《计量经济学》eviews实验报告多元线性回归模型

合集下载

计量经济学实验报告之多元回归

计量经济学实验报告之多元回归

X X X学院实验报告第 1 页(1)用eviews得到数据如下:建立回归模型:AHE=-6.631562+0.186713*CLFPRM+0.004974*UNRMR2=0.622402,F=11.53822,P=0.001094,T=(-2.093464)(4.419819)(0.238515)可知城市男性劳动参与率和城市男性失业率与真实的平均小时工资存在正相关关系。

经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加一个百分点,真实的平均小时工资增加0.186713美元,城市男性失业率每增加百分之一,真实的平均小时工资增加0.004974美元。

(2)用eviews得到数据如下:建立回归模型:AHE=10.60094-0.05345*CLFPRFR2=0.65384,F=28.33262,P=0.000085,T=(18.85195)(-5.32284)可知城市女性劳动参与率与真实的平均小时工资存在负相关关系。

经济意义:说明在其他条件保持不变的情况下,城市女性劳动参与率每增加一个百分点,真实的平均小时工资减少0.05345美元。

(3)用eviews得到数据如下:第 3 页建立回归模型:AHE=157.048-1.919573*CLFPRM-0.232917*UNRMR2=0.91981,F=80.29262,P=0.000,T=(11.69701)(-10.72079)(-2.635153)可知城市男性劳动参与率和城市男性失业率与当前平均小时工资存在显著的负相关关系。

经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加百分之一,当前平均小时工资减少1.919573美元,城市男性失业率每增加百分之一,当前平均小时工资减少0.232917美元。

(4)用eviews得到数据如下:建立回归模型:AHE=-23.92719+0.595155*CLFPRFR2=0.958337,F=345.0332,P=0.000,T=(-13.33538)(18.57507)可知城市女性劳动参与率与当前平均小时工资存在显著的正相关关系。

EViews计量经济学实验报告-多重共线性的诊断与修正的讨论

EViews计量经济学实验报告-多重共线性的诊断与修正的讨论

实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。

二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。

研究“农业的发展反而会减少财政收入”这个问题。

设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。

图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 1994 5218.1 9572.7 19480.7 2964.7 119850 29242.2 55043 19956242.2 12135.8 24950.6 3728.8 12112136748.2458211996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。

计量经济学多元线性回归、多重共线性、异方差实验报告讲解

计量经济学多元线性回归、多重共线性、异方差实验报告讲解

计量经济学实验报告多元线性回归、多重共线性、异方差实验报告一、研究目的和要求:随着经济的发展,人们生活水平的提高,旅游业已经成为中国社会新的经济增长点。

旅游产业是一个关联性很强的综合产业,一次完整的旅游活动包括吃、住、行、游、购、娱六大要素,旅游产业的发展可以直接或者间接推动第三产业、第二产业和第一产业的发展。

尤其是假日旅游,有力刺激了居民消费而拉动内需。

2012年,我国全年国内旅游人数达到30.0亿人次,同比增长13.6%,国内旅游收入2.3万亿元,同比增长19.1%。

旅游业的发展不仅对增加就业和扩大内需起到重要的推动作用,优化产业结构,而且可以增加国家外汇收入,促进国际收支平衡,加强国家、地区间的文化交流。

为了研究影响旅游景区收入增长的主要原因,分析旅游收入增长规律,需要建立计量经济模型。

影响旅游业发展的因素很多,但据分析主要因素可能有国内和国际两个方面,因此在进行旅游景区收入分析模型设定时,引入城镇居民可支配收入和旅游外汇收入为解释变量。

旅游业很大程度上受其产业本身的发展水平和从业人数影响,固定资产和从业人数体现了旅游产业发展规模的内在影响因素,因此引入旅游景区固定资产和旅游业从业人数作为解释变量。

因此选取我国31个省市地区的旅游业相关数据进行定量分析我国旅游业发展的影响因素。

二、模型设定根据以上的分析,建立以下模型Y=β0+β1X1+β2X2+β3X3+β4X4+Ut参数说明:Y ——旅游景区营业收入/万元X1——旅游业从业人员/人X2——旅游景区固定资产/万元X3——旅游外汇收入/万美元X4——城镇居民可支配收入/元收集到的数据如下(见表2.1):表2.1 2011年全国旅游景区营业收入及相关数据(按地区分)数据来源:1.中国统计年鉴2012,2.中国旅游年鉴2012。

三、参数估计利用Eviews6.0做多元线性回归分析步骤如下:1、创建工作文件双击Eviews6.0图标,进入其主页。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

Eviews多重共线性实验报告-V1

Eviews多重共线性实验报告-V1

Eviews多重共线性实验报告-V1本文主要将Eviews多重共线性实验报告进行整理,旨在帮助读者更好地理解和应用多重共线性实验结果。

1. 研究背景多重共线性是指在回归模型中,自变量之间存在高度相关的情况。

这种相关关系会导致模型的不稳定性,降低模型的解释能力和预测能力。

因此,在进行回归分析时,需要对多重共线性进行检测和处理。

2. 数据来源和处理本次实验所使用的数据来自某公司销售数据,共有18个自变量和1个因变量。

在进行回归分析之前,需要对数据进行预处理。

首先,我们通过观察变量间的相关系数矩阵来初步判断是否存在多重共线性。

如果存在高度相关的自变量,可以考虑通过主成分分析等方法来降维,减少变量间的冗余。

本实验中,我们发现变量间的相关性较小,因此没有进行降维操作。

3. 模型建立我们采用逐步回归的方法建立回归模型,并对模型的适配度和稳定性进行评估。

首先,我们使用全模型(包含所有自变量)进行回归分析,并得到如下统计结果:R-squared:0.7767Adj. R-squared:0.7152F-statistic:12.38(显著)通过观察模型的系数,我们发现存在一些变量的系数非常大,而一些变量的系数非常小甚至为0,这也是多重共线性的表现之一。

为了进一步检验模型的稳定性和解释能力,我们采用逐步回归的方法进行变量筛选。

在此过程中,我们设置的入模标准是F统计量显著,出模标准是T统计量显著或P值小于0.05。

最终,我们得到了一个包含4个自变量的最优模型,其统计结果如下:R-squared:0.7224Adj. R-squared:0.6812F-statistic:17.69(显著)通过观察模型的系数,我们发现所有自变量的系数都显著,且大小合理。

这说明通过逐步回归的方法,我们成功地排除了多重共线性的影响,建立了一个具有较好稳定性和解释能力的模型。

4. 结论和建议在本实验中,我们成功地应用了Eviews工具,通过逐步回归的方法检验和处理多重共线性,建立了一个较为稳定和解释能力强的回归模型。

计量经济学Eviews多重共线性实验报告记录

计量经济学Eviews多重共线性实验报告记录

计量经济学Eviews多重共线性实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验报告课程名称计量经济学实验项目名称多重共线性班级与班级代码专业任课教师学号:姓名:实验日期:2014 年05 月11日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

计量经济学实验报告一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。

二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。

三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。

四、预备知识:最小二乘法估计的原理、t检验、F检验、2R值。

五、实验步骤1、选择数据理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。

为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。

本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。

主要数据如下:1985~2007年统计数据年份能源消费国民总收入国内生产总值工业增加值建筑业增加值交通运输邮电增加值人均生活电力消费能源加工转换效率y X1 X2 X3 X4 X5 X6 X7 1985766829040.7 9016 3448.7 417.9 406.9 21.3 68.29 198680850 10274.4 10275.2 3967 525.7 475.6 23.2 68.32 198786632 12050.6 12058.6 4585.8 665.8 544.9 26.4 67.48 198892997 15036.8 15042.8 5777.2 810 661 31.2 66.54 198996934 17000.9 16992.3 6484 794 786 35.3 66.51 199098703 18718.3 18667.8 6858 859.4 1147.5 42.4 67.2 1991103783 21826.2 21781.5 8087.1 1015.1 1409.7 46.9 65.9 1992109170 26937.3 26923.5 10284.5 1415 1681.8 54.6 66.00 1993115993 35260 35333.9 14188 2266.5 2205.6 61.2 67.32 1994122737 48108.5 48197.9 19480.7 2964.7 2898.3 72.7 65.2 1995131176 59810.5 60793.7 24950.6 3728.8 3424.1 83.5 71.05 1996138948 70142.5 71176.6 29447.6 4387.4 4068.5 93.1 71.5 1997137798 77653.1 78973 32921.4 4621.6 4593 101.8 69.23 1998132214 83024.3 84402.3 34018.4 4985.8 5178.4 106.6 69.44 1999133831 88189 89677.1 35861.5 5172.1 5821.8 118.2 69.19 2000138553 98000.5 99214.6 40033.6 5522.3 7333.4 132.4 69.04 2001143199 108068.2 109655.2 43580.6 5931.7 8406.1 144.6 69.03 2002151797 119095.7 120332.7 47431.3 6465.5 9393.4 156.3 69.04 2003174990 135174 135822.8 54945.5 7490.8 10098.4 173.7 69.4 2004203227 159586.7 159878.3 65210 8694.3 12147.6 190.2 70.71 2005223319 183956.1 183084.8 76912.9 10133.8 10526.1 216.7 71.08 2006 246270 213131.7 211923.5 91310.9 11851.1 12481.1 249.4 71.242007 265583 251483.2 249529.9 107367.2 14014.1 14604.1 274.9 71.25资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。

计量经济学实验报告---多元回归模型实验

计量经济学实验报告---多元回归模型实验

2011-2012学年第1学期计量经济学实验报告实验(二):多元回归模型实验(1)估计参数利用EViews6估计模型的参数,方法是:1、建立工作文件:首先,双击EViews6图标,进入EViews6主页。

在菜单一次点击File\New\Workfile,出现对话框“Workfile Create”。

在“Workfile structure type ”中选择数据频率:Datad-regular frequency.在“Data specification”中Start data输入“1980”,在End data中输入“2002”点击“ok”出现“Workfile UNTITLED”工作框。

其中已有变量:“c”—截距项“resid”—剩余项。

2、Eviews命令:data y x p1 p2 p3 回车,输入数据,得到如图:图2-1 数据的输入3.对数据进行回归分析,eviews命令:LS Y C X P1 P2 P3图2-2根据上图,模型的估计的结果为:lnY=3.616+0.001lnX-0.506lnP1+0.119lnP2+0.048lnP3(0.450) (0) (0.162) (0.086) 0.051)t=(0.805) (4.652) (-3.115) (1.388) (0.942)R2=0.940 2 r=0.926 F=70.105(2)作对家庭人均鸡肉年消费量Y与猪肉价格P2、牛肉价格P3的散点图,图2-3和图2-4图2-3 图2-4图2-3 家庭人均鸡肉年消费量Y与猪肉价格P2的散点图图2-4 家庭人均鸡肉年消费量Y与牛肉价格P3的散点图由上面两张图可知都呈现线性关系,建立线性回归方程:i i i u X X Y +++=22110i βββi=1,2, .....,23 输入LS Y C P2 P3,用eviews6进行估计的输出结果如图:模型的估计结果为: Y=2.111+0.168P2+0.031P3(0.371)(0.060)(0.077) t=(5.689) (2.813) (0.402)R 2=0.834 2-r =0.817 F=50.150模型检验:①经济意义检验该地区家庭人均鸡肉消费量与鸡肉价格和牛肉价格成正相关,当牛肉价格不变时,猪肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.168单位;当猪肉价格不变时,牛肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.031单位,与猪肉价格成更大正相关关系符合一般情况。

Eviews多重共线性实验报告(1)

Eviews多重共线性实验报告(1)

Eviews多重共线性实验报告(1)Eviews多重共线性实验报告1. 实验背景多重共线性是指在回归分析中,自变量之间存在高度相关,导致回归系数的不稳定性和误差方差的增大。

在实践中,多重共线性是经济预测分析的重要问题,如何诊断和处理多重共线性是经济学研究中的重要课题。

2. 实验目的通过Eviews软件进行多重共线性诊断,掌握运用Eviews软件解决多重共线性问题的技巧,提高经济预测和分析的准确度和可靠性。

3. 实验流程(1)收集所需要进行回归分析的数据。

(2)在Eviews中建立回归模型,运行回归分析。

(3)通过Eviews的诊断功能,检验回归模型中自变量之间的线性相关。

(4)运用Eviews的多重共线性处理方法,解决自变量之间的多重共线性问题。

4. 实验结果(1)通过Eviews的诊断功能,我们可以得到多重共线性诊断报告,其中显示了变量之间的相关系数矩阵、方差膨胀因子(VIF)、条件指数(CI)、特征值(eigenvalue)、特征向量(eigenvector)等诊断指标。

通过观察相关系数矩阵和VIF,我们可以发现是否存在高度相关的自变量。

当VIF大于10时,就表明存在多重共线性。

(2)如果诊断报告中存在多重共线性问题,我们可以通过Eviews中的多重共线性处理方法解决。

其中包括删除相关系数较高的变量、采用主成分回归法、采用岭回归等方法,具体方法应根据实际情况来选择。

5. 实验结论通过Eviews的多重共线性诊断和处理,我们可以更加准确地进行回归分析,避免了多重共线性所带来的偏误和不稳定性。

在实际应用中,我们应根据具体情况选择适当的处理方法,以得到更加可靠的预测结果。

计量经济学实验报告

计量经济学实验报告

多元线性回归模型的应用研究一、经济学理论概述:柯布道格拉斯生产函数柯布-道格拉斯生产函数最初是由美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。

用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。

是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。

他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:Y= AKαLβ(1)其中:Y——产量;A——技术水平;K——投入的资本量;L——投入的劳动量;α,β——K和L的产出弹性。

经济学中著名的柯布-道格拉斯生产函数的一般形式为:Q(K,L)=aKαLβ其中Q,K,L分别表示产值、资金、劳动力,式中a,α,β要由经济统计数据确定。

二、经济学理论的验证方法利用Excel和Eviews软件对选定柯布-道格拉斯生产函数模型进行多元线性回归模型参数估计,并通过调整可决系数、t值检验、F 检验、异方差检验、序列相关性检验、多重共线性检验达到验证理论模型的目的。

三、验证步骤1、建立计量经济学模型过对数变换,(1)式可用如下双对数线性回归模型进行估计:lnQ = a + αln K + βln L+ u,式中,a=lnA2、确定变量(1)被解释变量:lnQ(Q在此取国内生产总值)(2)解释变量:lnK和ln L(K取固定资产投资,L取就业人数)3、数据描述和处理(1)表1:1985~2003中国国内生产总值、就业人员及固定资产投资情况年份GDP(亿元)Q就业人员(万人)L固定资产投资(亿元)K1985 8964.4 49873 2543.2 1986 10202.2 51282 3120.6 1987 11962.5 52783 3791.7 1988 14928.3 54334 4753.8 1989 16909.2 55329 4410.4 1990 18547.9 64749 4517 1991 21617.8 65491 5594.5 1992 26638.1 66152 8080.1 1993 34634.4 66808 13072.3 1994 46759.4 67455 17042.1 1995 58478.1 68065 20019.31996 67884.6 68950 22913.51997 74462.6 69820 24941.11998 78345.2 70637 28406.21999 82067.5 71394 29854.72000 89468.1 72085 32917.72001 97314.8 73025 37213.52002 105172.3 73740 43499.92003 117251.9 74432 55566.6资料来源:《中国统计年鉴(2004)》。

计量经济学多Eviews软件重共线性实验报告

计量经济学多Eviews软件重共线性实验报告

多重共线性实验报告武颖经济统计学一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。

二、实验要求:应用教材第119页案例做多元线性回归模型,并识别和修正多重共线性。

三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。

四、预备知识:最小二乘法估计的原理、t 检验、F 检验、2R 值。

五、实验步骤1.假定模型:设定并估计多元线性回归模型tt t t t t t u X X X X X Y ++++++=66554433221ββββββ2.录入数据:国内旅游收入为Y ,国内旅游人数为X2,城镇居民人均旅游支出为X3,农村居民人均旅游费用为X4,公路里程为X5,铁路里程为X6.3.回归结果:在Eview行输入LS Y C XX3 X4 X5 X6,得到回归结果2模型估计结果为:Yt=-274.3773+0.013088X2+5.438193X3+3.271773X4-563.1077X5+12.98624X6(1316.690) (0.012692) (1.380395) (0.944215) (4.177929) (321.2830)t=(-0.208384)(1.031172)(3.939591)(3.465073)(3.108296)(-1.752685)R2=0.995406 F=173.35254.模型检验:该模型R2=0.995406,R2=0.989664,可决系数很高,F检验值为173.3525,明显显著。

假设显著性水平α=0.05,X2>0.05,X6>0.05,接受原假设,可能存在严重的多重共线性六.多重共线性的识别(1)得到解释变量的相关系数矩阵将解释变量x2、x3、x4、x5、x6选中,双击选择Open Group(或点击右键,选择Open/as Group),然后再点击View/covariance analysis/Correlation/Common Sample,即可得出相关系数再点击表顶部的Freeze,可得一个Table类型独立的object.由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是x2和x3之间高度相关,证实解释变量之间存在多重共线性。

eviews多元线性回归案例分析报告报告材料

eviews多元线性回归案例分析报告报告材料

中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。

为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。

影响中国税收收入增长的因素很多,但据分析主要的因素可能有:〔1〕从宏观经济看,经济整体增长是税收增长的基根源泉。

〔2〕公共财政的需求,税收收入是财政的主体,社会经济的开展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。

〔3〕物价水平。

我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。

〔4〕税收政策因素。

我国自1978年以来经历了两次大的税制改革,一次是1984—%。

但是第二次税制改革对税收的增长速度的影响不是非常大。

因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。

二、模型设定为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收〞〔简称“税收收入〞〕作为被解释变量,以反映国家税收的增长;选择“国内生产总值〔GDP〕〞作为经济整体增长水平的代表;选择中央和地方“财政支出〞作为公共财政需求的代表;选择“商品零售物价指数〞作为物价水平的代表。

由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。

所以解释变量设定为可观测“国内生产总值〔GDP〕〞、“财政支出〞、“商品零售物价指数〞从《中国统计年鉴》收集到以下数据年份财政收入〔亿元〕Y国内生产总值(亿元〕X2财政支出〔亿元〕X3商品零售价格指数〔%)X419781979 102 1980 106 1981198219831984 717119851986 106 1987198819891990199119921993199419951996199719981999 97 200020012002设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三、参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X4的散点图:Dependent Variable: YMethod: Least SquaresDate: 12/01/09 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1463163. Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)模型估计的结果为:Y i=+0.022067X2+X3+X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21四、模型检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。

计量经济学实验报告完整版范文

计量经济学实验报告完整版范文
教师
评语
教师
评语
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多元线性回归模型
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
日期
6.15
实验
目的
简述本次实验目的:熟悉多元线性回归模型中的解释变量的引入
掌握对计算机过的统计分析和经济分析
实验
பைடு நூலகம்准备
你为本次实验做了哪些准备:了解多元线性回归模型参数的OLS估计,统计检验,点预测以及区间估计,非线性回归的参数估计,受约束回归检验
实验
进度
本次共有3个练习,完成3个。
实验
总结

本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
实验
进度
本次共有1个练习,完成1个。
实验
总结

本次实验的收获、体会、经验、问题和教训:初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。通过这次实验让我受益匪浅。

多元线性回归实验报告

多元线性回归实验报告

实验题目:多元线性回归、异方差、多重共线性实验目的:掌握多元线性回归的最小二乘法,熟练运用Eviews软件的多元线性回归、异方差、多重共线性的操作,并能够对结果进行相应的分析。

实验内容:习题3.2,分析1994-2011年中国的出口货物总额(Y)、工业增加值(X2)、人民币汇率(X3),之间的相关性和差异性,并修正。

实验步骤:1.建立出口货物总额计量经济模型:(3.1)1.1建立工作文件并录入数据,得到图1图1在“workfile"中按住”ctrl"键,点击“Y、X2、X3”,在双击菜单中点“open group”,出现数据表。

点”view/graph/line/ok”,形成线性图2。

图21.2对(3.1)采用OLS估计参数在主界面命令框栏中输入ls y c x2 x3,然后回车,即可得到参数的估计结果,如图3所示。

图 3根据图3中的数据,得到模型(3.1)的估计结果为(8638.216)(0.012799)(9.776181)t=(-2.110573) (10.58454) (1.928512)F=522.0976从上回归结果可以看出,拟合优度很高,整体效果的F检验通过。

但当=0.05时,= 2.131.有重要变量X3的t检验不显著,可能存在严重的多重共线性。

2.多重共线性模型的识别2.1计算解释变量x2、x3的简单相关系数矩阵。

点击Eviews主画面的顶部的Quick/Group Statistics/Correlatios弹出对话框在对话框中输入解释变量x2、x3,点击OK,即可得出相关系数矩阵(同图4)。

相关系数矩阵图4由图4相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,证实解释变量之间存在多重共线性。

2.2多重共线性模型的修正将各变量进行对数变换,在对以下模型进行估计。

利用eviews软件,对、X2、X3分别取对数,分别生成lnY、lnX2、lnX3的数据,采用OLS方法估计模型参数,得到回归结果,如图:图5图6模型估计结果为:ln=-20.52+1.5642lnX2+1.7607lnX3(5.4325) (0.0890) (0.6821)t =-3.778 17.578 2.581F=539.736该模型可决系数很高,F检验值,明显显著。

计量经济学实验报告(多元线性回归分析)

计量经济学实验报告(多元线性回归分析)

计量经济学实验报告(多元线性回归分析)实验2:多元线性回归分析实验目的:学习利用Eviews建立多元线性回归模型,研究64国家婴儿死亡率与妇女文盲率之间的关系。

一、实验内容:1、先验的预期CM和各个变量之间的关系.2、做CM对FLR的回归,得到回归结果。

3、做CM对FLR和PGNP的回归,得到回归结果。

4、做CM对FLR,PGNP和TFR的回归结果,并给出ANOVA。

5、根据各种回归结果,选择哪个模型?为什么?6、如果回归模型(4)是正确的模型,但却估计了(2)或(3),会有什么后果?7、假定做了(2)的回归,如何决定增加变量PGNP和TFR?使用了哪种检验?给出必要的计算结果。

二、实验报告———-多元线性回归分析1、问题提出婴儿死亡率(CM)是指婴儿出生后不满周岁死亡人数同出生人数的比率.一般以年度为计算单位,以千分比表示。

婴儿死亡率是反映一个国家和民族的居民健康水平和社会经济发展水平的重要指标,特别是妇幼保健工作水平的重要指标。

婴儿死亡率(CM)的高低是一个国家或地区社会经济多方面因素协调发展的结果。

由于世界各国婴儿死亡率差别很大,所以就64个国家社会综合发展状况,针对性的研究婴儿死亡率(CM)与女性识字率(FLR)、人均GNP(PGNP)、总生育率(TFR)之间的关系2.指标选择本次实验研究婴儿死亡率与妇女文盲率之间的关系,故应采用婴儿死亡率(CM)和女性识字率(FLR)作为指标。

但影响婴儿死亡率的因素较复杂,尤其是经济发展状况、总生育率等也会对其产生重要影响,考虑到实验的准确性,故引入人均GNP(PGNP)和总生育率(TFR)相关数据。

3。

数据来源数据来源:教师提供4。

数据处理此次实验可直接使用数据,无需进行数据处理。

5。

先验的预期CM 和各个变量之间的关系 【题1】 5-1预期CM 与FLR 存在负相关关系。

一方面,女性受教育程度越高,其知识越丰富,自我保护意识和能力就越强,则更善于保护自己和婴儿;另一方面,女性教育程度越高,其就业机会与收入获得途径就越多,可以更好的保障自己和婴儿的生活.因此,我们预期FLR 的提高会导致CM 降低。

计量经济学eviews实验报告

计量经济学eviews实验报告

计量经济学eviews实验报告大连海事大学实验报告Array实验名称:计量经济学软件应用专业班级:财务管理2013-1姓名:安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。

具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5.1平台。

三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。

表1我国1995-2014年人均国民生产总值与居民消费水平情况2008年23912 87072009年25963 95142010年30567 109192011年36018 131342012年39544 146992013年43320 161902014年46612 17806 (1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 691.0225 113.3920 6.094104 0.0000AVGDP 0.352770 0.004908 71.88054 0.0000R-squared 0.996528 Mean dependent var 7351.300Adjusted R-squared 0.996335 S.D. dependent var 4828.765S.E. of regression 292.3118 Akaike info criterion 14.28816Sum squared resid 1538032. Schwarz criterion 14.38773Log likelihood -140.8816 Hannan-Quinn criter. 14.30760F-statistic 5166.811 Durbin-Watson stat 0.403709Prob(F-statistic) 0.000000由上表可知财政收入随国内生产总值变化的一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691.0225+0.352770* X其中斜率0.352770表示国内生产总值每增加一元,人均消费水平增长0.35277元。

实验4:计量经济学实验【多元线性回归及非线性回归模型的线性化】

实验4:计量经济学实验【多元线性回归及非线性回归模型的线性化】

二、学习的基本内容(重点)
1、多元线性回归模型的基本理论和方法; 2、多元线性回归模型的有关检验(统计 检验); 3、看懂Eviews软件的回归分析结果; 4、采用合适的形式报告有关结果; 5、经典线性回归模型的扩展——多元非 线性回归模型的线性化处理。

三、知识点回顾

1、多元线性回归模型的概念
与一元线性回归模型类似,对多元线性回归模型 Y X X X 有以下几个基本假设,如果实 际模型满足这些假设,则 OLS 就是最优的估计方法; (1) 解释变量 X 1 , X 2 , , X k 是非随机的或固定的,且相互之间 互不相关(无多重共线性),随机干扰项 i 是随机变量; (2)随机干扰项 i 具有 0 均值,同方差及不序列相关性,即
ˆ 1 ˆ ˆ k
0
( k 1) 1
三、知识点回顾
2、多元线性回归模型的四种重要关系式 (4)样本回归模型:

样本回归函数的随机形式表示为:
ˆ ˆ ˆ ˆ ˆ Yi Yi e i 0 1 X 1 i 2 X 2 i k X ki e i
三、知识点回顾
2、多元线性回归模型的四种重要关系式 (2)总体回归函数(方程)

上述多元回归模型中的确定性部分(趋势部分)
E (Y | X 1 i , X 2 i , X ki ) 0 1 X 1 i 2 X 2 i k X ki
此式揭示了所考察总体被解释变量与解释变量之间的平均变 化规律,即解释变量取固定值时,被解释变量Y 的平均响 应; 多元回归斜率系数的含义:表示在保持回归方程中其他解释 变量不变时,所考察的解释变量每增加一个单位,将导致被 解释变量Y的均值的变化量。

计量经济学 实验3 多元回归模型

计量经济学 实验3 多元回归模型

目录目录 (1)一、建立多元线性回归模型 (3)(一) 建立包括时间变量的三元线性回归模型; (3)1. 建立工作文件:CREATE A 78 94 (3)2. 输入统计资料:DATA Y L K (3)3. 生成时间变量t:GENR T=@TREND(77) (3)4. 建立回归模型:LS Y C T L K (3)(二) 建立剔除时间变量的二元线性回归模型; (4)(三) 建立非线性回归模型——C-D生产函数。

(5)二、比较、选择最佳模型 (8)(一) 回归系数的符号及数值是否合理; (8)(二) 模型的更改是否提高了拟合优度; (8)(三) 模型中各个解释变量是否显著; (8)(四) 残差分布情况 (8)实验三多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。

【实验内容】建立我国国有独立核算工业企业生产函数。

根据生产函数理论,生产函数的基本形式为:()ε,tY=。

其中,L、K分别为生产过程中投入的劳动与资金,fL,K,时间变量t反映技术进步的影响。

表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。

资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、 建立多元线性回归模型(一) 建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:1. 建立工作文件: CREATE A 78 942. 输入统计资料: DATA Y L K3. 生成时间变量t : GENR T=@TREND(77)4. 建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。

图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y 7764.06667.06789.7732.675ˆ+++-= (模型1)t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。

EViews计量经济学实验报告-多重共线性的诊断与修正的讨论

EViews计量经济学实验报告-多重共线性的诊断与修正的讨论

实验题目多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。

二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。

研究“农业的发展反而会减少财政收入”这个问题。

设定如下形式的计量经济模型:=+++++++其中,为财政收入CS/亿元;为农业增加值NZ/亿元;为工业增加值GZ/亿元;为建筑业增加值JZZ/亿元;为总人口TPOP/万人;为最终消费CUM/亿元;为受灾面积SZM/千公顷。

图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元农业增加值NZ/亿元工业增加值GZ/亿元建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV软件,生成、、、、、、等数据,采用这些数据对模型进行OLS回归。

(二)诊断多重共线性1、双击“Eviews”,进入主页。

输入数据:点击主菜单中的File/Open /EV Workfile—Excel—多重共线性的数据.xls ;2、在EV主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter”.出现OLS回归结果,图2:图2: OLS 回归结果Dependent Variable: Y由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F统计量为701.47,模型拟和很好,回归方程整体上显著。

计量经济学上机实验报告1

计量经济学上机实验报告1
提示:
打包保存时自己的文件夹以“学号姓名”为文件夹名,
打包时文件夹内容包括:本实验报告。
(2)在命令窗口依次键入:GENR LnY=log(Y)
GENR LnX2=log(X2)
LS LnY C LnX2 X3
Dependent Variable: LNY
Method: Least Squares
Date: 12/20/15 Time: 21:50
Sample: 1994 2011
Included observations: 18
Sample: 1994 2011
Included observations: 18
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
X2
X3
X4
X5
X6
R-squared
Mean dependent var
Adjusted R-squared
. dependent var
评价:
从经济意义上来说,国民总收入与年底存款余额是呈正比的,国民总收入越高,年底存款余额就越多,符号为正;居民消费价格总指数与年底存款总额是呈反比的,居民消费价格指数越高,年底存款余额就越少,符号为负。
拟合优度检验:可决系数为,修正后的可决系数为,非常接近于1,表明回归方程拟合的非常好。
T检验:解释变量X2,X3,X4,X5,X6的系数分别为,,,,
实验目的:
多元线性回归模型
T检验
F检验
多元线性回归模型的改进
实验内容:
(1)建立百户拥有家用汽车量计量经济模型,估计参数并对模型加以检验,检验结论的依据是什么
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.统计检验
从回归估计结果看出,模型拟合优度较好。可决系数为0.984503,表明北京人均汽车拥有量变化的98.45%可用城镇居民人均收入和城镇居民人口总数表示。
从回归模型F的检验值384.1804,对应的p值为0.000000.说明模型整体上高度显著、
4.可纳入模型的因素
全国车产量对人均汽车拥有量的影响;全国公路里程对人均汽车拥有量的影响。
2006
239.12
1199.96
19977.5
2007
273.36
1216.25
21988.5
2பைடு நூலகம்08
313.68
1232.28
24724.9
2009
368.11
1247.52
26738.5
2010
449.72
1258
29072.9
2011
470.53
1277.92
32903
2012
493.56
1297.46
《计量经济学》实验报告多元线性回归模型
一、实验内容
建立2000-2014年北京市民用汽车拥有量模型。
调查北京市民用汽车拥有量数据见表1。观测变量分别是民用汽车拥有量yt(万辆),北京市年末人口数x1t(万人)和城镇人均可支配收入x2t(千元)。
表1某城市拥有量样本数据
t
yt(拥有量)
x1t(年末人数)
三、实验步骤(简要写明实验步骤)
(1)建立二元线性回归销售模型
(2)预测
在上方输入ls y c x3 x4回车得到下图
在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图
在上方空白处输入ls y c x3 x4---之后点击proc中的forcase中se输入yfse点击ok得到2015预测值
四、实验结果及分析(将本问题的回归模型写出,并作出统计检验,经济意义检验,思考还有哪些可纳入模型的因素)
1.回归模型
=-135560.3+11.52389x +128.0176x
2.经济意义检验
模型结果表明在其他条件保持不变的情况下,北京城镇居民人均收入每增加1千元,人均汽车拥有量平均增加128.02辆。北京城镇人口总数增加1万人,人均汽车拥有量增加11,52辆。
x2t(人均收入)
2000
104.12
1113.53
10349.7
2001
114.47
1127.89
11577.8
2002
133.93
1142.83
12463.9
2003
163.07
1154.06
13882.6
2003
182.42
1167.76
15637.8
2005
182.42
1184.14
17653
36468.8
2013
517.11
1316.34
40321
2014
530.83
1333.4
43910
要求:
(1)试建立二元线性回归销售模型。
(2)考虑北京地区有人口万人,人均年收入为元,试北京市汽车拥有量做出预测。
二、实验目的
掌握多元线性回归模型的原理,多元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
相关文档
最新文档