LM3886功率放大器原理图及PCB

合集下载

NE5532LM3886力度十足的低音炮音响电路图

NE5532LM3886力度十足的低音炮音响电路图

NE5532LM3886力度十足的低音炮音响电路图
力度十足的低音炮
在音乐的重放中,完美的低音再现,不仅能增强音乐感,更能增加临场感与真实感。

本文介绍一款体积不大但劲量十足的有源低音炮,它十分适合应用在多媒体电脑的音响系统中,或在家居面积较小的环境下欣赏音乐之用,使你轻松地浸泡在音乐里、溶入游戏中,体味那真实的感觉。

低音炮的电路部分见图1。

有源低音放大器的电路原理大同小异,基本是由低通滤波器和功率放大器构成,本电路也不例外,由大家均已熟知的NE5532组成120Hz 低通滤波器,对输入的120Hz以上的信号滤除,再送入大名鼎鼎的LM3886功放集成电路进行功率放大,将浓郁强劲的重低音信号送到扬声器中。

大功率集成电路LM3886的音色非常好,个头虽然不大,但其效果比一般分立式晶体管放大器有过之而无不及。

低音炮的音箱结构见图2,本低音炮使用一只上海银笛的734X 8英寸PP盆低音扬声器。

由于LM3886推动8英寸箱体的量感很足,所以本箱体采用倒相式结构,以尽可能的延伸低频下限,这样才能真正再现弹性与浑厚的重低音。

应该说设计合理的迷宫式音箱的低频再现要比其它形式的音箱好一些,但业余条件下制作有较大的难度,本文未采用。

箱体制作完成后在内部先浇灌大约05~1厘米厚的沥青,再粘上1厘米厚的腈纶棉,即可安装电路使用了。

本音箱配备在原多媒体音响中,组成21式或组合在原主音箱仅使用65英寸以内扬声器的家用音响中,效果改善相当明显。

LM386电路原理音频放大器

LM386电路原理音频放大器

LM386电路原理音频放大器首先,我们来了解一下LM386的引脚功能。

LM386一共有8个引脚,其中1、8脚为电源引脚,2脚为音频输入引脚,3脚为反馈引脚,4脚为电源地引脚,5脚为输出引脚,6脚为增益选择引脚,7脚为旁路引脚。

LM386的电路原理如下:首先,输入信号通过2脚输入引脚进入IC。

在IC内部,输入信号经过一个多级放大器,增益可通过6脚的电阻选择来设定。

在放大器的输出端,通过5脚输出引脚输出放大后的信号。

同时,反馈引脚3和电源地引脚4之间的电容C2连接在放大器输出端,用于提供电流反馈,提高放大器的稳定性和线性度。

在输入信号通过放大器放大后,输出信号通过5脚输出引脚进入电容C3,然后再经过输出耦合电容C4,最终输出到扬声器或耳机等负载上。

为了提供电源供电,通常我们将1脚接到正电源,8脚接到地。

此外,为了提高抗干扰能力和音频品质,可在电源引脚和地之间再添加一个滤波电容C1在LM386电路中,还可以通过六脚增益选择引脚来设置增益的大小。

当增益选择引脚6未连接时,增益为20倍。

当将增益选择引脚6接地时,增益为200倍。

当将增益选择引脚6接到VCC电源上时,增益为指定的10倍。

另外,LM386还具有一个旁路引脚7、如果将旁路引脚接地,表示选择普通的电路工作模式。

如果将旁路引脚连接到VCC电源上,则选择旁路模式,可以实现更低的功耗。

需要注意的是,由于LM386是低功耗集成电路,因此在选择电源时要注意其电流输出能力。

同时,为了保证音频质量,应尽可能降低输入信号的幅度,避免出现过载,以及合理选择反馈和耦合电容的数值。

总之,LM386是一款功能齐全且易于使用的音频放大器集成电路。

我们可以根据实际需要调整增益和工作模式,实现不同的音频放大应用。

希望以上内容能对你理解LM386电路原理有所帮助。

一个LM386简单功放电路图

一个LM386简单功放电路图

一个LM386简单功放电路图(2010-04-27 22:29:37)分类:无线电_电子_音响_HiFi标签:ita. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容.b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了.把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧.c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行.......d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声道和一个地,现在将这两个都悬浮起来接到功放上,两边没有共地,电脑主板上情况有复杂,所有有点噼噼啪啪的声音也正常,于是用了一个104的电容将电脑地和功放地一共起来,问题解决!效果很好,于是图就定成这样:3.建议以我使用的LM386-N1为标准的建议a. 供电,除非你保证你的供电是标准的12V,要不你就用9V.毕竟极限电压就在15V上b.两个LM386一定要是同一批次出来的,这样对称性比较好,你要是用不同厂家的386来做BTL,哪就等着听嗡嗡声吧c.LM386的增益其实可以通过在1,8两脚之间加电容来调的,如果是不接东西386的增益是最大的.所以用BTL电路没事也就别调什么放大倍数了吧d.LM386-N1的输出功率不大,所以输入的幅度不要搞得太狠,虽然在我的电脑上把声音开到最大还没烧片子,但是也热得可以,所以还是适可而止吧(具体参数我也没测试)e.如果声音比较大还是建议吧C1用到330uF以上.算算价格:LM386一片1块一共两块,电解电容3毛,瓷片电容5分,弄上一小块万用板也就2块不到,一共算4块钱吧,如果想低音听得爽些,花点血本买个带橡皮圈的内磁喇叭吧也就8块左右.一个单声道功放12块搞定,立体声就是24块.效果绝对不差。

功率放大器LM386的工作原理

功率放大器LM386的工作原理

功率放大器LM386的工作原理LM386是一种经典的功率放大器,广泛应用于音频放大和功率放大器电路中。

其工作原理如下:1.内部结构:LM386是一款单声道的音频功率放大器芯片,内部包含多个电路模块,如放大器、调节增益、音量控制等。

其主要特点是使用方便、稳定性好、功耗低等。

2.输入级:LM386的输入级主要是一个可控增益的放大器,用于接收音频信号。

它包括一个开环放大器和一个反馈电阻,通过调节反馈电阻的阻值可以改变放大倍数。

当输入的音频信号经过放大器放大后,将进入下一级电路。

3.中间级:LM386的中间级是一个用于控制增益并产生电流的电路。

它主要由两个电阻和一个电容组成,通过调节这两个电阻的阻值和电容的容值,可以控制功率放大器的增益和频率响应。

4.输出级:LM386的输出级主要是一个功率放大器,用于放大中间级输出信号的电流。

它包含一个输出电感和一个输出电容,通过调节这两个元件的参数可以控制输出信号的频率响应和幅度。

同时,输出级还包括一个管脚用于连接外部负载。

5.反馈回路:LM386的反馈回路主要是通过改变反馈电阻的阻值,将一部分输出信号重新引入到输入级,从而实现对放大倍数的控制。

当反馈电阻的阻值增大时,放大倍数将减小;反之,当阻值减小时,放大倍数将增大。

6.供电电路:LM386的供电电路主要是外部提供的两个直流电源,一个是正电源VCC,一个是负电源VSS。

这两个电源用于给芯片的不同部分提供正负的直流电压,从而使芯片能够正常工作。

在工作时,LM386将外部输入的音频信号经过放大、控制增益、输出等一系列处理后,输出到外接负载上。

通过控制芯片内部的电路结构和元件参数,可以调节放大倍数、频率响应和音量等参数,从而满足不同应用的需求。

总之,LM386功率放大器的工作原理主要是通过控制输入级、中间级和输出级之间的相互作用,将输入信号放大并输出到负载上。

同时,通过反馈回路和供电电路的控制,实现对放大倍数、频率响应和音量等参数的调节。

LM3886动态反馈功放

LM3886动态反馈功放

音质魅力——LM3886TF动态反馈功放相信广大发烧友都知道功放均有负反馈,其目的是为了:①克服非线性的扬声器阻抗对反馈回路的影响(瞬态失真);②提高放大电路的稳定性;③减少非线性失真;④抑制干扰、抑制晶体管由载流子热运动所产生的噪声;⑤展宽频带:放大电路的上限频率提高了,下阻频率降低了。

现市面上的功放无论甲类、甲乙类均是采用电压型负反馈的多,电流负反馈的较少,电压型负反馈的功放它输出电压的大小仅与放大倍数有关,而与扬声器的阻抗无关,这就使得放大器克服非线性失真与瞬态失真两者不能兼顾。

而采用电流负反馈就可解决这个缺点了:用线性元件电阻把流过扬声器音圈的电流取样反馈给功放输入端,使放大器以固定电流方式驱动负载,扬声器受电流控制振荡而发声就能很好地解决功放内非线性失真与瞬态失真不能兼顾的问题了。

近年音响技术飞速发展,国内的一些知名音响厂家研究出了另一种反馈技术――动态反馈技术(MFB)。

这是一种同时具有电流反馈和电压反馈的反馈技术:当Z O (喇叭负载)变小时采用电压反馈,当Z O 连续变化时就同时使用电流反馈和电压反馈。

采用动态反馈技术与电压电流相比,它是一种具有超级性能的控制方式,令功放的音质更具魅力,如信噪比高,放音音色温暖有弹力,中音清澈透明,低频动态强劲,爆棚有力,人声及小提琴声定位准确,解析力高,声音耐听而不烦噪。

图1是采用LM3886TF带动态反馈的功率放大电路,是由电流负反馈加电压负反馈组成的,它将扬声器系统也包含在反馈网络之内,对扬声器的控制起到积极作用,有力地抵消扬声器振动所带来的失真,使音乐的弹跳力明显增强,使死板的处于单一平面音场的声音变得活泼生气了,空间感增强了,声场的宽度与深度有了明显改善。

为了解决数码音源(如CD、VCD、DVD等)的数码音乐的干硬、发毛,图1的电路具备了对数码声有柔化作用,能对数码音源的前冲“发毛”声音柔化,把干硬的声音乐化,起这一功能的是图1电路中的电压负反馈量较常规的作了相应的调整,将电压增益由低调高,使电压负反馈量由深变浅。

LM3886tf

LM3886tf

自制LM3886功放LM3886,为美国国半出产的优质集成功放! 带过压、过高温保护.此IC在音响方面运用极广,应该只要DIY的朋友应该接触过,世界著名音响厂家曾用极普通的LM3886制作高档的昂贵的功放!其外围电路简单、制作方便.其性能如下:•VCC=±28V OUTPUT=68W/4Ω、38W/8Ω•VCC=±35V OUTPUT=50W/8Ω•峰值功率:135W•信噪比≥92db•转换率:19V/us•互调失真:0.04%•11脚TO-220封装•静音功能•SP iKeTM保护功能LM3886有两种型号:LM3886TF和LM3886T,前者散热片绝缘,后者不绝缘.下图为美国国家半导体公司提供的应用电路图:PCB说明:1:布线合理,布线安照单点接地2:尺寸:65*40*1.6mm ,定位孔距离58*33mm,四角定位,定位孔内径--------3.2mm3:PCB:双面镀金,易于焊接和长时间存放4:输入电容焊盘可配合多种不同封装的电容用Protel99布的PCB板图:自已制作时基本元件清单如下:怎么样够简单吧,按PCB上的元件编号插件R1:1KΩ,R2:20KΩ,R3:39KΩ,R4:1KΩ,R5:20KΩ,R6:10Ω(N/A)C1:1uF,C2:22Uf(Φ8*11.5mm),C3(N/A),C4:100uF(Φ8*11.5mm) ,C5:0.1uF(N/A),C6:0.1uF,C7:0. 1uF,C8:100uF(Φ8*11.5mm),C9:100uF(Φ8*11.5mm)L1:0.75uH IC1:LM3886电源接线端子:DG126-3P 输出接线端子:DG126-2P 输入接线端子:DG126-2PPCB:双面镀金板65*40*1.6mm。

LM3886

LM3886

LM3886Overture ™Audio Power Amplifier SeriesHigh-Performance68W Audio Power Amplifier w/MuteGeneral DescriptionThe LM3886is a high-performance audio power amplifier capable of delivering 68W of continuous average power to a 4Ωload and 38W into 8Ωwith 0.1%(THD +N)from 20Hz–20kHz.The performance of the LM3886,utilizing its Self Peak In-stantaneous Temperature (˚Ke)(SPiKe ™)Protection Cir-cuitry,puts it in a class above discrete and hybrid amplifiers by providing an inherently,dynamically protected Safe Oper-ating Area (SOA).SPiKe Protection means that these parts are completely safeguarded at the output against overvolt-age,undervoltage,overloads,including shorts to the sup-plies,thermal runaway,and instantaneous temperature peaks.The LM3886maintains an excellent Signal-to-Noise Ratio of greater than 92dB with a typical low noise floor of 2.0µV.It exhibits extremely low (THD +N)values of 0.03%at the rated output into the rated load over the audio spectrum,and provides excellent linearity with an IMD (SMPTE)typical rat-ing of 0.004%.Featuresn 68W cont.avg.output power into 4Ωat V CC =±28Vn 38W cont.avg.output power into 8Ωat V CC =±28V n 50W cont.avg.output power into 8Ωat V CC =±35V n 135W instantaneous peak output power capability n Signal-to-Noise Ratio ≥92dB n An input mute functionnOutput protection from a short to ground or to the supplies via internal current limiting circuitryn Output over-voltage protection against transients from inductive loadsn Supply under-voltage protection,not allowing internal biasing to occur when |V EE |+|V CC |≤12V,thus eliminating turn-on and turn-off transients n 11-lead TO-220package Applicationsn Component stereo n Compact stereon Self-powered speakers n Surround-sound amplifiers nHigh-end stereo TVsTypical ApplicationOverture ™and SPiKe ™Protection are trademarks of National Semiconductor Corporation.DS011833-1*Optional components dependent upon specific design requirements.Refer to the External Components Description section for a component functional description.FIGURE 1.Typical Audio Amplifier Application CircuitMay 1999LM3886Overture Audio Power Amplifier Series High-Performance 68W Audio Power Amplifier w/Mute©1999National Semiconductor Corporation Connection DiagramPlastic Package(Note12)DS011833-2 Note1:Preliminary:call you local National Sales Rep.or distributor for availabilityTop ViewOrder Number LM3886Tor LM3886TFSee NS Package Number TA11B forStaggered Lead Non-IsolatedPackage or TF11B(Note1)forStaggered Lead Isolated Package 2Absolute Maximum Ratings(Notes6,5)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage|V+|+|V−|(No Signal)94V Supply Voltage|V+|+|V−|(Input Signal)84V Common Mode Input Voltage(V+or V−)and|V+|+|V−|≤80V Differential Input Voltage(Note16)60V Output Current Internally Limited Power Dissipation(Note7)125W ESD Susceptibility(Note8)3000V Junction Temperature(Note9)150˚C Soldering InformationT Package(10seconds)260˚C Storage Temperature−40˚C to+150˚C Thermal ResistanceθJC1˚C/W θJA43˚C/W Operating Ratings(Notes5,6)Temperature RangeT MIN≤T A≤T MAX−20˚C≤T A≤+85˚C Supply Voltage|V+|+|V−|20V to84VElectrical Characteristics(Notes5,6)The following specifications apply for V+=+28V,V−=−28V,I MUTE=−0.5mA with R L=4Ωunless otherwise specified.Limits apply for T A=25˚C.Symbol Parameter ConditionsLM3886Units(Limits) Typical(Note10)Limit(Note11)|V+|+|V−|Power Supply Voltage(Note14)V pin7−V−≥9V182084V(min)V(max)A M Mute Attenuation Pin8Open or at0V,Mute:OnCurrent out of Pin8>0.5mA,Mute:Off11580dB(min)P O (Note4)Output Power(Continuous Average)THD+N=0.1%(max)f=1kHz;f=20kHz|V+|=|V−|=28V,R L=4Ω|V+|=|V−|=28V,R L=8Ω|V+|=|V−|=35V,R L=8Ω6838506030W(min)W(min)WPeak P O Instantaneous Peak Output Power135W THD+N Total Harmonic Distortion Plus Noise60W,R L=4Ω,30W,R L=8Ω,20Hz≤f≤20kHz A V=26dB 0.030.03%%SR (Note4)Slew Rate(Note13)V IN=2.0Vp-p,t RISE=2ns198V/µs(min)I+(Note4)Total Quiescent Power SupplyCurrent V CM=0V,V o=0V,I o=0A5085mA(max)V OS (Note3)Input Offset Voltage V CM=0V,I o=0mA110mV(max)I B Input Bias Current V CM=0V,I o=0mA0.21µA(max) I OS Input Offset Current V CM=0V,I o=0mA0.010.2µA(max) I o Output Current Limit|V+|=|V−|=20V,t ON=10ms,V O=0V11.57A(min)V od (Note3)Output Dropout Voltage(Note15)|V+–V O|,V+=28V,I o=+100mA|V O–V−|,V−=−28V,I o=−100mA1.62.52.03.0V(max)V(max)PSRR (Note3)Power Supply Rejection Ratio V+=40V to20V,V−=−40V,V CM=0V,I o=0mAV+=40V,V−=−40V to−20V,V CM=0V,I o=0mA1201058585dB(min)dB(min)CMRR (Note3)Common Mode Rejection Ratio V+=60V to20V,V−=−20V to−60V,V CM=20V to−20V,I o=0mA11085dB(min)A VOL (Note3)Open Loop Voltage Gain|V+|=|V−|=28V,R L=2kΩ,∆V O=40V11590dB(min)GBWP Gain-Bandwidth Product|V+|=|V−|=30Vf O=100kHz,V IN=50mVrms 82MHz(min)3Electrical Characteristics(Notes5,6)(Continued)The following specifications apply for V+=+28V,V−=−28V,I MUTE=−0.5mA with R L=4Ωunless otherwise specified.Limits apply for T A=25˚C.Symbol Parameter ConditionsLM3886Units(Limits) Typical(Note10)Limit(Note11)e IN (Note4)Input Noise IHF—A Weighting FilterR IN=600Ω(Input Referred)2.010µV(max)SNR Signal-to-Noise Ratio P O=1W,A-Weighted,Measured at1kHz,R S=25Ω92.5dBP O=60W,A-Weighted,Measured at1kHz,R S=25Ω110dBIMD Intermodulation Distortion Test60Hz,7kHz,4:1(SMPTE)60Hz,7kHz,1:1(SMPTE)0.0040.009%Note2:Operation is guaranteed up to84V,however,distortion may be introduced from SPIKe Protection Circuitry if proper thermal considerations are not taken into account.Refer to the Thermal Considerations section for more information.(See SPIKe Protection Response)Note3:DC Electrical Test;refer to Test Circuit#1.Note4:AC Electrical Test;refer to Test Circuit#2.Note5:All voltages are measured with respect to the GND pin(pin7),unless otherwise specified.Note6:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limit is given,however,the typical value is a good indication of device performance.Note7:For operating at case temperatures above25˚C,the device must be derated based on a150˚C maximum junction temperature and a thermal resistance of θJC=1.0˚C/W(junction to case).Refer to the Thermal Resistance figure in the Application Information section under Thermal Considerations.Note8:Human body model,100pF discharged through a1.5kΩresistor.Note9:The operating junction temperature maximum is150˚C,however,the instantaneous Safe Operating Area temperature is250˚C.Note10:Typicals are measured at25˚C and represent the parametric norm.Note11:Limits are guaranteed to National’s AOQL(Average Outgoing Quality Level).Note12:The LM3886T package TA11B is a non-isolated package,setting the tab of the device and the heat sink at V−potential when the LM3886is directly mounted to the heat sink using only thermal compound.If a mica washer is used in addition to thermal compound,θCS(case to sink)is increased,but the heat sink will be isolated from V−.Note13:The feedback compensation network limits the bandwidth of the closed-loop response and so the slew rate will be reduced due to the high frequency roll-off.Without feedback compensation,the slew rate is typically larger.Note14:V−must have at least−9V at its pin with reference to ground in order for the under-voltage protection circuitry to be disabled.Note15:The output dropout voltage is the supply voltage minus the clipping voltage.Refer to the Clipping Voltage vs Supply Voltage graph in the Typical Perfor-mance Characteristics section.Note16:The Differential Input Voltage Absolute Maximum Rating is based on supply voltages of V+=+40V and V−=−40V.Test Circuit#1(DC Electrical Test Circuit)DS011833-34Test Circuit#2(AC Electrical Test Circuit)DS011833-4Single Supply Application CircuitDS011833-5*Optional components dependent upon specific design requirements.Refer to the ExternalComponents Description section for a component functional description.FIGURE2.Typical Single Supply Audio Amplifier Application Circuit5Equivalent Schematic(excluding active protection circuitry)6External Components Description(Figure1and Figure2)Components Functional Description1.R IN Acts as a volume control by setting the voltage level allowed to the amplifier’s input terminals.2.R A Provides DC voltage biasing for the single supply operation and bias current for the positive input terminal.3.C A Provides bias filtering.4.C Provides AC coupling at the input and output of the amplifier for single supply operation.5.R B Prevents currents from entering the amplifier’s non-inverting input which may be passed through to the loadupon power-down of the system due to the low input impedance of the circuitry when the under-voltagecircuitry is off.This phenomenon occurs when the supply voltages are below1.5V.6.C C(Note17)Reduces the gain(bandwidth of the amplifier)at high frequencies to avoid quasi-saturation oscillations of the output transistor.The capacitor also suppresses external electromagnetic switching noise created from fluorescent lamps.7.Ri Inverting input resistance to provide AC Gain in conjunction with R f1.8.Ci(Note17)Feedback capacitor.Ensures unity gain at DC.Also a low frequency pole(highpass roll-off)at: f c=1/(2πRi Ci)9.R f1Feedback resistance to provide AC Gain in conjunction with Ri.10.R f2(Note17)At higher frequencies feedback resistance works with C f to provide lower AC Gain in conjunction with R f1 and Ri.A high frequency pole(lowpass roll-off)exists at:f c=[R f1R f2(s+1/R f2C f)]/[(R f1+R f2)(s+1/C f(R f1+R f2))]11.C f(Note17)Compensation capacitor that works with R f1and R f2to reduce the AC Gain at higher frequencies.12.R M Mute resistance set up to allow0.5mA to be drawn from pin8to turn the muting function off.→RMis calculated using:R M≤(|V EE|−2.6V)/I8where I8≥0.5mA.Refer to the Mute Attenuation vs.Mute Current curves in the Typical Performance Characteristics section.13.C M Mute capacitance set up to create a large time constant for turn-on and turn-off muting.14.R SN(Note17)Works with C SN to stabilize the output stage by creating a pole that eliminates high frequency oscillations.15.C SN(Note17)Works with R SN to stabilize the output stage by creating a pole that eliminates high frequency oscillations.f c=1/(2πR SN C SN)16.L(Note17)Provides high impedance at high frequencies so that R may decouple a highly capacitive load and reduce the Q of the series resonant circuit due to capacitive load.Also provides a low impedance at low frequencies to short out R and pass audio signals to the load.17.R(Note17)18.C S Provides power supply filtering and bypassing.19.S1Mute switch that mutes the music going into the amplifier when opened.Note17:Optional components dependent upon specific design requirements.Refer to the Application Information section for more information.OPTIONAL EXTERNAL COMPONENT INTERACTIONAlthough the optional external components have specific desired functions that are designed to reduce the bandwidth and elimi-nate unwanted high frequency oscillations they may cause certain undesirable effects when they interact.Interaction may occurfor components whose reactances are in close proximity to one another.One example would be the coupling capacitor,C C,andthe compensation capacitor,C f.These two components act as low impedances to certain frequencies which will couple signals from the input to the output.Please take careful note of basic amplifier component functionality when designing in these compo-nents.The optional external components shown in Figure2and described above are applicable in both single and split voltage supply configurations.7Typical Performance CharacteristicsSafeAreaDS011833-18SPiKeProtection ResponseDS011833-19Supply Current vs Supply VoltageDS011833-20Pulse Thermal Resistance DS011833-21Pulse Thermal ResistanceDS011833-65Supply Current vs Output VoltageDS011833-22Pulse Power Limit DS011833-23Pulse Power LimitDS011833-24Supply Current vs Case TemperatureDS011833-25 8Typical Performance Characteristics(Continued)Input Bias Current vs Case TemperatureDS011833-26Clipping Voltage vs Supply VoltageDS011833-27Clipping Voltage vs Supply VoltageDS011833-28THD +N vs Frequency DS011833-29THD +N vs Frequency DS011833-30THD +N vs FrequencyDS011833-31THD +N vs Output Power DS011833-32THD +N vs Output Power DS011833-33THD +N vs Output PowerDS011833-34THD +N vs Output Power DS011833-35THD +N vs Output Power DS011833-36THD +N vs Output PowerDS011833-379Typical Performance Characteristics(Continued)THD +N vs Output PowerDS011833-38THD +N vs Output PowerDS011833-39THD +N vs Output PowerDS011833-40THD +N Distribution DS011833-41THD +N Distribution DS011833-42THD +N DistributionDS011833-43THD +N Distribution DS011833-44THD +N DistributionDS011833-45Output Power vs Load ResistanceDS011833-46 10Typical Performance Characteristics(Continued)Max Heatsink Thermal Resistance(˚C/W)at the Specified Ambient Temperature(˚C)Maximum Power Dissipation vs Supply VoltageDS011833-9 Note:The maximum heat sink thermal resistance values,øSA,in the table above were calculated using aøCS=0.2˚C/W due to thermal compound.Power Dissipationvs Output PowerDS011833-47Power Dissipationvs Output PowerDS011833-48Output Powervs Supply VoltageDS011833-49IMD60Hz,4:1DS011833-50IMD60Hz,7kHz,4:1DS011833-51IMD60Hz,7kHz,4:1DS011833-52 11Typical Performance Characteristics(Continued)Application InformationGENERAL FEATURESMute Function:The muting function of the LM3886allows the user to mute the music going into the amplifier by draw-ing less than 0.5mA out of pin 8of the device.This is accom-plished as shown in the Typical Application Circuit where the resistor R M is chosen with reference to your negative supply voltage and is used in conjuction with a switch.The switch (when opened)cuts off the current flow from pin 8to V −,thus placing the LM3886into mute mode.Refer to the Mute At-tenuation vs Mute Current curves in the Typical Perfor-mance Characteristics section for values of attenuation per current out of pin 8.The resistance R M is calculated by the following equation:R M (|V EE |−2.6V)/I8where I8≥0.5mA.Under-Voltage Protection:Upon system power-up the under-voltage protection circuitry allows the power supplies and their corresponding caps to come up close to their full values before turning on the LM3886such that no DC output spikes occur.Upon turn-off,the output of the LM3886is brought to ground before the power supplies such that no transients occur at power-down.IMD 60Hz,1:1DS011833-53IMD 60Hz,7kHz 1:1DS011833-54IMD 60Hz,7kHz,1:1DS011833-55Mute Attenuation vs Mute CurrentDS011833-56Mute Attenuation vs Mute CurrentDS011833-57Large Signal ResponseDS011833-58Power Supply Rejection RatioDS011833-59Common-Mode Rejection RatioDS011833-60Open LoopFrequency ResponseDS011833-6112Application Information(Continued)Over-Voltage Protection:The LM3886contains overvolt-age protection circuitry that limits the output current to ap-proximately 11Apeak while also providing voltage clamping,though not through internal clamping diodes.The clamping effect is quite the same,however,the output transistors are designed to work alternately by sinking large current spikes.SPiKe Protection:The LM3886is protected from instanta-neous peak-temperature stressing by the power transistor array.The Safe Operating Area graph in the Typical Perfor-mance Characteristics section shows the area of device operation where the SPiKe Protection Circuitry is not en-abled.The waveform to the right of the SOA graph exempli-fies how the dynamic protection will cause waveform distor-tion when enabled.Thermal Protection:The LM3886has a sophisticated ther-mal protection scheme to prevent long-term thermal stress to the device.When the temperature on the die reaches 165˚C,the LM3886shuts down.It starts operating again when the die temperature drops to about 155˚C,but if the temperature again begins to rise,shutdown will occur again at 165˚C.Therefore the device is allowed to heat up to a relatively high temperature if the fault condition is temporary,but a sustained fault will cause the device to cycle in a Schmitt Trigger fashion between the thermal shutdown tem-perature limits of 165˚C and 155˚C.This greatly reduces the stress imposed on the IC by thermal cycling,which in turn improves its reliability under sustained fault conditions.Since the die temperature is directly dependent upon the heat sink,the heat sink should be chosen as discussed in the Thermal Considerations section,such that thermal shutdown will not be reached during normal ing the best heat sink possible within the cost and space con-straints of the system will improve the long-term reliability of any power semiconductor device.THERMAL CONSIDERATIONSHeat SinkingThe choice of a heat sink for a high-power audio amplifier is made entirely to keep the die temperature at a level such that the thermal protection circuitry does not operate under normal circumstances.The heat sink should be chosen to dissipate the maximum IC power for a given supply voltage and rated load.With high-power pulses of longer duration than 100ms,the case temperature will heat up drastically without the use of a heat sink.Therefore the case temperature,as measured at the center of the package bottom,is entirely dependent on heat sink design and the mounting of the IC to the heat sink.For the design of a heat sink for your audio amplifier applica-tion refer to the Determining The Correct Heat Sink sec-tion.Since a semiconductor manufacturer has no control over which heat sink is used in a particular amplifier design,we can only inform the system designer of the parameters and the method needed in the determination of a heat sink.With this in mind,the system designer must choose his supply voltages,a rated load,a desired output power level,and know the ambient temperature surrounding the device.These parameters are in addition to knowing the maximum junction temperature and the thermal resistance of the IC,both of which are provided by National Semiconductor.As a benefit to the system designer we have provided Maxi-mum Power Dissipation vs Supply Voltages curves for vari-ous loads in the Typical Performance Characteristics sec-tion,giving an accurate figure for the maximum thermal resistance required for a particular amplifier design.This data was based on θJC =1˚C/W and θCS =0.2˚C/W.We also provide a section regarding heat sink determination for any audio amplifier design where θCS may be a different value.It should be noted that the idea behind dissipating the maxi-mum power within the IC is to provide the device with a low resistance to convection heat transfer such as a heat sink.Therefore,it is necessary for the system designer to be con-servative in his heat sink calculations.As a rule,the lower the thermal resistance of the heat sink the higher the amount of power that may be dissipated.This is of course guided by the cost and size requirements of the system.Convection cooling heat sinks are available commercially,and their manufacturers should be consulted for ratings.Proper mounting of the IC is required to minimize the thermal drop between the package and the heat sink.The heat sink must also have enough metal under the package to conduct heat from the center of the package bottom to the fins with-out excessive temperature drop.A thermal grease such as Wakefield type 120or Thermalloy Thermacote should be used when mounting the package to the heat sink.Without this compound,thermal resistance will be no better than 0.5˚C/W,and probably much worse.With the compound,thermal resistance will be 0.2˚C/W or less,assuming under 0.005inch combined flatness runout for the package and heat sink.Proper torquing of the mounting bolts is important and can be determined from heat sink manufacturer’s specification sheets.Should it be necessary to isolate V −from the heat sink,an in-sulating washer is required.Hard washers like beryluum ox-ide,anodized aluminum and mica require the use of thermal compound on both faces.Two-mil mica washers are most common,giving about 0.4˚C/W interface resistance with the compound.Silicone-rubber washers are also available.A 0.5˚C/W ther-mal resistance is claimed without thermal compound.Expe-rience has shown that these rubber washers deteriorate and must be replaced should the IC be dismounted.Determining Maximum Power DissipationPower dissipation within the integrated circuit package is a very important parameter requiring a thorough understand-ing if optimum power output is to be obtained.An incorrect maximum power dissipation (P D )calculation may result in in-adequate heat sinking,causing thermal shutdown circuitry to operate and limit the output power.The following equations can be used to acccurately calculate the maximum and average integrated circuit power dissipa-tion for your amplifier design,given the supply voltage,rated load,and output power.These equations can be directly ap-plied to the Power Dissipation vs Output Power curves in the Typical Performance Characteristics section.Equation (1)exemplifies the maximum power dissipation of the IC and Equations (2),(3)exemplify the average IC power dissipation expressed in different forms.P DMAX =V CC 2/2π2R L (1)where V CC is the total supply voltageP DAVE =(V Opk /R L )[V CC /π−V Opk /2](2)where V CC is the total supply voltage and V Opk =V CC /π13Application Information(Continued)P DAVE=V CC V Opk/πR L−V Opk2/2R L(3)where V CC is the total supply voltage.Determining the Correct Heat SinkOnce the maximum IC power dissipation is known for agiven supply voltage,rated load,and the desired rated out-put power the maximum thermal resistance(in˚C/W)of aheat sink can be calculated.This calculation is made usingEquation(4)and is based on the fact that thermal heat flowparameters are analogous to electrical current flow proper-ties.It is also known that typically the thermal resistance,θJC(junction to case),of the LM3886is1˚C/W and that usingThermalloy Thermacote thermal compound provides a ther-mal resistance,θCS(case to heat sink),of about0.2˚C/W asexplained in the Heat Sinking section.Referring to the figure below,it is seen that the thermal resis-tance from the die(junction)to the outside air(ambient)is acombination of three thermal resistances,two of which areknown,θJC andθCS.Since convection heat flow(power dis-sipation)is analogous to current flow,thermal resistance isanalogous to electrical resistance,and temperature dropsare analogous to voltage drops,the power dissipation out ofthe LM3886is equal to the following:P DMAX=(T Jmax−T Amb)/θJAwhereθJA=θJC+θCS+θSABut since we know P DMAX,θJC,andθSC for the applicationand we are looking forθSA,we have the following:θSA=[(T Jmax−T Amb)−P DMAX(θJC+θCS)]/P DMAX(4)Again it must be noted that the value ofθSA is dependentupon the system designer’s amplifier application and its cor-responding parameters as described previously.If the ambi-ent temperature that the audio amplifier is to be working un-der is higher than the normal25˚C,then the thermalresistance for the heat sink,given all other things are equal,will need to be smaller.Equations(1),(4)are the only equations needed in the de-termination of the maximum heat sink thermal resistance.This is of course given that the system designer knows therequired supply voltages to drive his rated load at a particularpower output level and the parameters provided by the semi-conductor manufacturer.These parameters are the junctionto case thermal resistance,θJC,T Jmax=150˚C,and the rec-ommended Thermalloy Thermacote thermal compound re-sistance,θCS.SIGNAL-TO-NOISE RATIOIn the measurement of the signal-to-noise ratio,misinterpre-tations of the numbers actually measured are common.Oneamplifier may sound much quieter than another,but due toimproper testing techniques,they appear equal in measure-ments.This is often the case when comparing integrated cir-cuit designs to discrete amplifier designs.Discrete transistoramps often“run out of gain”at high frequencies and there-fore have small bandwidths to noise as indicated below.Integrated circuits have additional open loop gain allowingadditional feedback loop gain in order to lower harmonic dis-tortion and improve frequency response.It is this additionalbandwidth that can lead to erroneous signal-to-noise mea-surements if not considered during the measurement pro-cess.In the typical example above,the difference in band-width appears small on a log scale but the factor of10inbandwidth,(200kHz to2MHz)can result in a10dB theoreti-cal difference in the signal-to-noise ratio(white noise is pro-portional to the square root of the bandwidth in a system).In comparing audio amplifiers it is necessary to measure themagnitude of noise in the audible bandwidth by using a“weighting”filter(Note18).A“weighting”filter alters the fre-quency response in order to compensate for the average hu-man ear’s sensitivity to the frequency spectra.The weightingfilters at the same time provide the bandwidth limiting as dis-cussed in the previous paragraph.Note18:CCIR/ARM:A Practical Noise Measurement Method;by RayDolby,David Robinson and Kenneth Gundry,AES Preprint No.1353(F-3).In addition to noise filtering,differing meter types give differ-ent noise readings.Meter responses include:1.RMS reading,2.average responding,3.peak reading,and4.quasi peak reading.Although theoretical noise analysis is derived using trueRMS based calculations,most actual measurements aretaken with ARM(Average Responding Meter)test equip-ment.Typical signal-to-noise figures are listed for an A-weighted fil-ter which is commonly used in the measurement of noise.The shape of all weighting filters is similar,with the peak ofthe curve usually occurring in the3kHz–7kHz region asshown below.DS011833-12DS011833-13DS011833-1414Application Information(Continued)SUPPLY BYPASSINGThe LM3886has excellent power supply rejection and does not require a regulated supply.However,to eliminate pos-sible oscillations all op amps and power op amps should have their supply leads bypassed with low-inductance ca-pacitors having short leads and located close to the package terminals.Inadequate power supply bypassing will manifest itself by a low frequency oscillation known as “motorboating”or by high frequency instabilities.These instabilities can be eliminated through multiple bypassing utilizing a large tanta-lum or electrolytic capacitor (10µF or larger)which is used to absorb low frequency variations and a small ceramic capaci-tor (0.1µF)to prevent any high frequency feedback through the power supply lines.If adequate bypassing is not provided the current in the sup-ply leads which is a rectified component of the load current may be fed back into internal circuitry.This signal causes low distortion at high frequencies requiring that the supplies be bypassed at the package terminals with an electrolytic ca-pacitor of 470µF or more.LEAD INDUCTANCEPower op amps are sensitive to inductance in the output lead,particularly with heavy capacitive loading.Feedback to the input should be taken directly from the output terminal,minimizing common inductance with the load.Lead inductance can also cause voltage surges on the sup-plies.With long leads to the power supply,energy is stored in the lead inductance when the output is shorted.This energy can be dumped back into the supply bypass capacitors when the short is removed.The magnitude of this transient is re-duced by increasing the size of the bypass capacitor near the IC.With at least a 20µF local bypass,these voltage surges are important only if the lead length exceeds a couple feet (>1µH lead inductance).Twisting together the supply and ground leads minimizes the effect.LAYOUT,GROUND LOOPS AND STABILITYThe LM3886is designed to be stable when operated at a closed-loop gain of 10or greater,but as with any other high-current amplifier,the LM3886can be made to oscillate under certain conditions.These usually involve printed cir-cuit board layout or output/input coupling.When designing a layout,it is important to return the load ground,the output compensation ground,and the low level (feedback and input)grounds to the circuit board common ground point through separate paths.Otherwise,large cur-rents flowing along a ground conductor will generate volt-ages on the conductor which can effectively act as signals at the input,resulting in high frequency oscillation or excessive distortion.It is advisable to keep the output compensation components and the 0.1µF supply decoupling capacitors as close as possible to the LM3886to reduce the effects of PCB trace resistance and inductance.For the same reason,the ground return paths should be as short as possible.In general,with fast,high-current circuitry,all sorts of prob-lems can arise from improper grounding which again can be avoided by returning all grounds separately to a common point.Without isolating the ground signals and returning the grounds to a common point,ground loops may occur.“Ground Loop”is the term used to describe situations occur-ring in ground systems where a difference in potential exists between two ground points.Ideally a ground is a ground,butunfortunately,in order for this to be true,ground conductors with zero resistance are necessary.Since real world ground leads possess finite resistance,currents running through them will cause finite voltage drops to exist.If two ground re-turn lines tie into the same path at different points there will be a voltage drop between them.The first figure below shows a common ground example where the positive input ground and the load ground are returned to the supply ground point via the same wire.The addition of the finite wire resistance,R 2,results in a voltage difference between the two points as shown below.The load current I L will be much larger than input bias current I I ,thus V 1will follow the output voltage directly,i.e.in phase.Therefore the voltage appearing at the non-inverting input is effectively positive feedback and the circuit may oscillate.If there were only one device to worry about then the values of R 1and R 2would probably be small enough to be ignored;however,several devices normally comprise a total system.Any ground return of a separate device,whose output is in phase,can feedback in a similar manner and cause instabili-ties.Out of phase ground loops also are troublesome,caus-ing unexpected gain and phase errors.The solution to most ground loop problems is to always use a single-point ground system,although this is sometimes im-practical.The third figure below is an example of a single-point ground system.The single-point ground concept should be applied rigor-ously to all components and all circuits when possible.Viola-tions of single-point grounding are most common among printed circuit board designs,since the circuit is surrounded by large ground areas which invite the temptation to run a device to the closest ground spot.As a final rule,make all ground returns low resistance and low inductance by using large wire and wide traces.Occasionally,current in the output leads (which function as antennas)can be coupled through the air to the amplifier in-put,resulting in high-frequency oscillation.This normally happens when the source impedance is high or the input leads are long.The problem can be eliminated by placing aDS011833-1515。

LM3886功放

LM3886功放

LM3886功放1、设计要求1)利用LM3886设计一个音频功率放大器。

2)要求音量可调,具有高音、低音提升电路。

3)双声道输入输出。

4)输入电压为交流12V和39V。

2、技术参数电源:AC 220V 50HZ额定功率:68W+68W通频带:50HZ-20KHZ输出阻抗:8Ω3、使用说明1)按照装配图正确连接音箱和音频输入线,本电路提供两种输入两种输出方式,可根据情况需要选用。

2)接通市电,,按下电源开关,电源指示灯亮,功放可进行工作。

3)将音频输入线接入音频设备即可欣赏音乐。

4)适度调节主电位器调整音量,可根据爱好调整高低音电位器。

4、原理图5、原理简介输入的12V和39V交流电经过整流、滤波得到双12V和双39V的直流电源作为功放的供电电源。

C l-L、C1-R分别是两路信号的输入耦合电路,RP 2和RP3分别是两路低音和高音控制电位器。

两路功率放大器采用的集成电路是LM3886,用运放NE5532作前置线性放大和音调放大,C1-L(R)、C3-L(R)、C11-L(R)分别为左、右两路的输入端耦合电容,LM3886的10脚为正相输入端,9脚为反相输入端,1脚和5脚正电压输入,4脚为负电压输入,8脚为静音管脚,当输入低电平时输出为静音。

3脚为输出端,其他为悬空。

R20-L(R)、R22-L(R)、R23-L(R)、R24-L(R)、C16-L(R)、C17-L(R)、C19-L(R)构成IC3和IC4的负反馈电路,以提升音质。

4欧负载时能达到68W的连续平均功率。

RP1-A(B)是两路音量电位器。

电感L1-L(R)、R25-L(R)并联用来滤掉高频谐波的,改善音质。

6、元件清单数7、参考电路板图8、LM3886功率放大器面板图俯视图9、 LM3886功率放大器装配图装配说明:元件的装配按照先装低矮的元件,然后再装大一点的元件,最后装怕热的元件。

1) 跳线的插装与焊接:跳线可用单股导线,也可用元件引脚,根据电路板跳线的焊孔标准耳机插音频输入右声道输出 左声道输出 右声道输出插孔 左声道输出插孔指示灯地线距离,弯曲跳线,插入电路板,并在焊接面把引脚折成45°-60°,以防元件脱落,全部跳线()插装完成后进行焊接,最后用斜口钳把多余管脚剪掉。

LM3886TF大功率

LM3886TF大功率

LM3886TF大功率(最大功率68W)放大器(一)电路特点:LM3886TF是美国NS公司推出的大功率放大集成电路,它能够在20HZ-20KHZ的频率范围之内(4Ω负载),输出高达68W的平均功率。

其自身内部带有瞬间峰值保护电路,可使集成电路工作于安全的工作状态,而且只要按照电路安装元件,无需调试即可正常工作。

其音质效果在音响界早有定论,在此不重复。

下图是LM3886TF的应用电原理图:(二)制作指导制作时只需按照印刷电路板上的元件采购,并按照电路板上所标注的位置安装,即可正常工作。

由于此电路仅作后级使用,故在输入及接地端加上一个20KΩ的电阻,这是因为LM3886TF的正反向输入端有电流才能平衡,原本加上VR时,自然构成正相输入端的电流回路。

现在少了VR,回路断裂,输出电压就不平衡,未有任何输入信号即产生强大的电流输出,这样喇叭就会发出刺耳的声音。

按图将印刷电路板制作完成后,即可进行元件的焊接。

焊接时可将零件先插上再焊接,从最小的零件焊起,零件尽可能贴紧电路板表面电解电容要注意正负极性,否则会被击穿,金属膜电容没有极性的分别,但最好朝同一方向,这样比较整齐美观。

靠近LM3886TF的三个104的电容是旁路电容,越靠近LM3886TF 越好,其它的电容为滤波电容,由于电解电容在高频上表现不佳,所以加了104聚丙烯电容来改善音质,找不到可用相近的代替,耐压越高越好,其原则是与4700UF的电解电容依大中小并联排列。

两只电感可用18号的漆包线在10Ω2W的电阻上缠绕10圈,将两端表面的漆刮去,焊在电阻两端的两只脚上。

由于18号漆包线较粗不好绕,可将漆包线留长一段,从电阻的中间部位向两边各绕5圈,这样比较省力,绕起来也比较漂亮。

图上这个电感值为0.7mH,但一般市售的电感多半无法低直流阻抗的要求(可以从体形大略判断),而本例电感的要求是低直流阻抗,电感值的准确度还在其次,所以我们自行用较粗的漆包线来绕制电感。

由LM386构成的3W简易OCL功放电路

由LM386构成的3W简易OCL功放电路

描述:闪烁灯光门铃不仅具有门铃的声音还可以通过家里的门灯发出闪烁的灯光,适合用于室内嘈杂环境时使用,也适用于有聋哑人的家庭。

一、电路工作原理电路原理如图所示。

由LM386 构成的3W简易OCL功放电路图由基本的门铃电路和灯光、声音延迟控制电路两部分组成。

按下门铃按钮SB,IC1 KD9300 音乐集成电路的TRIG 端得到一个高电平,O/P 输出音乐集成电路中所储存的音乐信号,并通过三极管VT 9013 的放大后从扬声器B 中发出音乐。

三极管VT1 组成的放大电路通过集电极向三极管VT2 基极输入一个放大信号,在二极管VD1 的整流作用下,使得三极管VT2 饱和导通。

光耦合器IC2 中的发光二极管发出亮光,使得光耦合器的4、5 脚之间呈现低阻抗性,使得IC3 555 时基电路的4 脚为高电平,IC3 电路电路开始起桭(IC3 555 时基电路接成低频自激振荡),3 脚输出低频方波脉冲,通过R3 触发晶闸管VT3 的门极,VT3 导通,门灯开始闪烁。

当音乐播完后,扬声器B 停止发声,三极管VT1、VT2 截止,使得IC2 光耦合电路的4、5 脚之间呈现高阻抗性,则IC3 555 时基电路的4 脚为低电平,使得555 电路处于强制复位状态,此时3 脚输出低电平,晶闸管VT3 在交流过零时截止,门灯熄灭。

此时电路处于等待下次按钮SB 按下的初始状态。

二、元器件的选择555 集成电路选用NE555、μA555、SL555 等时基集成电路;IC1 选用普通的门铃芯片如KD9300 ;光耦合器选用4N25 型光耦合器;三极管VT1、VT2 选用硅NPN 型9013,要求β≥100;电阻器可选用RTX—1/4W 型碳膜电阻器;晶闸管VT3 选用MR100—8 型;扬声器选用Φ27mm×9mm、8Ω、0.1W 超薄微型动圈式扬声器;C1、C2、C4 选用瓷介电容器;C3、C5 选用电解电容器;C6 选用CBB—400 型聚丙烯电容器;VD1 选用IN4004 型硅整流二极管;VS 选用12V、1W 的2CW105 硅稳压二极管。

008 LM3886功放

008  LM3886功放
2
33
接插件头
三孔插头
1
34
接插件头
五孔插头
1
35
排线
30cm
12
7、参考电路板图
8、LM3886功率放大器面板图
俯视图
前面板视图
9、LM3886功率放大器装配图
装配说明:
元件的装配按照先装低矮的元件,然后再装大一点的元件,最后装怕热的元件。
1)跳线的插装与焊接:跳线可用单股导线,也可用元件引脚,根据电路板跳线的焊孔距离,弯曲跳线,插入电路板,并在焊接面把引脚折成45°-60°,以防元件脱落,全部跳线()插装完成后进行焊接,最后用斜口钳把多余管脚剪掉。
26
集成电路
IC3、IC4
LM3886TF
Lቤተ መጻሕፍቲ ባይዱ3886
2
27
发光二极管
LED
红色LED
LED
1
有极性
28
二极管
VD1
1N4148
DIODE0.4
1
有极性
29
接插件座
L-OUT、R-OUT
二针插座
SIP2
2
30
接插件座
L-IN
三针插座
SIP3
1
31
接插件座
CON5
五针插座
SIP5
1
32
接插件头
二孔插头
6、原理图
5、原理简介
输入的12V和39V交流电经过整流、滤波得到双12V和双39V的直流电源作为功放的供电电源。Cl-L、C1-R分别是两路信号的输入耦合电路,RP2和RP3分别是两路低音和高音控制电位器。两路功率放大器采用的集成电路是LM3886,用运放NE5532作前置线性放大和音调放大,C1-L(R)、C3-L(R)、C11-L(R)分别为左、右两路的输入端耦合电容,LM3886的10脚为正相输入端,9脚为反相输入端,1脚和5脚正电压输入,4脚为负电压输入,8脚为静音管脚,当输入低电平时输出为静音。3脚为输出端,其他为悬空。R20-L(R)、R22-L(R)、R23-L(R)、R24-L(R)、C16-L(R)、C17-L(R)、C19-L(R)构成IC3和IC4的负反馈电路,以提升音质。4欧负载时能达到68W的连续平均功率。RP1-A(B)是两路音量电位器。电感L1-L(R)、R25-L(R)并联用来滤掉高频谐波的,改善音质。

lm386-电路原理---音频放大器

lm386-电路原理---音频放大器

lm386-电路原理---音频放大器
lm386是一种常用的音频放大器,适用于低功率音响系统和电子设备。

它的特点是简
单易懂,工作可靠,价格低廉,在DIY音响的世界中广泛应用。

那么,它的电路原理是什
么呢?
lm386的电路原理可以简单地分为两部分,输入放大器和输出放大器。

输入放大器:
输入放大器是一种放大器电路,把输入信号的电压放大,输出电压变成一个更高的信号,经过一个低通滤波器后去除高频噪声。

在lm386中,输入信号通过C1电容进入放大器,并且经过R1和R2电阻分压降低信号电平。

接着信号通过放大器U1的非反向输入端,通过R3电阻形成负反馈,使放大器的放大倍数稳定,同时降低了噪声。

输出放大器将放大后的信号通过一个大功率晶体管输出到喇叭,将电信号转换成声音。

在lm386中,输出放大器也采用负反馈控制的方式,控制输出电压,稳定功率。

U1的输出通过C4电容进入输出级别放大器,驱动晶体管Q1的基极。

经过高通滤波器C8,将基极引到电源电压的一半,同时降低直流偏置。

晶体管Q1的输出将声音发出,同时反馈到放大器的非反向输入。

总体来说,lm386基本是一个放大器电路,通过输入和输出放大器的组合,可以实现
低功率的音频放大。

除了基本的电路原理,还可以结合其他元件组合出多种不同的效果,
如有源音量控制、三合一音量控制、失真音效等等。

从硬件上选择经典的 lm386芯片,再结合趣味DIY的组合美学,很容易得出简单、实用和覆盖大部分音响需求的二合一放大器
方案。

优秀的功放IC,LM3886基本应用电路图

优秀的功放IC,LM3886基本应用电路图

优秀的功放IC,LM3886基本应用电路图LM3886是单声道、中功率、高性能音频功放IC,是美国国家半导体(NS)公司的“序曲”(OVerture)音频功放系列具有代表性的IC之一。

它采用11脚TO-220封装并具有输入静音功能,适合小型有源音箱、环绕声放大器和高保真立体声电视机等用作功放。

LM3886主要性能简介1、连续平均输出功率:60W/4Ω(Vcc=±28V)30W/8Ω(Vcc=±28V)50W/8Ω(Vcc=±35V)2、瞬时最大输出功率: 150W3、失真度:(THD+噪声)0.03%(20Hz~20kHz)4、噪声电平:2.0μV5、信噪比:>92dB6、互调失真:(按SMPTE标准)0.004%此IC的最大特点是自身保护功能齐全,无须外接各种保护电路,它内含NS公司研制的SPIKe(自身瞬时温度)保护电路,对输出级晶体管的安全工作区(SOA)进行动态检测与保护,从而全面实现过压、欠压、过载、输出短路(包括短路到地与短路到电源)、热失控和瞬时温度冲击等保护功能。

附图1是3886内部等效电路。

电路工作原理简析R2为LM3886的同相输入端提供偏压;并联在两个输入端的C2是用来减小放大器的高频增益,以免输出管出现振荡,同时抑制输入的电磁干扰噪声;R5、R4、C4组成反馈回路,放大器的低频响应和高频转折频率fH取决于R3、C3;R4、C4、R5和R3决定高频增益和低通转折频率fL(fH、fL的计算公式略)。

C4是补偿元件,它与R4、R5共同起减小高频增益的作用。

R8、R9、C5与开关(图中虚线所示)组成静音控制电路:当开关断开时,LM3886停上输出,即静音起作用;接通开关时静音解除,R8将⑧脚输出电流限制到0.5mA(LM3886的⑧脚电流≥0.5mA)。

C5为静音通、断提供较大的时间常数。

R6、C6的作用为防止放大器产生高频振荡。

L1、R7作用:如果负载呈容性(如扬声器电缆较长),则放大器在高频下会过载,并使方波响应出现转折,为避免此现象,在输出端串入LR组成的并联电路,此时L呈现较大感抗,10Ω电阻将放大器与容性负载隔离开来并降低L与容性负载所构成回路的Q值;低频下则10Ω电阻被L短路,放大器通过感抗很小的L直接驱动负载。

lm3886功放电路

lm3886功放电路

;文章:行业新闻┆EDA文摘┆电源技术┆无线通信┆测量仪表┆嵌入式类┆电子技术┆制造技术┆半导体┆网络/协议┆展会┆实验┆家电维修下载:EDA教程┆电源技术┆电子书籍┆电子元件┆无线通信┆通信网络┆电路图纸┆嵌入式类┆单片机┆传感/控制┆电子教材┆模拟数字┆.... 音视频类┆消费电子┆机械电子┆行业软件┆C/C++┆FPGA/ASIC┆规则标准┆家电维修┆DSP┆IC资料┆ARM┆软件┆电路图┆电子技术论坛硬件工程师必读功略数字信号处理器(DSP)入门宝典PDF 【资源共享】单片机/ARM/DSP/FPGA/PCB 【经典资料】毕业设计大礼包位置:电子发烧友 > 行业新闻 > 电子技术 > 电路图 > 功率放大器电路图 >lm3886功放电路退出登录用户管理栏目导航Google 提供的广告电阻成型机音频放大器电路图电路原理图汽车电瓶·保护电路图·嵌入式类电子电路图·电源技术电子电路图·无线通信电子电路图·光电隔离电子电路图·光电开关电子电路图·信号处理电子电路图·消费类电子电路图·照明灯电路图·光电报警电子电路图·耳机电路图·电动机控制电路图·功率放大器电路图·汽车电路图·遥控电路图·电工基础电路图·电工仪表电路图·可控硅电路图·彩灯电路图·IC应用电路图·电视机电路图·555集成电路大全·运算放大器电路·电子管功放电路·定时器电路图热门文章·[组图]电子元器件基础知识...·[图文]USB接口定义·[图文]三极管开关电路图·[组图]RS232 RS485接口原理...·[组图][组图]电动车充电器...·[组图]高品质音调电路的制...lm3886功放电路作者:本站来源:本站原创发布时间:2008-5-5 21:55:43lm3886功放电路这款功放的末级电流放大电路未介入环路负反馈,有效地抑制了瞬态互调失真(TIMD)、界面互调失真(IIMD)和相位互调失真(PIMD)等,改善了高音域的层次感,减小了“音染”。

LM3886TF制作的直流功率放大器

LM3886TF制作的直流功率放大器

LM3886TF制作的直流功率放大器LM3886TF 制作的直流功率放大器LM3886TF是美国NS公司推出的大功率音频放大IC,其后面的TF为全绝缘封装,也就是安装散器时不必再加云母片来絶缘,在额定工作电压下最大可达68W的连续不失真平均功率,具有比较完善的过电压、过电流、过热保护的功能,最可贵的是它具有自动抗开关机时的电流冲击的功能,使喇叭能够安全的工作。

LM3886优异的性能,使得它在近几年音响制作中广泛的应用,许多成品功放机中就有直接的应用它担任后级功放或者用它作为重低音放大电路。

其特点有︰输出功率大(连续输出功率68W)、失真度小(总失真加噪声<0.03%)、保护功能(包括过电压保护、过热保护、电流限制、温度限制、开关电源时的扬声器冲击保护、静音功能)齐全,附加零件少,制作调试容易,工作稳定可靠。

LM3886TF的特性如下︰LM3886在VCC=VEE=28V、4欧负载时能达到68W的连续平均功率,在VCC=VEE=35V,8奥姆,负载时能达到50W的平均功率。

具有较宽的电源电压范围VCC+VEE为20V-94V;总谐波失真+噪声︰60W 20Hz<f<="" av="26dB" p="" 时的值为="">转换速率(SLEW RATE):VIN=2.0VP-P、tRISE=2ns 时的值为19V/us总静态电流︰50mA输入偏流︰ 0.2uA增益带宽乘积: 8 MHZ有關Ra18及Rb18m電阻電路圖與零件表不同說明如下,R18為限流電阻,分攤後級較高電壓在整流IC(7805及7905)的壓降,其實它的寬容性很大,前我使用500歐姆(電壓24-0-24),如果你使用的變壓器較低,如18-0-18,就使用330~470歐姆,如果電壓更高到28-0-28就用510~560歐姆。

但要用1/2W的,當然2W更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档