第6讲 解析函数与调和函数
调和函数、解析函数与调和函数的关系
2
y 2
=
0,
则称 (x, y) 为区域������内的调和函数.
定理1:区域������内的解析函数的实部与虚部,都是������内的调和函数.
证明:设 w = f (z) = u(x, y) + iv(x, y) 是区域������内的解析函数,
那么在区域������内满足柯西-黎曼方程:u = v , u = − v x y y x
由 f (0) = i ,得 C = 1,从而 f (z) = x3 − 3xy2 + i(3x2 y − y3 +1).
另外,还可以通过不定积分的方法,由已知调和函数直接求 得解析函数. 解析函数 f (z) = u(x, y) + iv(x, y) 的导数仍为解析函数,
f ' (z) = ux + ivx = ux − iuy = vy + ivx
=
6x;u y
=
−6xy,2u y2
=
−6x
从而
2u x2
+
2u y 2
= 0,所以:u(x, y) =
x3
− 3xy2 是调和函数.
( ) 由 v = u = 3x2 − 3y2 ,得 v(x, y) = 3x2 − 3y2 dy = 3x2 y − y3 + c(x) y x
定义2:设 u(x, y) 为区域������内的调和函数,称满足柯西-黎曼方程
u = v , u = − v x y y x
的调和函数 v(x, y) 为 u(x, y) 的共轭调和函数.
说明:(1)区域������内的解析函数的实部与虚部为共轭调和函数;
(2)如果已知一个调和函数u(x, y),则可利用柯西-黎曼方 程求得它的共轭调和函数 v(x, y),从而构成一个解析函数
调和函数
本章主要内容
有向曲线
复积分
积分存在的 条件及计算
积分的性质
Cauchy积分定理
Cauchy 积分公式
高阶导数 公式
复合 闭路 定理
原函数 的概念
积分公式 及计算
15
轭调和函数.
5
现在提出如下问题:
已知 u(x,y)是区域D上的调和函数,是否存在 u(x,y)的共轭调和函数 v(x,y),使得函数 f (z)=u+iv 是D上的解析函数?
或者已知调和函数 v(x,y) 时,是否存在调和函 数 u(x,y) ,使得 f (z)=u+iv 是D上的解析函数?
回答是肯定的,以下用举例的方法加以说明.
§3-4 调和函数
1. 调和函数的概念 2. 解析函数与调和函数的关系
1
1. 调和函数的概念
定义 如果二元实变函数 ( x, y) 在区域 D内具
有二阶连续偏导数,并且满足Laplace方程
2
x 2
2
y2
0
则称 ( x, y) 为区域 D内的调和函数.
工程中的许多问题,如平面上的稳定温度场、 静电场和稳定流场等都满足Laplace方程.
2
2. 解析函数与调和函数的关系
定理 任何在区域 D 内解析的函数,它的实部 和虚部都是 D 内的调和函数. 证明 设 w f (z) u( x, y) iv( x, y) 为区域 D 内的一个解析函数,则
u v , u v . x y y x
根据解析函数的导数仍是解析函数, 因此
u( x, y) 与 v( x, y) 具有任意阶的连续偏导数,
这个函数可以化为
w f (z) i(z3 c).
8
注:已知解析函数的实部求虚部,至多相 差一个常数。
高校工程数学第3节解析函数和调和函数教学课件
共轭调和函数
u( x , y ), v ( x , y ) 在D内调和 u v x y C—R方程成立 v u y x
f ( z ) u( x, y ) iv( x, y )
在D内解析
注: 区域D内的解析函数的虚部为实部的共轭调和函数.
[例1]
得:
3 y 2 g( x ) 3 y 2 3 x 2 ,
故 g ( x ) 3 x dx x c ,
2
3
(c 为任意常数)
因此
v(x,y)=x3–3xy2+c
从而得到一个解析函数
w=y3–3x2y+i(x3–3xy2+c)
[例1]
偏积分法也可以是下列形式:
适用于已知实部u 求 f ( z ),
适用于已知虚部 v 求 f ( z ),
4、不定积分法
[例3] 用不定积分法求解[例1]中的解析函数 f ( z )
实部 u( x, y ) y 3 3 x 2 y.
[解] f ( z ) U ( z ) ux iuy
3i ( x 2 2 xyi y 2 ) 3iz 2 ,
[例1]
2u 2u 于是 2 0, 故 u( x , y ) 为调和函数. 2 x y
v u 6 xy, (2) 因为 y x
v 6 xydy 3 xy2 g( x ),
v 3 y 2 g( x ), x v u 2 2 3 y 3 x , 又因为 x y
2、共轭调和函数的定义
设 u( x , y ) 为区域 D 内给定的调和函数 , 我 们把使 u iv 在 D 内构成解析函数的调和 函数 v ( x , y ) 称为 u( x , y ) 的共轭调和函数 .
调和函数
∆ ( au + bv ) = a∆u + b∆v
2.解析函数与调和函数的关系 定理: f ( z ) = u ( x, y ) + iv( x, y )是区域D内的解析函数
⇒ u与v是区域D内的调和函数 证明: f ( z )在D内解析 ⇒ u x = v y , v x = −u y
且u, v有任意阶连续偏导数
2 v 3 x ⇒ = + g ′( y ) ⇒ v ( x, y ) = 3 x y + g ( y ) y
2
3 2 ′ ⇒ g ( y ) = − y +C ⇒ g ( y ) = −3 y
⇒ v ( x, y ) = 3 x y − y + C 2 2 2 ′ 方法3:f ( z ) = u x − iu y = 3x − 3 y + 6ixy = 3z
2 3
⇒ f ( z ) = z + C1
3
= x − 3 xy + i (3 x y − y ) + C1
3 2 2 3
Re f ( z ) = x − 3xy ⇒ C1 = iC
3 2
⇒ f ( z ) = z + iC
3
即v是u的共轭调和函数
v ( x, y ) = ∫
x
( x, y )
( x0 , y 0 )
− u y dx + u x dy + C0
(x ,y )
0 0
(x,y)
(C0为任意常数)
y x0 y0
= ∫ − u y ( x, y0 )dx + ∫ u x ( x, y )dy + C0
(x,y )
解析函数与调和函数的关系
已知实部u,求虚部v(或者已知v,求u),使 f(z)=u(x,y)+iv(x,y)解析.
例:已知 u x y ,可以求得 v 2 xy C
2 2
f ( z) x y i(2xy C) z C'
2 2 2
(1)
则称 H ( x, y)为区域D 内的调和函数(harmonic function).
2 2 注:运算符号 ,称为拉普拉斯算子. 2 2 x y
2 2 H H 方程 0 ,记作 H 0 称为拉普拉斯方程. 2 2 x y
2.解析函数与调和函数的关系
定理2.2 若函数 f(z)=u(x,y)+iv(x,y) 是区域D
内的解析函数,则 u(x,y)和v(x,y) 均为区域D 内的
调和函数. 思考 如果 u, v 是任意选取的在区域D 内的两个
调和函数,那么 f(z)=u(x,y)+iv(x,y) 在D 内一定解
析吗?
定义2.5 在区域D 内,满足C-R方程
满足C-R方程
v 为u 在区域D内的共轭调和函数
解析函数与调和函数的关系 解析函数
f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)
调和函数
u(x,y),v(x,y) 为调和函数 v为u的共轭调和函数
注:研究复变量的问题转化为研究实变量的问题.
验证:解析函数的实、虚部的任意阶偏导数 也是调和函数. 应用 构造解析函数
§2.2
解析函数与调和函数的关系
引言
解析函数 f(z)=u(x,y)+iv(x,y) u,v满足C-R方程 解析函数具有无穷可微性 u,v为调和函数
§3.7 解析函数与调和函数的关系
0,0
( x, y )
u u dx dy C y x
0,0
x 0
2 x 1 dx 2 ydy C
y 0
2 x 1 dx 2 ydy C
x2 2 x y 2 C
f z u iv 2 x 1 y x 2 2 x y 2 C i
例2(P103 30题(3))
已知f(z)=u+iv解析,u=2(x-1)y,f(2)=-i,求f(z). 方法1 不定积分法
u u 2 y, 2 x 1 x y u u f z i 2 y 2 x 1 i x y
2i x iy 2i 2iz 2i
得证!
注:解析函数中u与v不独立即是一对矛盾,已知u 求v, 或已知v求u均可.
例1 已知f(z)=u+iv解析,v=2xy,求f(z).
方法1 线积分法 u u du dx dy x y
u
( x, y )
0,0
( x, y )
u u dx dy C x y
§3.7 解析函数与调和函数的关系 一、分析上解析函数是调和函数
若二元实函数u(x,y) 满足Laplace方程
2u 2u 2 0 2 x y
则称u(x,y) 是调和函数。 定理1 若 w f z u iv 是解析函数,则U和V均为调 和函数.
证明: f z 是解析函数
2 iz 2 zi C f z 2iz 2i dz
f 2 C i
f z iz 2 2 zi i
解析函数与调和函数
2v 2v 0 x2 y 2
故 u是全平面上的调和函数,v除原点外在全平面上 调和。但 u v,不满足C-R条件,所以 f z 不是
解析函数。x y
复变函数与积分变换
Complex Analysis and Integral Transform
u 例3 证明:若 为调和函数且不等于常数,
则 u 2 不是调和函数。
例4求形如 ax3 bx2 y cxy2 dy3的最一般的调和函数。
并求其共轭调和函数及其对应的解析函数。
解:因为 u ax3 bx2 y cxy2 dy3,所以
2u 6ax 2by, 2u 6dy 2cx.
x 2
y 2
令
2u 2u (6a 2c)x (6d 2b) y 0
u yy vxy
uxx u yy 0 . 同样可得 vxx vyy 0 .
复变函数与积分变换
Complex Analysis and Integral Transform
注:逆定理显然不成立,即
对区域D内的任意两个调和函数 u,v,
f (z) u iv及( f z) v iu
不一定是解析函数 .
例如: f z z2 x2 y2 i2xy是解析函数,
故u,v是调和函数,但
f z v iu 2xy i x2 y2
不再是解析函数
复变函数与积分变换
Complex Analysis and Integral Transform
定义2 若u与v是区域D内的调和函数且满足C R方程 ux =v y,uy =-v x,则称v为u的共轭调和函数。
( f 0 0 c 0)
复变函数与积分变换
例2
Complex Analysis
2.2 解析函数与调和函数的关系
§2.2 解析函数与调和函数的关系
一、调和函数 二、共轭调和函数 共轭调和函数 三、构造解析函数
1
§2.2 解析函数与调和函数的关系 第 二 章 解 析 函 数
一、调和函数
引例 考察三维空间中某无旋无源力场(或流速场)的势函数。 考察三维空间中某无旋无源力场(或流速场)的势函数。 无旋无源力场 设该力场为 F = { P ( x , y , z ) , Q ( x , y , z ) , R( x , y , z ) } . (1) 无旋场 沿闭路做功为零(即做功与路径无关)。 沿闭路做功为零 即做功与路径无关) 保守场或者梯度场或者有势场。 又称为保守场或者梯度场或者有势场 又称为保守场或者梯度场或者有势场。 存在势函数 ϕ ( x , y , z ) , 使得
11
§2.2 解析函数与调和函数的关系 第 二 章 解 析 函 数 解 (2) 求虚部 v( x, y )。 方法二: 方法二:全微分法
C1
( x, y)
C2
∂v ∂u ∂v ∂u 2 2 =− = 6xy , 由 = = 3x − 3 y , ∂x ∂y ∂y ∂x
⇒ dv = v ′x dx + v ′y dy = 6 xy dx + ( 3 x 2 − 3 y 2 )dy ,
∂ 2 u ∂ 2v , ⇒ = 2 ∂y∂x (?) ∂x
∂ 2v ∂ 2v + 2 = 0. 同理 2 ∂x ∂y
5
§2.2 解析函数与调和函数的关系 第 二 章 解 析 函 数
二、共轭调和函数 共轭调和函数
定义 设函数 u( x , y ) 及 v ( x , y ) 均为区域 D 内的调和函数, 内的调和函数,
调和函数与解析函数
u v u v , x y y x
的两个调和函数 u, v 中,v 称为 u 在区域 D 内的 共轭调和函数.
14
ቤተ መጻሕፍቲ ባይዱ
由解析函数高阶导数定理知,u 和 v 具有任 意阶连续偏导,故 v yx vxy ,
从而 同理
uxx u yy 0. vxx vyy 0.
因此 u 和 v 调和.
?
已知u, 能否找到 v, 使得 u iv 解析?
u+iv = f(z)
调和
解析 为 u 的共轭调和函数
•共轭调和函数 区域 D 内满足 C.-R.方程
§7 解析函数与调和函数的关系
问题1,解析函数的性质非常好,什么样的函数能构 成解析函数的实部和虚部
问题2. 解析函数的实部和虚部的二阶导数是什么关 系
问题3. 如何根据实部(虚部)求其满足的解析函数
1
•调和函数 若二元实函数 H(x, y) 在区域 D 内具 有二阶连续偏导,且满足 Laplace 方程
6
u(x, y)=y3-3x2y
解:)由 1 ux 6xy,u xx 6 y, u y 3 y 2 3x 2,u yy 6 y,
可得
(偏积分法)
u xx u yy 0.
利用C.-R.方程
从而u 调和. 2 )由 v y u x 6 xy 可得
2
利用C.-R.方程 的另一等式
u v u v , x y y x
的两个实值函数 u, v 中,v 称为 u 在区域 D 内的 共轭调和函数.
注 区域 D 内的解析函数的虚部为实部的共轭调 和函数.
5
例1 验证 u(x, y)=y3-3x2y 是调和函数,并求以 u(x, y) 为实部的解析函数 f(z). 例2 已知一调和函数 v e x sin y, 求一解析函数 f(z)=u iv, 使 f(0)=1. 例3 已知一调和函数 v e x ( y cos y x sin y ) x y, 求一解析函数 f(z)= u iv, 使 f(0)=0.
解析函数与调和函数的定义与性质
解析函数与调和函数的定义与性质函数在数学中扮演着重要的角色,不同类型的函数具有不同的性质和定义。
解析函数与调和函数就是其中两种重要的函数类型。
本文将对解析函数和调和函数的定义与性质进行详细解析。
一、解析函数的定义与性质解析函数是复变函数中的一种特殊类型,其定义如下:设f(z)=u(x,y)+iv(x,y)是定义在D上的复变函数,其中u(x,y)和v(x,y)是实变函数,如果f(z)在D内是可导的,且f'(z)在D内处处存在,则称f(z)在D内是解析的。
解析函数具有以下几个重要性质:1. 解析函数的实部和虚部均是调和函数。
即u(x,y)和v(x,y)都满足拉普拉斯方程,即∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,以及∇^2v=∂^2v/∂x^2+∂^2v/∂y^2=0。
2. 解析函数的复共轭也是解析函数。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其复共轭f*(z)=u(x,y)-iv(x,y)也是解析函数。
3. 解析函数满足柯西-黎曼方程。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其满足柯西-黎曼方程∂u/∂x=∂v/∂y和∂u/∂y=-∂v/∂x。
二、调和函数的定义与性质调和函数是实变函数中的一种特殊类型,其定义如下:设u(x,y)是定义在二维欧氏空间R^2上的二次连续可微函数,如果u(x,y)满足拉普拉斯方程∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,则称u(x,y)为调和函数。
调和函数具有以下几个重要性质:1. 调和函数的高阶导数也是调和函数。
即如果u(x,y)是调和函数,则其高阶偏导数∂^nu/∂x^n和∂^nu/∂y^n也是调和函数。
2. 调和函数的积分在闭合曲线上的值为0。
即对于调和函数u(x,y)和任意的闭合曲线C有∮C[∂u/∂s(ds/dt)dt]=0,其中∮C表示对曲线C 上点P到点P绕行一周的积分,s为曲线C上的弧长参数,t为弧长参数t与x轴正向的夹角。
解析函数与调和函数
§4. 解析函数与调和函数一、教学目标或要求:掌握解析函数与调和函数的关系熟练计算二、教学内容(包括基本内容、重点、难点):基本内容:解析函数与调和函数的关系例题重点:解析函数与调和函数的关系难点: 例题三、教学手段与方法:讲授、练习四、思考题、讨论题、作业与练习:16、17、18§4. 解析函数与调和函数在前一节,我们已经证明了,在区域D内解析的函数具有任何阶的导数。
因此,在区域D内它的实部与虚部都有二阶连续偏导数。
现在我们来研究应该如何选择才能使函数在区域D内解析。
设在区域D上解析,则C--R条件成立,.下一章将证明,某个区域上的解析函数在该区域上必有任意阶的导数,因此可对上式求偏导数,两式相加可得同理可得定义3.5若二元实函数在区域内有二阶连续偏导数且满足拉普拉斯方程,则称为区域内的调和函数。
记,则为运算符号,称为拉普拉斯算子。
定义3.6 在区域D 内满足C.— R.条件y v x u ∂∂=∂∂, xv y u ∂∂-=∂∂ 的两个调和函数中),(y x u ,),(y x v 中, ),(y x v 称为),(y x u 的轭调和函数. 共轭调和函数的几何意义设是区域D 上的解析函数,则,两式相乘得即所以就是说,梯度跟梯度正交. 我们知道,和分别是曲线族“”和“”的法向矢量,因而上式表示“”与“”两族曲线相互正交. 这就解析函数实部),(y x u 与虚部),(y x v 的几何意义。
定理3.18 若),(i ),()(y x v y x u z f +=在区域D 内解析,则在区域D 内),(y x v 必为),(y x u 的轭调和函数.证 由在内解析知,,从而。
又解析函数具有的无穷可微性保证,在内均连续,故必相等,于是在内。
同理,即,满足拉普拉斯方程。
定理3.19 设若),(y x u 是在单连通区域D 内的调和函数,则存在由(3.22)式所确定的函数),(y x v ,使),(i ),()(y x v y x u z f +=在区域D 内解析. 解析函数的又一等价定理),(i ),()(y x v y x u z f +=在区域D 内解析当且仅当在区域D 内),(y x v 是),(y x u 的共轭调和函数。
第6讲 解析函数与调和函数
v x -shxcosy g(x) u y -shxcosy
故 f(z) u iv shxsiny - i(chxcosy c)
15
2) v x 2 - y 2 2y
v x 2x -u y , v y 2 - 2y u x
16
方法二
定理4-6 设u(x,y)是单连通区域D内的调和函数,(x0,y0) 为D内任意取定的点,则存在由
v( x, y ) ((xx ,,yy) ) u y dx u x dy c
0 0
确定的唯一形式的v(x,y),是f(z)=u+iv是D内的解析函数。
公式不用强记!可如下推出:
已知:u( x , y ), 求其共轭调和函数( x , y ) : v v v C R方程 由dv dx dy u y dx u x dy x y 然后两端积分。
17
v v C R方程 v v 由du dx dy dx dy x y y x
区域D内的两个调和函数则u iv在D内就不 , 一定解析 .
要想使u iv在D内解析, u及v还必须满足 R C 方程,即 必须是u的共轭调和函数 v .由此,
已知一个解析函数的实 u( x , y ), 利用C R方 部 (虚部v( x, y )) 程可求得它的虚部( x , y ), 从而构成解析函数 v u iv.
g ( x) c (c为实常数)
x
对于已知v,求u的情况,可采取同样的方法。
14
例2.22 已知下面的调和函数,求解析函数f(z)=u+iv
1) u=shxsiny
解: u shxsiny 1 ) u v chx sin y y x
解析函数与调和函数的关系
定义 2:对于给定的调和函数 u(x, y) ,把使 u iv 构成解
析函数的调和函数 v(x, y) 称为 u(x, y) 的共轭调和函数。 注:解析函数的虚部是实部的共轭调和函数。但是,一
解析函数 f (z) 。 例 5:用不定积分法求例 2 中的 f (z) 。 例 6:已知 u v (x y)(x2 4xy y2 ) 2(x y) ,试
确定解析函数 f (z) u iv 。
般来说,解析函数的实部不是虚部的共轭调和函数。 3.如何求解析函数
问题:如给定实部(或虚部),如何选择虚部(或实部), 使 f (z) u iv 解析?
1)偏积分法
------如果已知调和函数 u ,可利用条件,求它的共轭调
和函数 v ,以构成解析函数。
例 1:证明: u y3 3x2 y 为调和函数,并求其共轭调和
2.4解析函数与调和函数的关系
设 f (z) u(x, y) iv(x, y) 在区域 E 上解析,由 C R 条件,
解析函数的高阶导数定理即得在 E 上有
2u x2
2u y 2
0及
2v x2
2v y 2
0
一、调和函数
定义 1:若二元实函数(x, y) 在区域 E 内具有连续的二
f (z) f (z)dz U(z)dz c ---适用于已知 u ,求 v 。 f (z) f (z)dz V (z)dz c ---适用于已知 v ,求 u 。
解析函数和调和函数的关系
§2.2 解析函数和调和函数的关系 教学目的:弄清调和函数与共轭调和函数的概念,能理解并掌握解 析函数与调和函数的关系;并能灵活利用常用得三种方法 (不定积分法、偏积分法、曲线积分法)求以调和函数为实 部或虚部的解析函数.重点:不定积分法和偏积分法求解析函数.难点:曲线积分法求解析函数.教学方法:启发式讲授与指导练习相结合教学过程:§2.2.1 调和函数的概念调和函数是有着广泛实际应用的一类函数(平面静电场中的电位函数、无源无旋的平面流速场中的势函数与流函数都是特殊的二元实函数,即调和函数),它与解析函数有着密切的联系.本节,我们将详细地介绍解析函数与调和函数的关系,并介绍利用调和函数来求解析函数的若干方法.【定义2.3】 若二元实函数(,)H x y 在区域D 内具有二阶连续的偏导数,且满足二维拉普拉斯方程(Laplace )22220H H x y∂∂+=∂∂,则称(,)H x y 为D 内的调和函数(或称(,)H x y 在D 内调和),称为拉普拉斯算子. 【定理2.3 】 若函数()(,)(,)f z u x y iv x y =+在区域D 内解析, 则()f z 的实部(,)u x y 和虚部(,)v x y 都是D 内的调和函数. 证 ()f z 在区域D 内解析,所以(,)u x y ,(,)v x y 在D 内可微,且在D 内满足C-R 方程u v x y ∂∂=∂∂,u v y x∂∂=-∂∂,由解析函数的无穷可微性知(,)u x y 和(,)v x y 在D 内都具有任意阶连续的偏导数,从而也具有二阶连续的偏导数 222u v x y x ∂∂=∂∂∂ 222u v y x y∂∂=-∂∂∂, 所以2222220u u v v x y x y y x ∂∂∂∂+=-+=∂∂∂∂∂∂;同理可证22220v v x y∂∂+=∂∂. 故实部 (,)u x y 和虚部 (,)v x y 都是D 内的调和函数.§2.2.2 共轭调和函数【义2.4】 若(,)u x y ,(,)v x y 都是区域D 内的调和函数,且在D 内满足柯西—黎曼方程, 即 u v x y ∂∂=∂∂,u v y x∂∂=-∂∂, 则称(,)v x y 为(,)u x y 的共轭调和函数.下面研究复变函数的实部、虚部两个二元实函数与调和函数的关系.【定理2.4】若函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件是在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.证明 (必要性) 因为()(,)(,)f z u x y iv x y =+在D 内解析, (,)u x y 和(,)v x y 都是D 内的调和函数,且满足柯西—黎曼条件所以 在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.(充分性)在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.所以 (,)v x y ,(,)u x y 具有二阶连续偏导数且满足C R -方程 所以(,)v x y ,(,)u x y 具有一阶连续偏导数且满足C R -方程 故 ()(,)(,)f z u x y iv x y =+在区域D 内解析.注:10.由解析函数的无穷可微性知,若函数()(,)(,)f z u x y iv x y =+在区域D 内解析,则()f z 的任意阶导数在区域D 内也解析,从而 (,)u x y 和(,)v x y 的任意阶偏导数也都是D 内的调和函数.20.两个二元实函数(,)u x y 和(,)v x y 都是区域D 内的调和函数,不一定能保证复函数()(,)(,)f z u x y iv x y =+在区域D 内解析. 20的反例:易证(,)u x y x =,(,)v x y y =-都是平面上的调和函数, 但 ()f z x iy z =-=在平面上处处不解析.30.由第二章的解析函数的判别法知,设(,)u x y 和(,)v x y 都是定义在区域D 内的二元实函数,若(,)v x y 为(,)u x y 的共轭调和函数,则()(,)(,)f z u x y iv x y =+在D 内一定解析.提问:1.函数),(),()(y x iv y x u z f +=解析,则下列命题中错误的是( C )A 、v u ,均为调和函数B 、v 是u 的共轭调和函数C 、v u 是的共轭调和函数D 、v u 是-的共轭调和函数2.解析函数的实部是其虚部的共轭调和函数. ( × )3.解析函数的虚部是其实部的共轭调和函数. ( √ ) §2.2.3 解析函数与调和函数的关系根据定理2.4来建立单连通区域内解析函数的一种求法.假设D 是一个单连通区域, (,)u x y 是D 内的一个调和函数,即 (,)u x y 在D 内具有二阶连续的偏导数,并且22220u u x y ∂∂+=∂∂ 从而u y ∂-∂,u x∂∂在D 内具有一阶连续的偏导数, ()()u u y y x x∂∂∂∂-=∂∂∂∂(曲线积分与路径无关的条件). 再由高数中有关曲线积分与路径无关的条件得, 存在D 内的二元函数(,)v x y ,使得 (,)u u dv x y dx dy y x∂∂=-+∂∂, 于是 00(,)(,)(,)x y x y u u v x y dx dy C y x∂∂=-++∂∂⎰, 其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.另外我们还有u v x y ∂∂=∂∂,u v y x∂∂=-∂∂, 即(,)u x y 和(,)v x y 在D 内满足柯西—黎曼条件, 从而易得 2222220v v u u x y y x x y∂∂∂∂+=-+=∂∂∂∂∂∂ 所以 (,)v x y 也是D 内的调和函数,并且(,)v x y 为(,)u x y 的共轭调和函数.故 由定理2.4, 我们构造函数()(,)(,)f z u x y iv x y =+, ()f z 就是D 内以(,)u x y 为实部的解析函数.【定理】※(1)若(,)u x y 是单连通区域D 内的一个调和函数,则一定存在函数(,)v x y , 使得 ()(,)(,)f z u x y iv x y =+为D 内的解析函数, 并且还有00(,)(,)(,)x y x y u u v x y dx dy C y x∂∂=-++∂∂⎰,其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.(2)同理可得 若(,)v x y 是单连通区域D 内的一个调和函数,则一定存在函数(,)u x y ,使得 ()(,)(,)f z u x y iv x y =+为D 内的解析函数, 并且还有00(,)(,)(,)x y x y v v u x y dx dy C y x∂∂=-+∂∂⎰,其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.注: 此定理给出了已知解析函数的实部(或虚部),求虚部(或实部),从而求出解析函数的一种方法――曲线积分法.由解析函数的实部或虚部求解析函数的举例例1 证明32(,)3u x y x xy =-是平面上的调和函数, 并求以 (,)u x y 为实部的解析函数()f z ,使得(0)f i =.证明: 因为2233u x y x ∂=-∂,6u xy y ∂=-∂,226u x x ∂=∂,226u x y ∂=-∂, 32(,)3u x y x xy =-为正式函数,所以有二阶连续偏导数,所以 22220u u x y∂∂+=∂∂, 即32(,)3u x y x xy =-是平面上的调和函数.下面,我们用三种方法来求满足题设条件的解析函数.方法1: (曲线积分法)由补充定理知取00(,)(0,0)x y =,(如图3.20)(,)(0,0)(,)x y u u v x y dx dy C y x∂∂=-++∂∂⎰ (,)22(0,0)6(33)x y xydx x y dy C =+-+⎰ 220060(33)x yx dx x y dy C =⋅+-+⎰⎰233x y y C =-+所以 3223()3(3)f z x xy i x y y C =-+-+,再由条件(0)f i =,可得1C =.故 32233()3(31)f z x xy i x y y z i =-+-+=+.方法2(微分方程中的常数变异法或称偏积分法)由C R -条件得 2233v u x y y x∂∂==-∂∂ ------------ (Ⅰ) (6)6v u xy xy x y∂∂=-=--=∂∂ ----------- (Ⅱ) 由(Ⅰ)积分得 22(,)(33)v x y x y dy =-⎰233()x y y x ϕ=-+ ----------- (Ⅲ) 求(Ⅲ)对x 的偏导数代入(Ⅱ)得 6()6xy x xy ϕ'+= , 即 ()0x ϕ'=, 所以 ()x C ϕ=(常数),从而 23(,)3v x y x y y C =-+,所求解析函数为 3223()3(3)f z x xy i x y y C =-+-+. 再由条件(0)f i =,可得1C =.故 32233()3(31)f z x xy i x y y z i =-+-+=+.方法3(不定积分法):..()C R u v u u f z i i x xx y ∂∂∂∂'=+=-∂∂∂∂, 其中 1()2x z z =+, 1()2y z z i =- 因为 2233u x y x∂=-∂,6u xy y ∂=-∂, 由解析函数的导数公式: ..()C R u v u u f z i i x xx y ∂∂∂∂'=+=-∂∂∂∂ 得 ()u u f z i x y∂∂'=-∂∂ 222233(6)336x y i xy x y i xy =---=-+ 将1()2x z z =+, 1()2y z z i=- 代入上式 整理得 222()3363f z x y i xy z '=-+= , 所以 3()f z z C =+再由条件(0)f i =,可得C i =. 故 3()f z z i =+.说明:从例1中所给的三种方法中,大家不难体会到,三种方法各有特点:方法1利用了高数中的第二型曲线积分的计算方法;方法2利用了求解微分方程的方法(常数变异法);方法3是纯粹的复变函数的方法.在实际计算时可以根据具体的问题选择合适的方法计算.例2 设),(,()(y x iv y x u z f +=为iy x z +=的解析函数,且已知y x y x v y x u +=-),(),(,求函数()f z .解:方程y x y x v y x u +=-),(),(两边分别对y x ,求偏导数得:110111C R x y x x x y y y x y u u u v u u v u u u -+=-==⎧⎧⎧⎪⎪⎪⇒⇒⎨⎨⎨-==-+=⎪⎪⎪⎩⎩⎩方程, 由0x u =得: )(),(y g y x u = 代入1y u =得:1)(='y g , C y y g +=)((C 为任意常数)从而C y y x u +=),(,(,)(,)()v x y u x y x y x C =-+=-+,所求函数为:C i iz C x i C y iv u z f )1()()(++-=+-++=+= 练习:(1)已知调和函数y x u )1(2-=,i f -=)2(,求解析函数iv u z f +=)(.解:用不定积分法求解如下:2x u y =,22y u x =-,()2(22)2(1)x y f z u iu y i x i z '=-=--=--221()2(1)2(1)(1)2f z i z dz i z C i z C =--=-⨯-+=--+⎰ 由i f -=)2(得 2(21)i C i --+=-,0=C ,所以:2()(1)f z i z =--(2) 已知 22()yi f z u x y=++是解析函数,且(2)0f =,求()f z .解:22222()x y x y u v x y -''==+,2222()y x xy u v x y ''=-=+ 对此,用偏积分求u 比较方便:2222()()()y xdy u u dy g x g x x y =+=++⎰⎰22()x g x x y=-++ 将积分结果求对x 的偏导数得 22(,)()x u x y g x x y=-++ 2222212(),()x x u g x x y x y -'=++++()0,()g x g x c '== 所以 2222()x yi f z c x y x y =-++++ 1(2)02f c =-+= 得12c =,11()2f z z=- . 例3 证明(,)arctan y v x y x = (0x >)在右半平面内是调和函数, 并求以此为虚部的解析函数.证明 因为22v y x x y ∂-=∂+,22v x y x y∂=∂+, 则 222222()v xy x x y ∂=∂+, 222222()v xy y x y ∂-=∂+, 从而 22220v v x y ∂∂+=∂∂, 故(,)arctany v x y x = 是右半平面内的调和函数.下面用方法2(微分方程中的常数变异法)来求解析函数的实部(,)u x y .由C R -条件得22u v x x y x y ∂∂==∂∂+ -------------- (Ⅰ)2222u v y y y x x y x y ∂∂-=-=-=∂∂++ -------------- (Ⅱ) 由(Ⅰ)得 221(,)ln()()2u x y x y y ϕ=++ 代入(Ⅱ)得2222()y yy x y x y ϕ'+=++, 即()0y ϕ'=,从而 ()y C ϕ=(常数), 221(,)ln()2u x y x y C =++. 故 所求解析函数为221()ln()arctan 2y f z x y C i x=+++(0x >)ln arg ln z C i z z C =++=+ (Re 0z >). 例4 已知调和函数 (cos sin )xv e y y x y x y =+++,求一个解析函数 ()f z u iv =+使(0)0f =. 解(不定积分法) 因为(cos sin sin )1x ve y y x y y x∂=+++∂,(cos sin cos )1x ve y y y x y y∂=-++∂ 所以 ..()C R u v v v f z i i x x y x∂∂∂∂'=+=+∂∂∂∂(cos sin cos )1xe y y y x y =-+++ [(cos sin sin )1]xi e y y x y y +++1z z ze e i =+++,积分得 ()(1)zf z ze i z C =+++,由(0)0f =得0C =, 故 ()f z 1z zze e i =+++.例5 已知调和函数 22u x y xy =-+, 求一个解析函数()f z u iv =+使()1f i i =-+.解2ux y x∂=+∂,2u y x y ∂=-+∂ ..()2(2)2C R u v u uf z i i x y i y x z iz x x x y∂∂∂∂'⇒=+=-=++-=-∂∂∂∂,积分得 21()(2)2f z i z C =-+,由()1f i i =-+得2iC =, 故 2()122i i f z z ⎛⎫=-+ ⎪⎝⎭. 练习: 已知 22()(4)2()u v x y x xy y x y +=-++-+,试确定解析函数 ()f z u iv =+.解 :2222(4)()(24)2(4)()(42)2,x x y y x x y xu v x xy y x y x y u v x xy y x y x y u v u v ⎧+=+++-+-⎪+=+++-+-⎨⎪==-⎩226332x yv xyv x y =⎧⎪⇒⎨=--⎪⎩ 222()332632v vf z i x y i xy z y x∂∂'⇒=+=--+=-∂∂, 积分得 3()2f z z z C ⇒=-+.例6 若()f z u iv =+为解析函数,且满足892003u v +=, 试证:()f z 必为常数.解 对892003u v +=分别求对,x y 的导数得128900890()0x x x y y y xy u v u u u C u v f z C v v v C C R ⎧+===⎧=⎧⎪⎪+=⇒⇒⇒=⎨⎨⎨===⎪⎩⎪⎩-⎩方程(常数). 例7 求调和函数(,)x y xy φ= 的共轭调和函数. 提示 设解析函数()(,)(,),(,),(,)x y y x f z x y iv x y v x y x v x y y φφφ=+=-===2(,)()2x y v x y dy ydy g x φ===+⎰⎰,2(,)()()2x y x v x y g x x g x c φ'==-=-⇒=-+故 (,)x y xy φ= 的共轭调和函数221(,)()2v x y y x c =-+. 例8 证明:函数2222,y x xv y x u +=-=都是调和函数,但iv u z f +=)(不是解析函数.证明:y u x u y x 2,2-== ,2,2-==yy xx u u()()222222222,y xxyv y xy x v y x +-=+-=()()222322232,2yxy v yxy v yy xx +-=+=0=+∴yy xx u u 0=+yy xx v v 即u 是复平面上的调和函数,v 除原点外在复平面上调和。
解析函数和调和函数的定义
解析函数和调和函数的定义
解析函数和调和函数是数学中的两个概念,它们的定义如下:
解析函数(Analytic Function):
一个函数f(x)在某一点x处是解析的,如果它在该点附近的某个区域内满足柯西-黎曼方程,即f'(x)=[f(x)]^n,其中n为正整数,f(x)在该点处连续。
如果一个函数在整个定义域内都是解析函数,则称它为全解析函数。
常见的解析函数包括多项式函数、三角函数、指数函数、对数函数等等。
调和函数(Harmonic Function):
一个函数f(x)在某一点x处是调和的,如果它满足拉普拉斯方程,即Δf(x)=0,其中Δ为二阶拉普拉斯方程。
调和函数具有许多优良的性质,如最大值原理、最小值原理、格林公式等等,因此在物理学和工程学中有着广泛的应用。
常见的调和函数包括正弦函数、余弦函数、指数函数、对数函数等等。
总的来说,解析函数和调和函数都是数学中非常重要的概念,它们具有不同的性质和应用领域。
解析函数主要用于研究函数的导数和微分
方程,而调和函数主要用于研究波动现象和物理学中的振动问题。
【学习课件】第六讲_解析函数与调和函数的关系
在 D内满 C足 R方程 :uxvy,uy vx的两个 调和u 函 ,v,v数 必u 为 的共轭调 . 和函 现在研究反过来的问题:若u,v是任意选取的
区域 D内的两个调,和 则u函 i数 v在D内就不 一定解. 析
ppt课件
6
如 vxy不是 uxy的共轭调.和
( f(z)uiv(xy)i(xy)在 z平 面 上 处 处 不 ux解 1vy析 uy1vx)
要想 u使 iv在 D内解 ,u及 析 v还必须 C满 R 足 方程v, 必即 须 u的 是共轭调 .由和 此函 ,数
已知一个解析函数 部u的 (x,实 y),利用CR方 (虚 部 v(x, y))
程可求得它的v(虚 x, y部),从而构成解析函数
uiv.
(实 部 u(x, y))
ppt课件
7
设D一 单 连 通,u(区 x, y域 )是 区D域 内 的 调 和
11
例1 由下列条件求解f析 (z)函 u数 iv
u x2 xy y2
f (i) 1i
解vu2xy vu2yx
y x
x y
dvvdxvdy(2yx)dx(2xy)dy x y
( x, y)
v(x, y) (2y x)dx(2x y)dyc (0,0)
x
y
o xdx0 (2x y)dyc
x2
u0,
v0
其
中
2 x2
2 y2
uu(x,y),vv(x,y)是D内的调和函
定义 设u(x,y)为D内的调和 ,称函 使u数 得 iv 在D内构成解析函 函数 数 v(x,的 y)为 调 u(x,和 y) 的共轭调. 和函数
ppt课件
5
上面定理说明:
复变函数 解析函数与调和函数的关系ppt课件
一、调和函数的定义
定义
如果二元实变函数 (x, y) 在区域 D 内具 有二阶连续偏导数 , 并且满足拉普拉斯方程 2 2 2 2 0, x y 那末称 (x, y) 为区域 D内的调和函数 . 拉普拉斯
调和函数在流体力学和电磁场理论等实际 问题中有很重要的应用.
x e ( x sin y y cos y sin y ) g ( y ),
故 g ( y ) y c ,
x 于是 u e ( x cos y y sin y ) x y c ,
10
f ( z ) u iv
x iy x iy xe e iye e x ( 1 i ) iy ( 1 i ) c
ze ( 1 i ) z c ,
z
由 f ( 0 ) 0 ,
得 c 0 ,
z
所求解析函数为 f ( z ) ze ( 1 i ) z .
11
4. 不定积分法
求解析函数的方法称为 不定积分法 .
已知调和函数 u ( x ,y ) 或 v ( x ,y ) ,用不定积
u 2u 解 因为 6 xy , 6y, 2 x x 2 u u 2 2 6 y, 3y 3 x, 2 y y
6
数 .
2 2 u u 于是2 2 0 , 故 u (x ,y )为调和函数 . x y
v u 因为 6 xy , y x
得 u [ e (cos y y sin y x cos y ) 1 ] d x
x
9
u e ( x cos y y sin y ) x g ( y ),
2-2调和函数与解析函数
与调和函数的关系以及共轭调和函数的概念.
应注意的是: 1. 任意两个调和函数u与v所构成的 函数u+iv不一定是解析函数. 2. 满足柯西—黎曼方程ux= vy, vx= –uy,的v称为u 的共轭调和函数, u与v注意的是地位不能颠倒.
放映结束,按Esc退出.
7
例2.7 已知 v( x , y ) e x ( y cos y x sin y ) x y 为调
和函数, 求一解析函数 f ( z ) u iv , 使 f (0) 0.
解
v e x ( y cos y x sin y sin y ) 1, x v e x (cos y y sin y x cos y ) 1, y
x, y
其中 x0 , y0 为D内一定点, C为任意实常数.
10
例2.8求解析函数f (z )=u+iv,u x y xy,
2 2
f (i) 1 i.
解:容易验证是u全平面的调和函数。利用C-R条件, 先求出v的两个偏导数。
v u v u 2 y x, 2x证u(x,y)=x3—3xy2是z平面上的调和函数, 并求以u(x,y)为实部的解析函数f(z),使合f(0)=i.
解:
u 3x 2 3 y 2 x u 6 xy y
2u 2u 2u 2u 6x 2 2 2 0 2 x y x y
u v u v , , x y y x
得
2v 2v 因 与 在D内连续,它们必定相等,故在D内有 xy yx 2 u 2 u 0 2 2 x y 2v 2v 0 同例,在D内有 2 2 x y
复变函数ppt教学2-2解析函数和调和函数的关系
13
1 2 1 2 x 2 xy y C 2 2 所以
2 2
( x )dx (2 x y )dy C
0 0
x
y
Байду номын сангаас
(1 ) z iC 2 1 又因为 f ( i ) 1 i , 所 以C ,得 到 2
2
1 2 1 2 f ( z ) ( x y xy) i ( x 2 xy y C ) 2 2 i
12
曲线积分法
例 4. 求解析函数f ( z ) u iv,已知, u x y xy, f (i) 1 i.
2 2
解:容易验证 u是全平面的调和函数, 利 用柯西黎曼条件,求出 两个偏导数 v u v u 2 y x, 2x y x y y x 则 ( x, y) v( x, y ) (2 y x )dx (2 x y )dy C
e ( x cos y y sin y) x g( y) v u 由于 得到 x y x e ( y cos y x sin y sin y) 1 e x ( x sin y y cos y sin y) g' ( y)
x
11
故g( y ) y C,因此 x u e ( x cos y y sin y) x y C 从 而 f ( z ) e x ( x cos y y sin y) x y C
v (3 x 2 3 y 2 )dy 3 x 2 y y 3 ( x)
v u ' 再 由 6 xy ( x ) 6 xy x y
解析函数与调和函数的关系
第三章
解析函数与调和函数的关系
一、调和函数的定义 二、解析函数与调和函数的关系
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
一、调和函数的定义
定义 如果二元实变函数 ( x , y ) 在区域 D内具
有二阶连续偏导数, 并且满足拉普拉斯方程 2 2 2 2 0, x y 那末称 ( x , y ) 为区域 D 内的调和函数.
3 w f ( z ) i ( z c ). 即
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
内容小结
1.调和函数的概念
2.解析函数与调和函数的关系以及共轭调和函数
的概念.
1. 任意两个调和函数 u与v所构成的函数 u+iv不一定 是解析函数. 2. v称为u的共轭调和函数, u与v注意的是地位不能 颠倒.
2 u u 因为 6 xy, 6 y , 2 x x 2 u u 2 2 3 y 3x , 6 y, 2 y y
2u 2u 于是 2 0, 故 u( x , y ) 为调和函数. 2 x y
盐城工学院基础部应用数学课程组
目录 上页 下页 返回 结束
调和函数在流体力学和电磁场理论等实际 问题中有很重要的应用.
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
二、解析函数与调和函数的关系
1. 两者的关系
任何D 内的解析函数,它的实部和虚部都是 D 内
的调和函数. 2. 共轭调和函数的定义
设解析函数u iv的实部u( x, y ) 是一调和函数, 则虚部v( x, y ) 称为 u( x, y ) 的共轭调和函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40 三角函数和双曲函数在其定义域内解析,反三角 函数和反双曲函数要具体讨论。
9
§2.5 调和函数
调和函数:设二元实变量函数h(x,y)在区域D内具有 连续的二阶偏导数,并且满足拉普拉斯方 程: xx ( x, y ) hyy ( x, y ) 0 ,则称h(x,y)其为D内的 h 调和函数。
从而f(z) c1 ic2 c.
其中c1 , c2为实常数,c为复常数)证毕
7
3、初等函数的解析性
定理1 设w=f (z)及w=g(z)是区域D内的解析函数, 则 f (z)±g(z),f (z)g(z) 及 f (z) g(z) (g (z)≠0时) 均是D内的解析函数。 定理 2 设 w=f (h) 在 h 平面上的区域 G 内解析, h=g(z) 在 z 平面上的区域 D 内解析, h=g(z)的函数值 集合 G,则复合函数w=f [g(z)]在D内处处解析。
故 u (2 - 2y)dx 2 x(1 y) g ( y)
u - 2xdy 2 xy h( x)
2 x(1 y) g ( y) 2 xy h( x)
即 2 x g ( y) h( x)
g ( y) c
故 f(z) u iv 2x - 2xy c i( x 2 - y 2 2y) iz 2 2 z c(c为实数)
u u( x , y ),v v ( x , y )是D内的调和函数。
共轭调和函数
设函数u(x,y)、v(x,y)均是D内的调和函数,而且它 们满足柯西—黎曼方程,则称v(x,y)为u(x,y)的共轭调和 函数。 u v u v C R方程 x y y x 上面定理说明:
2 2
2 y 0
(x,y ) ( x,0)
6 xydy c
3 2
3x dx 6 xydy c x - 3xy c
0
故 f(z) u iv y3 - 3x 2 y i( x 3 - 3xy 2 c)
19
例 2.24 已知f(z)的虚部为 求解析函数f(z)=u+iv,且f(0)=0.
u x 6xy, u y 3 y 2 - 3x 2
故 v
(x,y ) ( 0, 0 )
(x,y ) ( 0, 0 ) (x,0)
- u y dx u x dy c
(3x 2 - 3y 2 )dx 6 xydy c
( 0, 0 )
x
(3x - 3y )dx
重点!
§2.4 解析函数
1、定义:
如果函数f(z)不仅在 z 0处可导,而且在 z 0的某 个邻域内任意点可导,则称f(z)在 z 0 处解析.
如果函数在区域D内任意点解析,则称f(z)在区 域D内解析。 若f(z)在 z 0不解析,则称该点为f(z)的奇点。
1
(1) w=f (z) 在 D 内解析 在D内可导。 (2) 函数f (z)在 z0 点可导,未必在z0解析。
16
方法二
定理4-6 设u(x,y)是单连通区域D内的调和函数,(x0,y0) 为D内任意取定的点,则存在由
v( x, y ) ((xx ,,yy) ) u y dx u x dy c
0 0
确定的唯一形式的v(x,y),是f(z)=u+iv是D内的解析函数。
公式不用强记!可如下推出:
记u x v y
f(z) 在整个复平面上处处不解析。
3) f(z) zRe(z) (x iy)x x ixy
2
记 u x v xy u v u v 则 2x, x , 0, y x y y x
2
仅在原点满足柯西 黎曼方程 f(z) 在整个复平面上处处不解析。
8
10 指数函数ez在整个复平面上解析。 20 对数函数Lnz的主值及各分支函数在除去原点和负 实轴外处处解析。
30 幂函数 z :
1)为正整数和零时, 在整个复平面解析。 z 2)为负整数时,在除原点外整个复平面解析。 z
3)为既约分数、无理数、复数时,在除去原点和 z 负实轴外的复平面解析。
例 设u ( x, y ) x y , v( x, y ) 2 xy
2 2
u , v是调和函数吗?v为u的共轭调和函数吗? u为v的共轭调和函数吗?
注:一般地,若v为u在D内的共轭调和函数, 则-u为v在D内的共轭调和函数, u是-v的共轭调 和函数
12
现在研究反过来的问题: u, v是任意选取的在 若
解: 1) f ( z ) x 2 y 2 i 2 xy, 则u x 2 y 2 , v 2 xy
u x 2 x v y , u y 2 y vx且显然可微
f(z) z 2在整个复平面上处处可导,
f(z) z 2在整个复平面上处处解析
2) f ( z ) x 2 y 2 i0, 则u x 2 x, v y 0, u y 2 y, vx 0
1 2 1 2 v(x,y)= 2 x 2 y
解: v x x, v y y
故 u
(x,y ) ( 0, 0 ) (x,0)
( 0, 0 )
v y dx vx dy c
ydx
0
(x,y ) ( x , 0)
(x,y ) ( 0, 0 )
ydx xdy c
y
20
四、本章总结
本章重点学习了复变函数的连续、可导、解析函数、 调和函数的概念,给出了各自的充要条件。 要求:会判断函数的连续性、可导性、解析函数和调 和函数。
它们之间的关系:
未必 未必 必然 连续函数 可导函数 解析 调和函数 必然 必然 未必
f(z) z 在整个复平面上除z 个复平面上处处不解析
3
2
问题
如何判断函数的解析性呢?
2、函数解析的充要条件
定理2.9 函数f(z)=u(x,y)+iv(x,y)在其定义域D 内解析的充要条件是:u,v在D内可微,且满足柯 西—黎曼方程。
记忆
D内解析函数的虚部是实 部的共轭调和函数 . 即, f ( z ) u( x , y ) iv( x , y )在D内解析 在D内v ( x , y )必为u u( x , y )的共轭调和函数 .
11
设f(z)=u(x,y)+iv(x,y),则f(z)在D内解析
在D内v(x,y)是u(x,y)的共轭调和函数 f(z)=v(x,y)-iu(x,y)在区域D内亦解析 f(z)=-v(x,y)+iu(x,y)在区域D内亦解析
类似地, 然后两端积分得,
u( x , y )
( x, y)
( x 0 , y0 )
v y dx v x dy c
( )
18
例 2.23 已知调和函数u(x,y)= y 3 3 x 2 y 求其共轭调和函数v(x,y)使f(z)=u+iv在相应区域解析。
解: u y 3 - 3x 2 y
(在一个点的可导性是一个局部概念,而解析性是 一个整体概念)
注: 1) f(z)在某点解析,也就是指f(z)在包含该点 的某邻域内解析。 2)f(z)在闭区域 D 上解析,也就是指f(z)在包 含 D 的某邻域内解析。
2
例 讨论函数的解析性 z 2 的解析性 1)f(x)= 2 2)f(x)= z 的解析性
6
例2.20 证明若函数f(z)在某区域内任意点均解析且导 数为零,则该函数在此区域上为常数。
证明:设f(z)=u(x,y)+iv(x,y)
f / ( z ) u x ivx v y iu y 0 u x u y 0, vx v y 0
知 : u( x, y) c1 , v( x, y) c2
f(z) 在整个复平面上处处解析。
2) f(z) z x - iy
u v 则 1 1 x y
记 u x v y
f(z) 在整个复平面上处处不解析。
5
而 f(z) z x iy
u v u v 则 1 , 0 且显然处处连续 x y y x
已知:u( x , y ), 求其共轭调和函数( x , y ) : v v v C R方程 由dv dx dy u y dx u x dy x y 然后两端积分。
17
v v C R方程 v v 由du dx dy dx dy x y y x
g(x) c
v x -shxcosy g(x) u y -shxcosy
故 f(z) u iv shxsiny - i(chxcosy c)
15
2) v x 2 - y 2 2y
v x 2x -u y , v y 2 - 2y u x
例2.19 讨论下列函数的解析性 1)f(z)=2x(1-y)+i(x2-y2+2y) 2) f(z)= z 3) f(z)=zRe(z)=(x+iy)x
u x v x
u y v y
4
解:1) 记 u 2x(1 - y) v x 2 - y 2 2y
u v u v 则 2(1 - y) , 2x x y y x u u v v 又 、 、 、 在整个复平面上连续 x y x y
五、作业:
2.4.7 a . d 2.5.5 2.4.9 b 2.5.9 d 2.4.13. c f 2.5.10 d i
21