随机过程-正态马尔可夫过程

合集下载

随机过程课程第三章 马尔可夫过程

随机过程课程第三章 马尔可夫过程

特别 P{X nm inm | X n in , , X 0 i0}
= P{X nm inm | X n in}
首页
性质5 设{ X n , n 0 }为马氏链,其状态空间为 I, 则 对任意给定的 n 个整数,0 k1 k2 kn ,有
P{X kn ikn | X kn1 ikn1 , , X k1 ik1 }
(2) pij (n) 1 , i I jI
3.一步转移矩阵 如果固定时刻n T
则由一步转移概率为元素构成的矩阵P1 :
称为在时刻n的一步转移矩阵
首页
即 有
p00 (n)
p10
(n)
p01(n)
p11 (n)
P1
pn0 (n)
pn1 (n)
有限马氏链 状态空间I={0,1,2,…,k}
首页
性质3 设{ X n , n 0 }为马氏链,其状态空间为 I,
若 0 s r n ,则在X r ir 的条件下,有 P{X n in , X s is | X r ir }
= P{X n in | X r ir } P{X s is | X r ir }
表明 若已知现在,则过去与未来是独立的。
iI
P{X 0 i}P{X n j | X 0 i}
iI
p0 (i) pi(jn)
iI
注 若对定态分布,则 p( j) p(i) pij
iI
首页
4.切普曼---柯尔莫哥洛夫方程
定理2 设{ X n , n 0 }为一个马氏链,具有初始分布 p0 (i) ,i I
和 n 步转移概率pi(jn) ,i. j I ,n 0 ,
称为n步转移矩阵
规定
P0

第四章正态随机过程

第四章正态随机过程

输出的均值为零
GY (ω ) = G X (ω ) H (ω )
2
输出的功率谱
输出的自相关函数 输出的方差
1 RY (τ ) = 2π
2 Y

+∞
−∞
G X (ω ) H (ω ) e jωτ dω
2
1 σ = RY (0) = 2π

+∞
−∞
G X (ω ) H (ω ) dω
2
2 1 y exp− fY ( y) = 2πRY (0) 2RY (0)
1 2 2 2 exp − [(π2 − 4)(x1 + x3 ) +π2 x2 − 4π(x1x2 + x2 x3 ) + 8x1x3 ] 2 ) 2 2π(π2 −8) 2(π −8
例4.2 正态随机信号通过线性系统 输入是一个零均值正态随机过程
X(t) H(ω) Y(t)
i =1 N
性质4 性质4 正态随机过程与确定信号之和是正态随机过程
X (t) = N(t) + S(t)
[ x − S(t)]2 1 f X (x, t) = exp − 2 1/2 2 ( πσ ) 2 2σ
性质5 性质5 正态随机过程通过线性系统的输出是 正态随机过程
sin(πτ) RX (τ) = πτ
1 求 t1 = 0, t2 = , t3 = 1 的三维概率密度 2
K(t1 − t2 ) K(t1 − t3 ) K(0) K = K(t2 − t1) K(0) K(t2 − t3 ) K(t3 − t1) K(t3 − t2 ) K(0) 1 sin(π / 2)/(π / 2) sin π / π = sin(π / 2)/(π / 2) 1 sin(π / 2)/(π / 2) sin π / π sin(π / 2)/(π / 2) 1 1 = 2/ π 0 2/ π 1 2/ π 0 2/ π 1

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程在随机过程中的马尔可夫过程马尔可夫过程是在随机过程中常见且重要的一种形式。

它具有一定的数学特性和模型结构,能够描述在离散或连续时间段内状态的转移以及相关的概率。

本文将对马尔可夫过程的基本概念、特性和应用进行详细介绍。

一、概述马尔可夫过程是一种随机过程,其状态转移满足马尔可夫性质。

马尔可夫性质是指在给定当前状态下,未来和过去的转移概率仅与当前状态有关,与过去状态无关。

这种性质使得马尔可夫过程具有简化模型和简单计算的优势,被广泛应用于各个领域。

二、基本概念1. 状态空间:马尔可夫过程的状态空间是指所有可能取值的集合。

例如,一个骰子的状态空间为{1, 2, 3, 4, 5, 6}。

2. 转移概率:马尔可夫过程中的状态转移概率描述了从一个状态到另一个状态的概率。

用P(Xt+1 = j | Xt = i)表示从状态i转移到状态j的概率。

3. 转移矩阵:将所有状态之间的转移概率整合到一个矩阵中,称为转移矩阵。

转移矩阵是一个方阵,大小为n×n,其中n是状态空间的数量。

4. 平稳分布:在马尔可夫过程中,如果某个状态的概率分布在经过无限次转移后保持不变,那么该概率分布称为平稳分布。

平稳分布可以通过解线性方程组来计算。

三、特性1. 马尔可夫链:马尔可夫过程可以看作是离散时间的马尔可夫链。

马尔可夫链是指具有无记忆性质的随机序列,即未来状态只依赖于当前状态。

2. 齐次马尔可夫过程:如果马尔可夫过程的转移概率与时间无关,那么称为齐次马尔可夫过程。

齐次马尔可夫过程的转移概率矩阵在时间上保持不变。

3. 连续时间马尔可夫过程:如果马尔可夫过程的时间是连续的,则称为连续时间马尔可夫过程。

连续时间的马尔可夫过程可以用微分方程来描述。

四、应用领域1. 金融学:马尔可夫过程常用于金融市场的建模和分析,例如股票价格的预测和风险管理。

2. 信号处理:马尔可夫过程可以用于信号和图像的分析与处理,包括语音识别和图像识别等领域。

随机过程中的马尔可夫过程理论

随机过程中的马尔可夫过程理论

随机过程中的马尔可夫过程理论马尔可夫过程理论是随机过程中的一种重要理论,它描述了一类具有马尔可夫性质的随机过程。

在随机过程中,马尔可夫过程是指一个系统在给定当前状态下,其未来状态的概率分布只依赖于当前状态,而与过去的状态无关。

马尔可夫过程在实际应用中具有广泛的应用,尤其在可靠性分析、排队论和金融领域等方面发挥重要作用。

一、马尔可夫过程的基本概念马尔可夫过程由状态空间、转移概率矩阵和初始概率分布三要素构成。

1. 状态空间状态空间是指一个马尔可夫过程中可能出现的所有状态的集合。

通常用S表示,状态空间可以是有限的,也可以是无限的。

2. 转移概率矩阵转移概率矩阵描述了一个当前状态到下一个状态的转移概率。

假设状态空间S有n个状态,转移概率矩阵P的元素P(i, j)表示从状态i转移到状态j的概率。

转移概率矩阵满足非负性和归一性条件,即每个元素都大于等于零,每行元素之和等于1。

3. 初始概率分布初始概率分布是指系统在初始状态下各个状态出现的概率分布。

假设初始状态概率分布为π,其中π(i)表示系统初始状态为i的概率。

二、马尔可夫链马尔可夫过程中的马尔可夫链是指一个没有时间限制的马尔可夫过程,也就是说,它在任意时刻都遵循马尔可夫性质。

马尔可夫链可以是有限的,也可以是无限的。

1. 不可约性不可约性是指一个马尔可夫链中的所有状态都可以通过一系列转移概率到达任何其他状态。

具有不可约性的马尔可夫链被称为不可约马尔可夫链。

2. 遍历性遍历性是指一个不可约马尔可夫链中的任意状态都能在有限步内返回到自身。

具有遍历性的马尔可夫链被称为遍历马尔可夫链。

3. 非周期性非周期性是指一个马尔可夫链中不存在周期性循环。

如果一个状态经过若干步后又返回到自身的最小步数是1,则称该状态为非周期状态。

具有非周期性的马尔可夫链被称为非周期马尔可夫链。

三、马尔可夫过程的稳定性马尔可夫过程的稳定性是指在经过一段时间后,随机过程的状态分布不再发生显著变化。

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程
渐进分析:确定当 t → ∞ 时,在各个状态上的概率分布;
典型问题:机器维修问题
设某机器的正常工作时间是一负指数分布的随机变量,平均正常工作时间为 1/λ,它损 坏后的修复时间也是一个负指数分布的随机变量,它的平均修复时间为 1/μ。 如机器在 t=0 时是正常工作的,问在 t=10 时机器正常工作的概率如何?
∑ = Pi j (t) + [qik ⋅ Δt + o(Δt)] ⋅ Pk j (t) k
由此得到关于状态转移概率的一个方程:
柯尔莫哥洛夫-费勒后退方程:
∑ dPij (t) = dt
k
qik Pk j (t)
初始条件是
Pij
(0)
=
⎧1 ⎨⎩ 0
(i = j) (i ≠ j)
考虑矩阵柯尔莫哥洛夫-费勒后退方程中的第 j 列,将矩阵 P(t) 的第 j 列记作 s j (t)
初始条件: w(0)
由此,可以根据初始概率和转移率矩阵得到 w(t) 。
若已知初始概率和转移概率矩阵 P:如何求 w(t) ?
根据全概率公式:
w(t) = w(0)P(t)
求解机器维修问题
2.2 切普曼-柯尔莫哥洛夫方程
P{ξ (t3 ) = j /ξ (t1) = i}
= ∑ P{ξ (t2 ) = k /ξ (t1) = i}⋅ P{ξ (t3 ) = j /ξ (t2 ) = k} k∈I (t1 < t2 < t3 , i, j ∈ I )
对于 t1 < t2 < " < tm < tm+1 ∈ T ,若在 t1 < t2 < " < tm ∈ T 这些时刻观察到随机过程 的值是 i1,i2 ,"im ,则 tm+1 > tm ∈ T 时刻的条件概率满足:

5随机过程第五章马尔可夫过程

5随机过程第五章马尔可夫过程

P X nk m j | X n i, X nk l P X nk l | X n i
lS
k m pil n . plj n k
lS
特殊地,在C-K方程中,m=1, 有
P k 1 n P k n P1 n k P k n P n k
5、1 马尔可夫过程定义
2)时间离散 状态连续
3)时间连续 状态离散 泊松过程 更新过程
马尔可夫序列
纯不连续马尔可夫过程 生灭过程 排队服务系统
4)时间状态连续
维纳过程
5、2 马尔可夫链的转移概率及概率分布
设Markov链 X n , n 0 状态空间为S 1.转移概率 (1) 定义: n时刻 X n i k步转移
1
1 0
1/2
2
1/2
对齐次链,有关C-K方程和概率分布可简化
C-K方程
故有 绝对分布
pij
k m
pil plj ,
k m
lS
P
k m
P
k
P
m
Pk Pk , k 0
n j n i 0 . pij
一步转移概率矩阵
P n pij n , i, j S
(4) 0步转移概率 k=0 连续性条件 则
P
0
1, i j pij n ij 0, i j
0
n I
单位矩阵
1,2,3,系统在n时刻的k步转移概率矩阵为 例 状态空间 S
t iS
t t1
t1 ... pit it tn1

马尔可夫过程

马尔可夫过程

P{将来|现在、过去}=P{将来|现在}
马尔可夫过程分类 按其状态空间I和时间参数集T是连续还是离散可分成四类(如表1)。 讨论的内容: 定义:转移概率及转移概率矩阵;齐次性;平稳分布;遍历性; 其他性质。
2
表1 马尔可夫过程的分类
分类名称 时间参数集T 状态空间I
离散
连续
离散 (n=0,1,2,…)
1、马尔可夫过程的一般概念 (1)、定义 t T ,若在 t1, t2 , 设有一随机过程X(t),
时刻对X(t)观测得到相应的观测值
x1, x2 ,
, tn 1, tn t1 t2
, xn 1, xn
tn 1 tn T
满足条件
(7-61)

(7-62)
则称此类过程为具有马尔科夫性质的过程或马尔科夫过程,简称马氏过程。其中
连续 (t≥0)
马尔可夫链
马尔可夫序列
可列马尔可夫过程
马尔可夫过程
3
1.1
马尔可夫序列
1、马尔可夫序列的定义 定义:若对于任意的n,随机序列{X(n)}的条件分布函数满足 则称此随机序列{X(n)}为马尔可夫序列。 条件分布函数FX(xn|xn-1)常被称为转移分布。 对于连续型随机变量,由上式可得
f X ( xn | xn 1, xn 2 , , x1 ) f X ( xn | xn1 )
因此,利用条件概率的性质
(2)
f X ( x1, x2
, xn ) f X ( xn | xn 1, xn 2 ,
, x1 )
f X ( x2 | x1 ) f X ( x1 ) (3)
结合式(2)可得
14
2)一维分布
马氏链在第n步所处状态为aj的无条件概率称为马氏链的“一维分布”, 也称为“状态概率”。表示为

随机过程习题集-第四章马尔可夫过程

随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。

称(){}:,==∈E x X t x t T 为状态空间。

参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。

若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。

第五章 随机过程中的马尔可夫过程

第五章 随机过程中的马尔可夫过程

p(k m) ij
(n)

p(k il
)
(n)
p(m lj
)
(n

k
),
i, j S,
n, k, m 0
l

P(km) (n) P(k) (n)P(m) (n k)
证明
2006年9月
p(k ij
m)
(n)

P{X
nk
m

j|
Xn
i}
P{U( X nk l), X nkm j | X n i} l
i
P( X 0 i)P( Xt1 i1 | X 0 i)P( X t2 i2 | X 0 i, X t1 i1)L i
• P( X tn in | X 0 i, X t1 i1, X t2 i2 ,L , X tn1 in1)
P( X 0 i)P( X t1 i1 | X 0 i)P( X t2 i2 | X 0 i)P( X tn in | X tn1 in1)
i

qi0
pt1 ii1

(0)
pt2 i1i2
t1

(t1
)L
p (t ) tn tn1
in1in
n1
i
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
3) 绝对分布
称q(jn) P(Xn j), n 0, j S为马尔可夫链{Xn,n 0}的绝对分布。
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
一种最简单的形式:
P{X (t1) i1, X (t2 ) i2,L , X (tn1) in1, X (tn ) in} P{X (t1) i1}P{X (t2) i2}L P{X (tn ) in}

随机过程中的马尔可夫决策过程

随机过程中的马尔可夫决策过程

随机过程中的马尔可夫决策过程马尔可夫决策过程(Markov Decision Process,MDP)是研究随机过程中最常用的一种方法。

它是一个数学框架,用于描述一个决策问题的动态过程,其中包含了决策者、状态和决策时的不确定性。

一、马尔可夫决策过程的基本概念马尔可夫决策过程由以下几个要素组成:1. 状态(State):表示系统在某一时刻的条件或属性,可以用来描述决策问题的各个可能的情况。

状态可以是离散的,也可以是连续的。

2. 决策(Decision):表示决策者在每个状态下可以采取的行为或策略。

决策可以是确定性的,也可以是随机性的。

3. 反馈(Feedback):表示决策者在采取某个行为后,系统转移到下一个状态的概率。

这个概率可以是确定性的,也可以是随机性的。

4. 收益(Reward):表示决策者在每个状态下采取某个行为后获得的收益或效用。

收益可以是实数值,也可以是离散值。

5. 转移概率(Transition Probability):表示系统从当前状态转移到下一个状态的概率。

这个概率通常是通过观测历史数据来估计得到的。

二、马尔可夫决策过程的求解方法马尔可夫决策过程的求解方法主要包括以下几种:1. 基于价值函数的方法:通过定义状态的价值函数或动作的价值函数来确定最优决策。

常用的方法有价值迭代和策略迭代。

2. 基于策略梯度的方法:通过直接优化策略的参数来确定最优决策。

这种方法可以应用于连续动作空间的问题。

3. 基于模型的方法:通过建立系统的动态模型,预测不同决策下的状态转移和收益,然后进行优化。

三、马尔可夫决策过程的应用马尔可夫决策过程在实际应用中具有广泛的应用领域,包括但不限于以下几个方面:1. 机器人路径规划:马尔可夫决策过程可以用来描述机器人在不同状态下的移动和决策过程,从而实现自主路径规划和导航。

2. 股票交易决策:马尔可夫决策过程可以用来描述股票市场的波动和交易决策,从而实现基于历史数据的股票交易策略。

随机过程的基本概念

随机过程的基本概念
或写作矩阵形式,
证明:
随机过程的平稳性
严平稳随机过程
定义,
设有随机过程 ,对任意正整数n及选定时间 ,任意时间间隔τ和 ,有n维分布函数 则称该过程为严平稳随机过程。
严平稳随机过程的性质,
严平稳随机过程的一维分布函数与时间无关,二维分布函数仅与时间间隔有关而与时间本身无关。
K级平稳随机过程,
设有随机过程 ,对任意正整数n<K及选定时间 ,任意时间间隔τ和 ,有n维分布函数 则称该过程为K级严平稳随机过程。
定义1,马尔可夫过程(使用条件概率密度函数,或条件概率分布函数来表示)
设有一个随机过程 , ,若在这些时刻观察到随机过程的值是 ,若它的条件概率密度和条件分布函数满足条件,

则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。
性质,马尔可夫过程的有限维概率密度
定义2,马尔可夫链(使用转移概率、条件概率)
宽平稳随机过程
定义,
设有一个二阶矩随机过程 ,它的均值是常数,相关函数仅是 的函数,则称它为宽平稳随机过程或广义平稳随机过程。
正态平稳随机过程,
既是广义平稳的随机过程,又是严平稳的随机过程。
性质1,
或 , 。对于实宽平稳随机过程 ,而实自相关函数是偶函数。证明(略)
性质2,
, 是随机过程的均值。
证明,
证明,(略)
考虑到
因此有
性质3,

证明,
以上证明中、第一个不等式成立是:随机变量平均的模小于等于随机变量模的平均;第二个不等式成立是:Schwartz不等式,随机变量乘积取模统计平均的平方,小于等于随机变量取模平方统计平均的乘积。
因此有
同理有, 。
性质4,

马尔可夫过程

马尔可夫过程

Ai lim P{Si (t)}
t
式中
Si(t)--系统i状态的瞬态概率; Ai--i状态的稳态概率。
通常,稳态概率空间的表达式不易求出,该解 法适合于解决一些比较简单系统的稳态状态概率问 题。 同构法 当系统达到稳定状态以后,各种状态将持续转 移,但是每种状态出现的概率基本不变,从而形成 一个稳定的状态空间。求解状态空间方程组,就可 得到系统在各种状态的稳态概率。
马尔可夫过程
神和尧
马尔可夫过程简介 一类随机过程(数学基础是随机过程理论)。 原始模型马尔可夫链,由俄国数学家A.A.马尔可夫 于1907年提出。 该过程具有如下特性:在已知目前状态 (现在) 的条件下,它未来的演变 (将来)不依赖于它以往 的演变 ( 过去 ) 。 ④例如森林中动物头数的变化构成——马尔可夫过 程 。在现实世界中,有很多过程都是马尔可夫过程, 如液体中微粒所作的布朗运动、传染病受感染的人 数、车站的候车人数等,都可视为马尔可夫过程。
马尔可夫特性的直观解释为:
在给定t时刻随机过程的状态为Xn或xn,则该过 程的后续状态及其出现的概率与t之前的状态无关。 也就是说,过程当前的状态包括了过程所有的历史 信息,该过程的进一步发展完全由当前状态所决定, 与当前状态之前的历史无关,这种性质也称为无后 效性或无记忆性。 此特性也可以理解为:随机过程Xn在“现在” 状态已知的条件下,过程“将来”的情况与“过去” 无关。或者说,过去只影响现在,而不影响将来。 P{将来|现在、过去}=P{将来|现在}
kE
状态转移图和状态转移率矩阵 马尔可夫模型常使用状态转移图来描述系统的运行情况。 故障(p)
S
1-p 修复(q)
F
1-q
图1 马尔可夫过程的状态转移图

马尔科夫过程

马尔科夫过程

马尔科夫过程马尔科夫过程(MarKov Process)是一个典型的随机过程。

设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。

无后效的随机过程称为马尔科夫过程。

马尔科夫过程中的时间和状态既可以是连续的,又可以是离散的。

我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。

马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。

马尔科夫(1856——1922),俄罗斯数学家。

1907年提出马尔科夫链。

在1906——1912年开创了对一种无后效性的随机过程——马尔科夫过程的研究。

马尔科夫过程(也称马尔科夫性,无后效性),可以简单地这样表述——给定过程的“现在”,它的“将来”与“过去”无关。

马尔科夫转移矩阵法一、马尔科夫转移矩阵法的涵义单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。

在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。

企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。

市场占有率的预测可采用马尔科夫转移矩阵法,也就是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。

马尔科夫是俄国数学家,他在20世纪初发现:一个系统的某些因素在转移中,第n次结果只受第n-1的结果影响,只与当前所处状态有关,与其他无关。

比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。

,在马尔科夫分析中,引入状态转移这个概念。

所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。

马尔科夫分析法的一般步骤为:①调查目前的市场占有率情况;②调查消费者购买产品时的变动情况;③建立数学模型;④预测未来市场的占有率。

随机过程与马尔可夫决策过程

随机过程与马尔可夫决策过程

随机过程与马尔可夫决策过程随机过程和马尔可夫决策过程是概率论和数学建模中常见的两个概念。

它们在各自领域中都扮演着重要的角色。

本文将分别介绍随机过程和马尔可夫决策过程的基本概念、特性以及应用。

一、随机过程随机过程是概率论中的重要概念,也是描述随机现象随时间演变的数学工具。

随机过程可以看作是随机变量在时间上的推广,它描述了一个或多个随机变量在时间轴上的变化。

随机过程可以分为离散随机过程和连续随机过程两类。

离散随机过程的状态空间是有限或可列的,而连续随机过程的状态空间是连续的。

常见的离散随机过程有泊松过程、马尔可夫链等,而连续随机过程有布朗运动、随机微分方程等。

随机过程具有许多重要特性,如平稳性、马尔可夫性、鞅性等。

平稳性表示在不同的时间间隔内,随机过程的统计特性保持不变。

马尔可夫性表示在给定当前状态下,未来的状态与过去的状态无关,只与当前状态有关。

鞅性是随机过程的一种重要性质,它可以看作是一种未来无法预测的随机变量的平衡状态。

随机过程在金融工程、通信系统、信号处理等领域有广泛的应用。

例如,在金融工程中,随机过程可以用来建模股票价格的变动;在通信系统中,随机过程可以用来描述信道的噪声;在信号处理中,随机过程可以用来建模信号的随机变动。

二、马尔可夫决策过程马尔可夫决策过程是决策论中的一个基本模型,用于描述一个决策者在一系列状态和行动中进行决策的过程。

在马尔可夫决策过程中,决策者根据当前的状态选择一个行动,然后转移到下一个状态,并获得一定的奖励或代价。

马尔可夫决策过程的基本要素包括状态空间、行动空间、状态转移概率、即时奖励以及策略等。

状态空间表示决策者可能处于的各种状态;行动空间表示决策者可以选择的各种行动;状态转移概率表示在给定当前状态和行动下,转移到下一个状态的概率;即时奖励表示在给定当前状态和行动下,获得的奖励或代价;策略表示决策者在不同状态下选择行动的规则。

马尔可夫决策过程是人工智能、机器学习、控制论等领域中的重要工具。

随机过程-马尔可夫过程应用

随机过程-马尔可夫过程应用
2 马尔可夫过程的应用
2.1 马氏过程理论在教学质量评估中的应用 马尔可夫链在教学评价中的应用是基于两次测验成绩基础上的,并假设教
学效果稳定,通过分析学生两次测验在不同成绩等级间的变化,构建转移概率 矩阵,以其稳定分布来衡量学生最终达到的成绩分布。根据教学规律与教学质 量评估的需要,马尔可夫链评估法较好地体现其在教学质量评估中的实用性与 有效性。
进入“决标阶段”,或以r3的概率不去投标而“退出”。决定投标后,或 以q4的概率中标,或以r4的概率失标而“退出”。
由于某承包公司在各阶段能否进入下一阶段,只与本阶段的决策依据有 关,而与本阶段前各阶段的决策依据无关,故研究的问题满足后无效性,是一 个有限状态的马尔可夫链。
记为{Xn,n≥0},条件概率P与n无关,故这一马氏链还是时齐的,其一步转 移概率可表示为Pil,由此可得,系统的状态转移矩阵为
从马氏链的理论及图1可知 ,状态空间I可分解为N+C1+C2,由于C1和C2为两 个互不相交的基本常返闭集,N为非常返态,且状态5和状态6分别为正常返、非 周期的吸收态.即系统的状态转移一旦进入
状态5(中标)或状态6(退出)两阶段,就永远处于这两个状态,不会再转移 到其它状态.所以国际工程投标的风险问题,可由一个带有2个吸收状态和4个 非常返状态的可约马氏链来表示。
战时装备的维修是一个动态的随机过程,要求在一系列时间点做出决策。 对于一个状态随机转移系统,在每一个观察时刻要分析系统当时所处的状态, 从可供选择的多种方案中选择一种最佳方案。由于系统下一次出现什么样的状
态具有随机性,事先无法确定,就需按实际出现的状态再作决策,这样继续下 去形成的多重决策就是序贯决策。对于具有马氏性的随机系统,其状态转移概 率已知,因此不必在状态实际出现的每一时间点去根据状态选取方案,可预先 根据分析结果决定出控制系统进一步发展的最佳方案。系统状态的马氏性和所 选择的行动方案的相互作用决定系统的进一步发展方向,运用马氏决策对战时 装备维修进行系统分析时,可降低问题分析的复杂程度。

随机过程马尔科夫过程PPT课件

随机过程马尔科夫过程PPT课件

Xn i
P(Xn1 j Xn i)
记i个个体各自产生的后代数分别记为随机变量
,且
有概率分布
1,2, ,i
l (l 0,1, ,i)
P(l k) pk , k 0,1, 2
故一步转移概率为
P(Xn1 j Xn i) P(1 2 i j)
第21页/共44页
例4(卜里耶模型)设一个坛子里有b个黑球和r个红球,每次随机地从坛子中摸出
当时中国近代数学才刚刚起步,大学也没有概率课程。此时 苏联的概率论水平已届于世界最前列。王梓坤也根本不知道什么 是概率,可他的研究方向又恰恰被定为概率论, 著有《概率论基础及其应用》、《随机过程论》、 《生灭过程与马尔科夫链》等9部数学著作.
第2页/共44页
本章主要内容 马尔可夫过程的定义 马尔可夫链的转移概率与概率分布 齐次马尔可夫链状态的分类 转移概率的稳定性能
m)
(n)
P{X
nk
m
j
Xn
i)
P{( Xnk l), Xnkm j Xn i)
l
P{ ( Xnk l, Xnkm j) Xn i)
l
P( Xnk l, Xnkm j) Xn i)
l
第25页/共44页
P( Xnk l Xn i) P(Xnkm j Xn i, Xnk l)
P(k
)
(n)
(
p(k ij
)
(n))
为系统{Xn , n 0}在 n时的k步转移概率矩阵.
第9页/共44页
特别 当k=1时,
p(1) ij
(n)为系统在n时的一步转移概率,
记为 pij (n)
P(1)
(n)
(
p(1) ij
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以, 是马尔可夫过程。 所以, ξ(t) 是马尔可夫过程。
例3.6
图示电路,输入为零均值平稳正态白噪声, 图示电路, 输入为零均值平稳正态白噪声,求
输出过程的特性。 输出过程的特性。
R
ξ(t)
C
η(t)
解:系统传递函数的模平方为
α2 H( jf ) = 2 α + (2π f )2
2
1 α 其中, 输入平稳正态白噪声, 1。 其中, = 。输入平稳正态白噪声,即Sξ ( f ) = 1。于 RC
2 n
设 a= C(1)/C(0),由于 C(1) ≤C(0),故|a|≤1 ,因此 , ,
C(n) = anC(0)(n ≥ 0)
充分性:如果 C(n)/C(0)=an,设n=n1+n2,则 充分性:
C(n1) C(n2 ) C(n1)C(n2 ) C(n) = an1 an2 = ⇒ C(n) = C(0) C(0) C(0) C(0)
C(τ ) = eaτ C(0)
因为|C(τ)|<C(0),故τ >0 时,a<0 , 因为 充分性:如果 充分性:如果C(τ)=eaτC(0) ,则
C(τ + s) C(τ ) C(s) = ea(τ +s) = eaτ eas = C(0) C(0) C(0)

C(τ )C(s) C(τ + s) = C(0)
是输出为
α2 Sη ( f ) = H( jf ) Sξ ( f ) = 2 α + (2π f )2
2
由此可得
Rη (τ ) =
α
2
e
−α τ
由E{ξ(t)}=0得E{η(t)}=0 ,因此 得
Cη (τ ) = Rη (τ ) ⇒ Cη (0) =
α
2
于是, 于是,
Cη (τ ) = e
−α τ
+∞
是联合正态的。 因为ξ(t)是正态过程,则ξ(t1)和ξ(t2)是联合正态的。利用 是正态过程, 例3.5的结果可得 的结果可得
C(t2 , t3 ) E{ξ (t3 )ξ (t2 ) = x2} = x2 = x2 2 C(t2 , t2 ) E{[ξ (t2 )] } E{ξ (t3 )ξ (t2 )}
即满足了马尔可夫过程的条件。 即满足了马尔可夫过程的条件。
定理3.10 设ξ(t)是一均方连续、平稳、实正态随机过程, 是一均方连续、平稳、实正态随机过程, 定理 C(τ)为其协方差函数 , 则 C(τ)=eaτC(0)是该过程具有马 为其协方差函数, 为其协方差函数 是该过程具有马 尔可夫性的充分必要条件。 尔可夫性的充分必要条件。 证明:必要性: 是均方连续、平稳、 证明 : 必要性 : 因为 ξ(t)是均方连续 、 平稳 、 实正态过 程 , 则其协方差函数是连续函数 , 又因为是马尔可夫 则其协方差函数是连续函数, 过程,因此, 过程,因此,
C(t1, t3 ) = Cov{ξ (t1),ξ (t3 )} = C(t1, t2 )C(t2 , t3 ) C(t2 , t2 )
其中, 其中,t1 < t2 < t3 。 证明: 证明:首先证明必要性
C(t1, t3) = E{ξ(t1)ξ(t3)} = ∫ x x f (x1, x2, x3)dx1 dx2 −∞ −∞ −∞ 1 3
因为分布函数由其特征函数唯一确定, 因为分布函数由其特征函数唯一确定,因此有
f ( x1, x2,⋯, xn;t1 + h, t2 + h,⋯, tn + h) = f (x1, x2,⋯, xn;t1, t2,⋯tn ]
是严平稳过程。 这说明ξ(t)是严平稳过程。
3.3.2 正态马尔可夫过程
定理3.8 零均值实随机过程ξ(t),它既是正态过程,又是 它既是正态过程, 定理 马尔可夫过程的充要条件为
无关。 也与ξ1无关。因此
fξ3 ξ1=x1,ξ2 =x2 (x3 | ξ1 = x1,ξ2 = x2 ) = fξ3 ξ2 (x3 ξ2 = x2 )
具有马尔可夫性。 证毕 证毕>。 这说明ξ(t)具有马尔可夫性。<证毕 。 定理3.9 设{ξ(n),n =0, ±1, ±2,… }为正态分布平稳实 定理 , 随机序列, 随机序列,且C(0)≠0,则C(n)=anC(0) (n≥0,|a|≤1)是ξ(n) , , 是 为马尔可夫序列的充要条件。 为马尔可夫序列的充要条件。 证明: 是平稳序列,所以C(i, 只用两点时间 证明:因为ξ(n)是平稳序列, 所以 ,j)只用两点时间 差表示C(i - j) 。 差表示
C(τ )C(s) C(τ + s) C(τ ) C(s) C(τ + s) = ⇒ = C(0) C(0) C(0) C(0)
C(τ ) 设 f (τ ) = ,则 C(0)
f (τ + s) = f (τ ) f (s)
满足上式条件的函数为指数函数, 满足上式条件的函数为指数函数,即f(τ)=eaτ 。于是
+∞ +∞ +∞
∫ ∫
dx3
由马尔可夫性可得
+∞ +∞x f (x | x )dx dx dx C(t1, t3 ) = ∫ x1 f (x1)∫ f (x2 | x1) ∫ 3 3 2 3 2 1 −∞ −∞ −∞
+∞ +∞ = ∫ x1 f (x1)∫ f (x2 | x1)E{ (t3 )ξ(t2 ) = x2}dx2 dx1 ξ −∞ −∞
,,则 设t = t3- t2,s = t2 -t1,,则
C(t)C(s) C(t + s) = C(0)
由此可得, 由此可得,
C(n −1)C(1) C(n) = C(0)
于是, 于是,
C(1) C(n) C(n −1) C(1) C(n − 2) C(1) = = C(0) = ⋯= C(0) C(0) C(0) C(0) C(0)
实际上,没有零均值的条件该结论也成立。 实际上,没有零均值的条件该结论也成立。 下面证明充分性:即若正态过程且有 下面证明充分性:即若正态过程且有b13= b12 b23/ b22 ,
证明“马尔可夫性” 证明“马尔可夫性”, 即
fξ3 ξ1=x1,ξ2=x2 (x3 | x1, x2 ) = fξ3 ξ2 (− b12 = b33 − (b31 b32 ) − b21 b b − b2 11 22 12
2 b b11b22 − b12 13 b b11 23 2 b11b22 − b12
− b12
利用
必要性:如果为正态马尔可夫过程,则根据定理 有 必要性:如果为正态马尔可夫过程,则根据定理3.8有
C(t1, t2 )C(t2 , t3 ) C(t1, t3 ) = C(t2 , t2 )
是平稳的, 由于ξ(n)是平稳的,故
C(t2 − t1)C(t3 − t2 ) C(t3 − t1) = C(0)
于是, 于是,
C(t2, t3) +∞ +∞ C(t1, t3) = ∫−∞ ∫−∞ x1x2 f (x1) f (x2 | x1)dx1dx2 C(t2, t2 ) C(t2, t3) +∞ +∞ = ∫−∞ ∫−∞ x1x2 f (x1, x2)dx1dx2 C(t2, t2 ) C(t1, t2 )C(t2, t3) = C(t2, t2 )
§3.3 正态马尔可夫过程
3.3.1 高斯随机过程
如果随机过程{ ξ(t),t∈T }的任意有限维分布都是正 ,∈ 态分布,则称之为“高斯过程” 态分布,则称之为“高斯过程”或“正态过程”。 正态过程” 定理3.7 宽平稳实高斯随机过程也是严平稳随机过程。 宽平稳实高斯随机过程也是严平稳随机过程。 定理 证明: 任取n个时刻 个时刻t 证明 : 对于一宽平稳实高斯随机过程 ξ(t) 任取 个时刻 1, t2, … ,tn ,其协方差阵 B 的元素
点在时间轴上平移h, 把 n 点在时间轴上平移 ,得t1+h,t2 +h , … ,tn +h , , 显然平移后 n 点的概率密度函数对应的特征函数与平移 前的特征函数相等
φ(u1, u2,⋯, un;t1 + h, t2 + h,⋯, tn + h)
= φ(u1, u2,⋯, un;t1, t2,⋯, tn )
b12b23 b13 = ⇒b31b22 − b12b32 = 0 b22
以及
b2 b23 − 12 + b b32 11 b −b31b + b b32 b22 12 11 = = 23 b22 b b22 −b2 b b22 −b2 11 12 11 12
可得
2 b23 D{ξ(t3 ) | ξ (t1) = x1ξ (t2 ) = x2} = b33 − b22

b11 b12 B11 = b 21 b22
B21 = (b31 b32 )
b13 B = 12 b23
B22 = (b33 )
根据例3.4的结果可得条件方差 根据例 的结果可得条件方差
D{ξ (t3) ξ(t1) = x1,ξ (t2 ) = x2} = B22 − B21B−1B 11 12
由此可见, 无关。 由此可见,条件方差已与ξ1无关。条件均值为
E{ξ (t3 ) | ξ (t1) = x1,ξ (t2 ) = x2} x1 µ1 = µ3 + B B − x µ 2 2
−1 21 11
b23 x1 − µ1 b23 = µ3 + (0 ) x − µ = µ3 + b (x2 − µ2 ) b22 2 2 22
相关文档
最新文档