,由Ax+By+C=0得,y=-错误!x-错误!,所以该方程表示斜率为-错误!,在y轴上截距为-错误!的直线;当B=0时,A≠0,由Ax+By+C=0得x=-错误!,所以该方程表示一条垂直于x轴的直线.形式Ax+By+C=0条件A,B不同时为0知识点二直线的一般式与点斜式、斜截式、两点式、截距式的关系类型一直线一般式的性质例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________。

直线的一般式方程教案-数学必修2第三章直线方程3.2.2第一课时人教A版

直线的一般式方程教案-数学必修2第三章直线方程3.2.2第一课时人教A版

第三章 直线方程 3.2.3 直线的一般式方程1 教学目标[1] 明确理解直线一般式方程的形式特征 [2] 理解直线方程几种形式之间的内在联系[3] 能在总体把握直线方程的基础上,掌握各种形式之间的相互转化[4] 通过直线方程一般式的学习,培养学生全面、系统、周密地分类讨论问题的能力 培养学生数学结合思想和严谨的科学态度2教学重点/难点教学重点:直线方程一般式的理解和掌握教学难点:直线方程的一般式与各种直线方程间的互化3专家建议直线方程的一般式是由前面所学习的四种直线方程的形式概括形成的,它克服以点斜式、斜截式、两点式、截距式四种方程“特殊式”的局限性,由于直线方程的一般式)(0不全为零、其中B A c By Ax =++是关于x 、 y 的二元一次方程,因此平面上的直线与二元一次方程)(0不全为零、其中B A c By Ax =++是一一对应的。

直线的各种方程各有各的特点,分别适用于不同条件下的直线,因此教学时要引导同学熟练掌握各自特性,灵活使用。

4 教学方法讲授式、启发式教学5 教学过程5.1 复习引入【师】到目前为止,我们都学习了直线方程的哪几种形式?它们各适用于具有什么条件的求直线方程问题?适用的X 围是什么? 【板演/PPT 】引导学生回答各种直线方程点斜式:已知直线上一点P 1(x 1,y 1)的坐标,和直线的斜率k ,则直线的方程是斜截式:已知直线的斜率k ,和直线在y 轴上的截距b 则直线方程是两点式:已知直线上两点P 1(x 1,y 1),P 2(x 2,y 2)则直线的方程是:截距式:已知直线在X 轴Y 轴上的截距为a ,b ,则直线的方程是【师】他们所适用的X 围是什么? 【生】点斜式:适用于有斜率的直线问题 斜截式:适合存在斜率且已知纵截距的直线问题 两点式:适合已知两点,且不垂直于x 轴或y 轴直线问题)(11x x k y y -=-bkx y +=121121x x x x y y y y --=--1=+by a x截距式:适合已知截距,且截距不为零的直线问题5.2 探索新知 [1] 直线的一般式方程【师】下面我们看一看屏幕上的问题: 【板书/PPT 】1.过点(2,1),斜率为2的直线的方程____________ 2.过点(2,1),斜率为0的直线方程是___________ 3.过点(2,1),斜率不存在的直线的方程_________【师】你能根据实际条件,写出直线方程吗?并思考:你所列出的直线方程能看作是二元一次方程吗?【生】讨论与计算 【板书/PPT 】(1)中方程可化为2x-y-3=0,故直线方程是二元一次方程。

高中数学必修二-3.2.3直线的一般式方程学案

高中数学必修二-3.2.3直线的一般式方程学案

顺德区容山中学__高二__年级__数学_学科活力课堂导学案课题§3.2.3直线的一般方程设计者:__杨时香黄宗勤_审核者:__叶建华 _日期:___10月22日____学习目标:1.会求二元一次方程组的解;2.掌握判断两条直线相交的方法,会通过解方程组求两条直线的交点坐标;3.了解过两条直线交点的直线系方程的问题;4.理解平面内两点间距离公式公式的推导过程;5.掌握两点间距离公式及其简单应用。

学习重点:求两条直线的交点坐标及掌握两点间距离公式应用学习难点:过两条直线交点的直线系方程第一部分:个体自学(预习教材P102~ P106,找出疑惑之处)复习1:⑴已知直线经过原点和点(0,4),则直线的方程.⑵在x轴上截距为1-,在y轴上的截距为3的直线方程.⑶已知点(1,2),(3,1)A B,则线段AB的垂直平分线方程是. 复习2:平面直角坐标系中的每一条直线都可以用一个关于,x y的二元一次方程表示吗?第二部分:合作探究新知:关于,x y的二元一次方程0Ax By C++=(A,B不同时为0)叫做直线的一般式方程,简称一般式.注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题2:在方程0Ax By C++=中,,,A B C为何值时,方程表示的直线⑴平行于x轴;⑵平行于y轴;⑶与x轴重合;⑷与y重合.第三部分:展示分享例1 已知直线经过点(6,4)A-,斜率为12,求直线的点斜式和一般式方程.例2 把直线l的一般式方程260x y-+=化成斜截式,求出直线l的斜率以及它在x轴与y 轴上的截距,并画出图形.练习1.根据下列各条件写出直线的方程,并且化成一般式:⑴经过点(8,2)A -, 斜率是12-; ⑵ 经过点(4,2)B ,平行于x 轴;⑶经过两点12(3,2),(5,4)P P --;⑷.在x 轴和y 轴上的截距分别是3,32-。

高中数学第三章3.2.2直线的两点式方程3.2.3直线的一般式方程学案含解析新人教A版必修0

高中数学第三章3.2.2直线的两点式方程3.2.3直线的一般式方程学案含解析新人教A版必修0

3.2.2 & 3.2.3 直线的两点式方程直线的一般式方程两点式、截距式[提出问题]某区商业中心O有通往东、西、南、北的四条大街,某公园位于东大街北侧、北大街东P处,如图所示.公园到东大街、北大街的垂直距离分别为1 km和4 km.现在要在公园前修建一条直线大道分别与东大街、北大街交汇于A,B两处,并使区商业中心O到A,B两处的距离之和最短.问题1:在上述问题中,实际上解题关键是确定直线AB,那么直线AB的方程确定后,点A,B能否确定?提示:可以确定.问题2:根据上图知建立平面坐标系后,A,B两点的坐标值相当于在x轴、y轴上的什么量?提示:在x轴、y轴上的截距.问题3:那么若已知直线在坐标轴的截距可以确定直线方程吗?提示:可以.[导入新知]直线的两点式与截距式方程两点式截距式条件P1(x1,y1)和P2(x2,y2),其中x1≠x2,y1≠y2在x轴上截距a,在y轴上截距b图形方程y-y1y2-y1=x-x1x2-x1xa+yb=1适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线1.要注意方程y -y 1y 2-y 1=x -x 1x 2-x 1和方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)形式不同,适用范围也不同.前者为分式形式方程,形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式方程,适用于过任何两点的直线方程.2.直线方程的截距式为x a +yb=1,x 项对应的分母是直线在x 轴上的截距,y 项对应的分母是直线在y 轴上的截距,中间以“+”相连,等式的另一端是1,由方程可以直接读出直线在两轴上的截距,如x 3-y 4=1,x 3+y4=-1就不是直线的截距式方程.直线方程的一般式[提出问题]观察下列直线方程: 直线l 1:y -2=3(x -1); 直线l 2:y =3x +2;直线l 3:y -23-2=x -14-1;直线l 4:x 4+y3=1.问题1:上述直线方程的形式分别是什么? 提示:点斜式、斜截式、两点式、截距式.问题2:上述形式的直线方程能化成二元一次方程Ax +By +C =0的形式吗? 提示:能.问题3:二元一次方程Ax +By +C =0都能表示直线吗? 提示:能. [导入新知]1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 2.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.[化解疑难]1.求直线的一般式方程的策略(1)当A ≠0时,方程可化为x+BA y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A Bx +y+C B =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程. (2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.2.直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -C B.(2)一般式化为截距式的步骤①把常数项移到方程右边,得Ax +By =-C ; ②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B=1.由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不唯一,因此,通常情况下,一般式不化为两点式和点斜式.利用两点式求直线方程[例1] 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程. [解] 由两点式,直线AB 所在直线方程为y --10--1=x -3-1-3,即x +4y +1=0. 同理,直线BC 所在直线方程为y -3-1-3=x -13-1,即2x +y -5=0.直线AC 所在直线方程为y -30-3=x -1-1-1,即3x -2y +3=0. [类题通法]求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.[活学活用]1.已知直线经过点A (-3,-1)和点B (3,7),则它在y 轴上的截距是________. 答案:32.若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________. 答案:- 2直线的截距式方程及应用[例2] 直线l 过点P ⎝ ⎛⎭⎪3,2,且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程. [解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12.又因为直线l 过点P ⎝ ⎛⎭⎪⎫43,2,所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎨⎧a 1=4,b 1=3或⎩⎪⎨⎪⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0或15x +8y -36=0.(2)设直线l 的方程为x a +y b=1(a >0,b >0), 由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎨⎧ a 1=4,b 1=3或⎩⎨⎧a 2=2,b 2=6,所以直线l 的方程为3x +4y -12=0或3x +y -6=0. [类题通法]用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.(3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.[活学活用]求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a ,b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +y b=1.∵直线过点(-2,2),代入直线方程得-2a +2b=1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解; 当2a 2a +2=2时,化简得a 2-a -2=0,解得⎩⎨⎧ a =-1,b =-2,或⎩⎨⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.直线方程的一般式应用[例3] (1)12m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0,①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2,∴m 的值为2或-3. (2)法一:由题意,l 1⊥l 2, ①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-a +21-a ·⎝ ⎛⎭⎪⎫-a -12a +3=-1,所以a =-1. 综上可知,当a =1或a =-1时,l 1⊥l 2. 法二:由l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. [类题通法]1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0. (1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.[活学活用](1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1,∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.3.探究直线在坐标轴上的截距问题[典例] 求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程.[解] 当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意.此时,直线的斜率为12,所以直线方程为y =12x . 当直线不过原点时,由题意可设直线方程为x a +y b=1,又过点A ,所以4a +2b=1①.因为直线在两坐标轴上的截距的绝对值相等,所以|a |=|b |②.由①②联立方程组,解得⎩⎨⎧a =6,b =6,或⎩⎨⎧a =2,b =-2.所以所求直线的方程为x 6+y 6=1或x2+y-2=1, 化简得直线l 的方程为x +y =6或x -y =2. 综上,直线l 的方程为y =12x 或x +y =6或x -y =2.[多维探究] 1.截距相等问题求过点A (4,2)且在两坐标轴上截距相等的直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x a +ya=1,又过A (4,2), ∴a =6,∴方程为x +y -6=0.综上,直线方程为y =12x 或x +y -6=0.2.截距和为零问题求过点A (4,2)且在两坐标轴上截距互为相反数的直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x a -ya=1.又过A (4,2),∴4-2a=1,即a =2,∴x -y =2.综上,直线l 的方程为y =12x 或x -y =2.3.截距成倍数问题求过点A (4,2)且在x 轴上截距是在y 轴上截距的3倍,求直线l 的方程.解:①当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x .②当直线不过原点时,由题意可设直线方程为x 3a +y a =1,又直线过A (4,2),所以43a +2a=1,解得a =103,方程为x +3y -10=0.综上,所求直线方程为y =12x 或x +3y -10=0.4.截距和是定数问题求过点A (4,2)且在两坐标轴上截距之和为12的直线l 的方程.解:设直线l 的方程为x a +yb=1,由题意得⎩⎨⎧4a +2b=1,a +b =12.∴4b +2a =ab ,即4(12-a )+2a =a (12-a ), ∴a 2-14a +48=0,解得a =6或a =8.因此⎩⎨⎧ a =6,b =6,或⎩⎨⎧a =8,b =4.∴所求直线l 的方程为x +y -6=0或x +2y -8=0. [方法感悟]如果题目中出现直线在两坐标轴上的“截距相等”“截距的绝对值相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,可采用截距式求直线方程,但一定要注意考虑“零截距”的情况.[随堂即时演练]1.直线x 3-y4=1在两坐标轴上的截距之和为( ) A .1 B .-1 C .7 D .-7答案:B2.直线5x -2y -10=0在x 轴上的截距为a ,在y 轴上的截距为b ,则有( ) A .a =2,b =5 B .a =2,b =-5 C .a =-2,b =5 D .a =-2,b =-5 答案:B3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________.答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:直线AB 的方程为8x +3y +15=0,直线AC 的方程为5x -2y -10=0.[课时达标检测]一、选择题1.平面直角坐标系中,直线x +3y +2=0的斜率为( )A.33 B .-33C. 3 D .- 3答案:B2.直线ax +by =1(a ,b 均不为0)与两坐标轴围成的三角形的面积为( )A.12ab B.12|ab |C.12ab D.12|ab |答案:D3.已知直线ax +by +c =0的图象如图,则( )A .若c >0,则a >0,b >0B .若c >0,则a <0,b >0C .若c <0,则a >0,b <0D .若c <0,则a >0,b >0答案:D4.已知直线l :Ax +By +C =0(A ,B 不同时为0),点P (x 0,y 0)在l 上,则l 的方程可化为()A .A (x +x 0)+B (y +y 0)+C =0B .A (x +x 0)+B (y +y 0)=0C .A (x -x 0)+B (y -y 0)+C =0D .A (x -x 0)+B (y -y 0)=0答案:D5.若直线x +2ay -1=0与(a -1)x -ay +1=0平行,则a 的值为( )A.12B.12或0 C .0D .-2 答案:A二、填空题6.若直线l 1:ax +(1-a )y =3与l 2:(a -1)x +(2a +3)y =2互相垂直,则实数a =________. 答案:1或-37.垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.答案:3或-38.过点P (2,-1),在x 轴、y 轴上的截距分别为a ,b ,且满足a =3b 的直线方程为____________.答案:x +3y +1=0或x +2y =0三、解答题9.已知在△ABC 中,点A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求直线MN 的方程.解:(1)设点C (m ,n ),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,由中点坐标公式得⎩⎪⎨⎪⎧ m -12=0,n +32=0,解得⎩⎨⎧m =1,n =-3.∴点C 的坐标为(1,-3).(2)由(1)知,点M ,N 的坐标分别为M 0,-12,N 52,0, 由直线方程的截距式,得直线MN 的方程是x 52+y-12=1,即y =15x -12.10.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.解:(1)当a =-1时,直线l 的方程为y +3=0,不符合题意; 当a ≠-1时,直线l 在x 轴上的截距为a -2a +1,在y 轴上的截距为a -2,因为l 在两坐标轴上的截距相等,所以a -2a +1=a -2,解得a =2或a =0, 所以直线l 的方程为3x +y =0或x +y +2=0.(2)将直线l 的方程化为y =-(a +1)x +a -2,所以⎩⎨⎧ -a +1>0,a -2≤0或⎩⎨⎧-a +1=0,a -2≤0,解得a ≤-1.综上所述,实数a 的取值范围是{a |a ≤-1}.。

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

3.2.3 直线的一般式方程整体设计教学分析直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.直线方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形式.掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础.根据教材分析直线方程的一般式是本节课的重点,但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于x和y的一次方程的对应关系确定为“了解”层次.两点可以确定一条直线,给出一点和直线的方向也可以确定一条直线,由两个独立条件选用恰当形式求出直线方程后,均应统一到一般式.直线的一般式方程中系数A、B、C的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化.引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数A、B、C的几何意义时,渗透数形结合的数学思想.三维目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.课时安排1课时教学过程导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77yx +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式. 推进新课 新知探究 提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-BA,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-AC,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x-x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”. 变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程. 答案:x+3y-3=0或x+2y=0. 知能训练课本本节练习1、2、3. 拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系. 解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点. 课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系; (2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式; (3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练. 作业习题3.2 A 组11.。

高中数学 3.2.3直线的一般式方程教案 新人教A版必修2

高中数学 3.2.3直线的一般式方程教案 新人教A版必修2

3.2.3 直线的一般式方程(一)教学目标1.知识与技能(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式.2.过程与方法学会用分类讨论的思想方法解决问题.3.情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题.(二)教学重点、难点:1.重点:直线方程的一般式;2.难点:对直线方程一般式的理解与应用.例1 已知直线mx + ny + 12 = 0在x 轴,y 轴上的截距分别是–3和4,求m ,n . 解法一:将方程mx + ny + 12 = 0化为截距式得:11212y x m n+=--, 123,124mn-⎧=-⎪⎧⎪⎨⎨-⎩⎪=⎪⎩m =4因此有解之得:n=-3 解法二:由截距意义知,直线经过A (–3,0)和B (0,4)两点,(3)01204041203m n m m n n ⋅-+⋅+==⎧⎧⎨⎨⋅+⋅+==-⎩⎩因此有所以例2 已知A (2,2)和直线l :3x + 4y – 20 = 0求:(1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程 【解析】(1)将与l 平行的直线方程设为3x + 4y + C 1 = 0,又过A (2,2), 所以3×2 + 4×2 + C 1 = 0,所以C 1 = –14.所求直线方程为:3x + 4y – 14 = 0.(2)将与l 垂直的直线方程设为4x – 3y + C 2 = 0,又过A (2,2), 所以 3×2 + 4×2 + C 2 = 0 ,所以C 2 = –2 所求直线方程为:4 – 3 – 2 = 0.例3 设直线l 的方程为(m 2 – 2m – 3)x + (2m 2 + m – 1)y = 2m – 6,根据下列条件分别确定实数m 的值.(1)l 在x 轴上的截距为–3; (2)斜率为1. 【解析】(1)令y = 0,依题意,得:2223026323m m m m m ⎧--≠⎪⎨-=-⎪--⎩ 由①得:m ≠3,且m ≠–1,由②得:3m 2 – 4m – 15 = 0, 解得m = 3或53m =-,所以综合得53m =-.由题意得:222210(23)121m m m m m m ⎧+-≠⎪⎨---=⎪+-⎩ 由③得:m ≠–1且m ≠12, 由④得:m = –1或43,所以43m =① ② ③ ④。

2020版人教A数学必修2:3.2.3 直线的一般式方程

2020版人教A数学必修2:3.2.3 直线的一般式方程
2m 2 m 1 0, 25m 8 8m 1 0.
解得 m=-3.
(2)设l1与x轴交于点A,l2经过定点B,求线段AB的垂直平分线的一般式 方程.
解:(2)l1 与 x 轴交于点 A(-4,0),由 l2 的方程化为:m(x+y-5)+(x+2y-8)=0,
解:(1)由(3+m)(5+m)-8=0,解得m=-1或-7.
经过验证可得:
m=-1时,两条直线重合,舍去.
所以m=-7.
(2)由- 3 m ×(- 2 )=-1,解得 m=- 13 .
4
5m
3
[备用例2] 1.已知直线l1:2x+y+8=0,l2:(m+1)x+(m+2)y-5m-8=0,m∈R. (1)若两直线平行,求实数m的值; 解:(1)两直线平行,可得
5 即 4x-5y+1=0.
课堂达标
1.下列四个结论中正确的是( B ) (A)经过定点 P1(x1,y1)的直线都可以用方程 y-y1=k(x-x1)表示 (B)经过任意不同两点 P1(x1,y1),P2(x2,y2)的直线都可以用方程(x2-x1)(y-y1) =(y2-y1)(x-x1)表示 (C)不过原点的直线都可以用方程 x + y =1 表示
方法技巧
(1)对于由直线的位置关系求参数的问题,有下列结论:设直线 l1 与 l2
的方程分别为 A1x+B1y+C1=0(A1,B1 不同时为 0),A2x+B2y+C2=0(A2,B2 不同
时为
0),则
l1∥l2⇔
A1B2

B1C2

高中数学3.2.3《直线一般式方程》导学案新人教A版必修2

高中数学3.2.3《直线一般式方程》导学案新人教A版必修2

3.2.3 《直线的一般式方程》导教案【学习目标】1、知识与技术:( 1)明确直线方程一般式的形式特色;(2)会把直线方程的一般式化为斜截式,从而求斜率和截距;( 3)会把直线方程的点斜式、两点式化为一般式。

2、过程与方法:学会用分类议论的思想方法解决问题。

3、感情态度与价值观:(1)认识事物之间的广泛联系与互相转变;(2)用联系的看法看问题。

【要点难点】1、要点:直线方程的一般式。

2、难点:对直线方程一般式的理解与应用。

【学法指导】注意逐字逐句认真审题,认真思虑、独立规范作答。

切记直线方程常有的几种形式,比较各样直线方程的形式特色和合用范围, 多复习记忆。

平行班达成教案的AB 类题目 .【知识链接】:点斜式方程:y y0k(x x0 )斜截式方程: y kx b 两点式:y y1x x1 (x1 x2 , y1 y2 )y2y1x2x1【学习过程】B 问题1( 1)平面直角坐标系中的每一条直线都能够用一个对于x, y 的二元一次方程表示吗?( 2 )每一个对于x, y的二元一次方程Ax By C 0(A,B不一样时为0)都表示一条直线吗?我们把对于对于x, y 的二元一次方程Ax By C0(A,B不一样时为0)叫做直线的一般式方程,简称一般式B 问题 2、直线方程的一般式与其余几种形式的直线方程对比,它有什么长处?C 问题 3、在方程Ax By C0 中,A,B,C为什么值时,方程表示的直线( 1)平行于x轴;( 2)平行于y 轴;(3)与 x 轴重合;(4)与 y 重合。

A 例 1 已知直线经过点A( 6, -4 ),斜率为4,求直线的点斜式和一般式方程。

3A 例 2 把直线l的一般式方程x 2 y 60 化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形。

C问题4、二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?【基础达标】第99页 A 练习第1,2,3习题3 . 2 A 组1,10.小结(1)请学生写出直线方程常有的几种形式,并说明它们之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学《3.2.3直线的一般式方程》学案 新人教A 版必修2一.学习目标:根据确定直线位置的几何要素,探索并掌握直线方程的一般式,体会一般式与直线其它方程形式之间的关系.二.重点、难点:重点:难点:三.知识要点:1. 一般式(general form ):,注意A 、B 不同时为0. 直线一般式方程化为斜截式方程,表示斜率为,y 轴上截距为的直线.2 与直线平行的直线,可设所求方程为;与直线垂直的直线,可设所求方程为. 过点的直线可写为.经过点,且平行于直线l 的直线方程是;经过点,且垂直于直线l 的直线方程是.3. 已知直线的方程分别是:(不同时为0),(不同时为0),则两条直线的位置关系可以如下判别:(1); (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)与重合122112210,0A B A B AC A B ⇔-=-=; (4)与相交.如果时,则;与重合;与相交.四.自主探究例题精讲:【例1】已知直线:,:,问m 为何值时:(1); (2).解:(1)时,,则,解得m =0.(2)时,, 解得m =1.【例2】(1)求经过点且与直线平行的直线方程;(2)求经过点且与直线垂直的直线方程.解:(1)由题意得所求平行直线方程,化为一般式.(2) 由题意得所求垂直直线方程,化为一般式.【例3】已知直线l 的方程为3x+4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.分析:由两直线平行,所以斜率相等且为,再由点斜式求出所求直线的方程.解:直线l:3x+4y -12=0的斜率为,∵ 所求直线与已知直线平行, ∴所求直线的斜率为,又由于所求直线过点(-1,3),所以,所求直线的方程为:,即.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式而直接写出方程,即,再化简而得.【例4】直线方程的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.分析:由直线性质,考察相应图形,从斜率、截距等角度,分析系数的特征.解:(1)当A ≠0,B ≠0,直线与两条坐标轴都相交.(2)当A ≠0,B=0时,直线只与x 轴相交.(3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0,直线是x 轴所在直线.(5)当A ≠0,B =0,C =0时,直线是y 轴所在直线.点评:结合图形的几何性质,转化为方程形式所满足的代数形式. 对于直线的一般式方程,需要特别注意以上几种特殊位置时的方程形式.五.目标检测(一)基础达标1.如果直线的倾斜角为,则有关系式().A. B. C. D. 以上均不可能2.若,则直线必经过一个定点是().A. B. C. D.3.直线与两坐标轴围成的面积是().A. B. C. D.4.(xx京皖春)直线()x+y=3和直线x+()y=2的位置关系是().A. 相交不垂直B. 垂直C. 平行D. 重合5.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为,则m,n的值分别为().A. 4和3B. -4和3C. -4和-3D. 4和-36.若直线x+ay+2=0和2x+3y+1=0互相垂直,则a= .7.过两点(5,7)和(1,3)的直线一般式方程为;若点(,12)在此直线上,则=.(二)能力提高8.根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-,经过点A(8,-2);(2)经过点B(4,2),平行于轴;(3)在轴和轴上的截距分别是,-3;(4)经过两点(3,-2)、(5,-4).9.已知直线的方程分别是:(不同时为0),(不同时为0),且. 求证.(三)探究创新10.已知直线,,求m的值,使得:(1)l1和l2相交;(2)l1⊥l2;(3)l1//l2;(4)l1和l2重合.2019-2020年高中数学《3.2.4互斥事件》教案新人教版必修3【教学目标】1、用集合的观点理解互斥与对立事件;2、注意一题多解,和方法的灵活性。

【重点、难点】概率的加法公式及其应用.【温故而知新】1.互斥事件(1)定义:一次试验中不能同时发生的两个事件A与B称作互斥事件。

(2)公式:在一次试验中,如果两个事件A和B是互斥事件,则有2.对立事件(1)定义:在一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作对立事件,事件A的对立事件记为。

(2)性质:,即。

3.互斥事件、对立事件的判定方法(1)利用概念:①互斥事件不能同时发生;②对立事件首先是互斥事件,且必有一个要发生。

(2)利用集合观点来判断设事件A与B他们所含的结果组成的集合分别是A、B。

①若事件A与B互斥,即集合。

②若A与B对立,即集合,且。

③对互斥事件A与B的和也可理解为集合。

【预习自测】1.袋内装有大小相同的红球、黑球和白球各若干个,从中摸出一球,摸出红球的概率是0.3,摸出黑球的概率是0.6,则摸出白球的概率是. 0.12.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是( D )A.都不是一等品 B.恰有一件一等品C.至少有一件一等品 D.至多一件一等品3.一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球.从中任摸 1个小球.求:(1)摸出的是红球的概率;(2)摸出的是绿球的概率;(3)摸出的是黄球的概率;(4)摸出的是红球或绿球的概率;(5)你能找哪些是互斥事件吗,哪些互斥事件又是对立事件?解:(1);(2);(3);(4)【我的疑惑】二、课堂互动探究例1.(教材144页例8)班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等。

指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生。

将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目。

(1)为了取出2人来表演双人舞,连续抽取2张卡,求取出的2人不全是男生的概率。

3、为了取出2人分别独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片。

求:①独唱和朗诵由一个人表演的概率。

②取出的2人不全是男生的概率。

例2.(教材143例7)小明的自行车用的是密码锁,密码锁的四位数密码由4个数字2,4,6,8按一定顺序构成。

小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是多少?【我的收获】三、课后知能检测1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的事件是( C ) A.至少有1个白球和全是白球B.至少有1个白球和至少有1个红球C.恰有1个白球和恰有2个白球D.至少有1个红球和全是白球2.在大小相同的6个球中,2个是红球,4个是白球,若从中任意选取3个,则所选的3个球中至少有一个是红球的概率是 . 答案:3.如果从不包括大小王的52张扑克牌中随机抽取一张,计算下列事件的概率:(1)取到红色牌的概率是多少?(2)取到黑色的概率是多少?(3)这张牌牌面是5的倍数且是红色的概率是多少?解:(1);(2);(3)4.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,不放回地从中连续抽取2次,每次取出1球,求下列事件的概率:(1)第一次取出黑球,第二次取出白球;(2)取出的2球颜色不同;(3)取出的2球中至少有1个白球。

解:所有可能事件有:(白1,白2)(白1,黑1)(白1,黑2)(白2,白1)(白2,黑1)(白2,黑2)(黑1,白1)(黑1,白2)(黑1,黑2),(黑2,白1)(黑2,白2)(黑2,黑1),共含有12个(1); (2);(3)5.黄种人群中各种血型的人所占的比例如表所示:已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给 AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1); (2)0.366.在一次抽奖活动中,中奖者必须从一个箱子中取出一个数字来决定他获得什么奖品。

5种奖品的编号如下:(1)一次欧洲旅行;(2)一辆摩托车;(3)一套高保真音响;(4)一台数字电视;(5)一台微波炉。

(1)他获得去欧洲旅行的概率是多少?(2)他获得高保真音响或数字电视的概率是多少?(3)他不获得微波炉的概率是多少?解:(1)0.2;(2)0.4;(3)0.87.某人射击1次,命中7~10环的概率如表所示:(1)求射击1次,至少命中7环的概率;(2)求射击1次,命中不足7环的概率.解:(1);(2)8.袋中装有红球、黑球、黄球、绿球各若干个,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各式多少?解:从袋中任取一球,记事件摸到红球,摸到黑球,摸到黄秋,摸到绿球分别为A,B,C,D,则事件A,B,C,D 两两互斥。

则由题意有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=++=+=+32311)()()(125)()(125)()(D P C P B P D P C P C P B P 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===41)(61)(41)(D P C P B P。

相关文档
最新文档