高考数学数列求和练习
高三数学数列求和试题答案及解析
高三数学数列求和试题答案及解析1.数列{an }满足a1=1,且对任意的m,n∈N*,都有am+n=a m+a n+mn,则+++…+=()A.B.C.D.【答案】B【解析】令m=1得an+1=a n+n+1,即an+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),上述n-1个式子相加得an -a1=2+3+…+n,所以an=1+2+3+…+n=,当n=1时,a1=1满足上式,所以an= (n∈N*),因此==2(-),所以+++…+=2(1-+-+…+-)=2(1-)=2.函数f(x)对任意x∈R都有. (1)求和(n∈N*)的值;(2)数列{an }满足:,求an;(3)令,,,试比较Tn 和Sn的大小。
【答案】(1),;(2);(3).【解析】(1)由于函数f(x)对任意x∈R都有,则令可求的;再令求出;(2)利用倒序相加结合(1)的结论可求出;(3)由及第(2)问的结论求出,用放缩法变形(),用裂项相消法求,再与比较大小.(1)令=2,则;令得,(4分)(2)由,两式相加得:,∴,(8分)(3),(n≥2)∴.(12分)【考点】倒序相加、裂项相消法求数列的前项和.3.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和4.已知函数,且,则()A.0B.100C.5050D.10200【答案】C【解析】因为,所以,选C.5.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出.试题解析:(1)解法1:当时,,当时,.是等差数列,,得.又,,,、、成等比数列,,即,解得.解法2:设等差数列的公差为,则.,,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,②①②得. .解法2:由(1)得.,.,①由,两边对取导数得,.令,得. .【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导6.数列{an }满足an+1+(-1)n an=2n-1,则{an}的前60项和为____________.【答案】1830【解析】当时,;当时,;当时,.将与相减得:;将与相减得:.所以,,所以.【考点】数列.7.在数列{an }中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=.【答案】299【解析】设定值为M,则an +an+1+an+2=M,进而an+1+an+2+an+3=M,后式减去前式得an+3=an,即数列{an}是以3为周期的数列.由a7=2,可知a1=a4=a7=…=a100=2,共34项,其和为68;由a9=3,可得a 3=a6=…=a99=3,共33项,其和为99;由a98=4,可得a2=a5=…=a98=4,共33项,其和为132.故数列{an}的前100项的和S100=68+99+132=299.8..己知数列满足,则数列的前2016项的和的值是___________.【答案】1017072【解析】这个数列既不是等差数列也不是等比数列,因此我们要研究数列的各项之间有什么关系,与它们的和有什么联系?把已知条件具体化,有,,,,…,,,我们的目的是求,因此我们从上面2015个等式中寻找各项的和,可能首先想到把出现“+”的式子相加(即为偶数的式子相加),将会得到,好像离目标很近了,但少,而与分布在首尾两个式子中,那么能否把首尾两个式子相减呢?相减后得到,为了求,我们又不得不求,依次下去,发现此路可能较复杂或者就行不通,重新寻找思路,从头开始我们有,即,而,∴,因此,我们由开始的三个等式求出了,是不是还可用这种方法求出呢?下面舍去,考察,,,同样方法处理,,从而,于是,而,正好504组,看来此法可行,由此我们可得.【考点】分组求和.9.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图10.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。
高考数学数列求和选择题
高考数学数列求和选择题1. 已知数列{an}的通项公式为an=2n-1,求数列{an}的前n项和Sn。
2. 已知数列{bn}的通项公式为bn=3n^2+1,求数列{bn}的前n项和Tn。
3. 已知数列{cn}的通项公式为cn=4n^3-2n,求数列{cn}的前n 项和Un。
4. 已知数列{dn}的通项公式为dn=5n^4+3n^2,求数列{dn}的前n项和Vn。
5. 已知数列{en}的通项公式为en=6n^5-4n^3,求数列{en}的前n项和Wn。
6. 已知数列{fn}的通项公式为fn=7n^6+2n^4,求数列{fn}的前n项和Xn。
7. 已知数列{gn}的通项公式为gn=8n^7-3n^5,求数列{gn}的前n项和Yn。
8. 已知数列{hn}的通项公式为hn=9n^8+4n^6,求数列{hn}的前n项和Zn。
9. 已知数列{in}的通项公式为in=10n^9-5n^7,求数列{in}的前n项和An。
10. 已知数列{jn}的通项公式为jn=11n^10+3n^8,求数列{jn}的前n项和Bn。
11. 已知数列{kn}的通项公式为kn=12n^11-2n^9,求数列{kn}的前n项和Cn。
12. 已知数列{ln}的通项公式为ln=13n^12+n^10,求数列{ln}的前n项和Dn。
13. 已知数列{mn}的通项公式为mn=14n^13-3n^11,求数列{mn}的前n项和En。
14. 已知数列{on}的通项公式为on=15n^14+2n^12,求数列{on}的前n项和Fn。
15. 已知数列{pn}的通项公式为pn=16n^15-n^13,求数列{pn}的前n项和Gn。
16. 已知数列{qn}的通项公式为qn=17n^16+3n^14,求数列{qn}的前n项和Hn。
17. 已知数列{rn}的通项公式为rn=18n^17-4n^15,求数列{rn}的前n项和In。
18. 已知数列{sn}的通项公式为sn=19n^18+2n^16,求数列{sn}的前n项和Jn。
高考数学一轮复习《数列求和》练习题(含答案)
高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
高考数学专题复习题:数列求和
高考数学专题复习题:数列求和一、单项选择题(共8小题)1.某旅游景区计划将山脚下的一片荒地改造成一个停车场,根据地形,设计7排停车位,靠近山脚的第1排设计9个停车位,从第2排开始,每排设计的停车位个数是上一排的2倍减去8,则设计的停车位的总数是( ) A .172B .183C .286D .3112.在数列{}n a 中,已知112a =,1(2)n n n a na ++=,则它的前30项的和为( ) A .1929B .2829C .2930D .30313.已知{}n a 是递增的等比数列 ,且34528++=a a a ,等差数列{}n b 满足23b a =,542b a =+,85b a =.如果m 为正整数,且对任意的*n ∈N ,都有12231nn b b b m a a a +≥+++,那么m 的最小值为( ) A .8B .7C .5D .44.数列{}n a 的前n 项和为n S ,11a =−,*(1)(N )n n na S n n n =+−∈,设(1)n n n b a =−,则数列{}n b 的前51项之和为( ) A .149−B .49−C .49D .1495.已知递推数列{}n a 满足11a =,()*121n n a a n +=+∈N ,如果n S 是数列{}n a 的前n 项和,那么9S =( ) A .9210−B .9211−C .10210−D .10211−6.如图,某地毯是一系列正方形图案,在4个大正方形中,着色的小正方形的个数依次构成一个数列{a n }的前4项. 记12100111S a a a =++⋅⋅⋅+,则下列结论正确的为( )A .87S >B .87S =C .87S <D .S 与87的大小关系不能确定7.已知首项为2的数列{}n a 满足114522n n n n a a a a ++−−=,当{}n a 的前n 项和16n S ≥时,则n 的最小值为( ) A .40B .41C .42D .438.如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层4个球,其中第1层有1个球,第2层有3个球;依次递推;第n 堆有n 层共n S 个球,第1层有1个球,第2层有3个球,第3层有6个球,依次递推.已知201540S =,则2021n n ==∑( )A .2290B .2540C .2650D .2870二、多选题(共3小题)9.已知函数()f x 满足22()()()()f x y f x y f x f y +−=−,(1)1f =,(2)0f =,下列说法正确的是( ) A .(3)1f =−B .(2024)0f =C .21()x k k =+∈Z 时,()(1)kf x =−D .20241()2024k f k ==∑10.利用不等式“ln 10x x −+≤,当且仅当x =1时,等号成立”可得到许多与n (2n ≥且*n ∈N )有关的结论,则下列结论正确的是( ) A .111ln 1231n n <+++⋅⋅⋅+− B .1111ln 4562n n>+++⋅⋅⋅+C .()()()()12121412e 2n n n+++⋅⋅⋅+>⋅D .e12e 1n n n n n ++⋅⋅⋅+<⋅− 11.“杨辉三角”是二项式系数在三角形中的一种几何排列,从第1行开始,第n 行从左至右的数字之和记为n a ,如{}12112,1214,,n a a a =+==++=⋅⋅⋅的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,...,记为{b n },{b n }的前n 项和记为n T ,则下列说法正确的有( )A .101022S =B .12n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和21122n a +−− C .5766b =D .574150T =三、填空题(共3小题)12.在数列{}n a 中,11a =且1n n a a n +=,当20n ≥时,1231112n n na a a a a λ+++⋅⋅⋅+≤+−,则实数λ的取值范围为__________.13.已知数列{}n a 满足111,21n n a a a n +=+=+,则其前9项和9S =__________,数列1n S ⎧⎫⎨⎬⎩⎭的前2024项的和为__________. 14.函数()[]f x x =称为高斯函数,其中[]x 表示不超过x 的最大整数,如][2.32, 1.92⎡⎤=−=−⎣⎦,已知数列{}n a 满足121,5a a ==,2145n n n a a a +++=,若[]21log ,n n n b a S +=为数列18108n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,则[]2025S =__________.四、解答题(共5小题)15.已知数列{}n a ,{}n b 中,14a =,12b =−,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式. (2)求数列{}n b 的前n 项和n T . 16.已知数列{}n a 满足122n n a a n +−=+. (1)证明:数列{}2n a n −是等差数列.(2)若12a =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是递增的等差数列,它的前三项和为9,前三项的积为15. (1)求数列{}n a 的通项公式. (2)记b n =1(an+1)2,设数列{}n b 的前n 项和为n T ,求证:14n T <.18.已知{}n a 是等差数列,{}n b 是等比数列,且{}n b 的前n 项和为n S ,1122a b ==,()5435a a a =−,在①()5434b b b =−,②12n n b S +=+这两个条件中任选其中一个,完成下面问题的解答.(1)求数列{}n a 和{}n b 的通项公式.(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .19.已知2()cos 2x f x a x =+.(1)若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,求a 的取值范围.(2)证明:()2*11112111tan1212tan 3tantan 23n nn n n n−++++>∈+N . 参考答案12.(],1−∞13.45,4048202514.202515.(1)23nn b n =−− (2)n T 217222n n n+−−− 16.(1)通过构造()()22111n n a n a n +⎡⎤−+−−=⎣⎦证明即可 (2)1n nS n =+. 17.(1)21n a n =− (2)先求数列{}n b 的通项,放缩后再裂项求和即可证明。
数列求和5种常考题型总结(解析版)--2024高考数学常考题型精华版
数列求和5种常考题型总结【题型目录】题型一:分组求和法题型二:裂项相消法求和题型三:错位相减法求和题型四:先求和,再证不等式题型五:先放缩,再求和【典型例题】【例1】已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .【例2】已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}1122334564:,,,,,,,,,,n c b a b a a b a a a b ,求数列{}n c 中前40项的和40T .【例3】设n S 是各项为正的等比数列{}n a 的前n 项的和,且*2334N S a n ∈=,=,.(1)求数列{}n a 的通项公式;(2)在数列{}n a 的任意k a 与1k a +项之间,都插入()*N k k ∈个相同的数()1kk -,组成数列{}n b ,记数列{}n b 的前n 项的和为n T ,求100T 的值.【题型专练】1.已知数列{}n a 是等差数列,数列{}n b 是等比数列,若111a b ==,22331a b a b -=-=.(1)求数列{}n a 与数列{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,且11n n n S S a +=++,请在①4713a a +=;②137,,a a a 成等比数列;③1065S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n n b a -是公比为2的等比数列,13b =,求数列{}n b 的前n 项和n T .3.(2022·广东广州·一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.4.已知等差数列{}n a 满足121,21n n a a a ==+,设2n an b =.(1)求{}n b 的通项公式,并证明数列{}n b 为等比数列;(2)将1b 插入12,a a 中,23,b b 插入23,a a 中,456,,b b b 插入34,a a 中, ,依此规律得到新数列1122334564,,,,,,,,,,a b a b b a b b b a ,求该数列前20项的和.题型二:裂项相消法求和【例1】首项为4的等比数列{}n a 的前n 项和记为n S ,其中546S S S 、、成等差数列.(1)求数列{}n a 的通项公式;100【例2】已知数列{}n a 的首项为正数,其前n 项和n S 满足2343n n n nS a S a =--.(1)求实数λ的值,使得{}2n S λ+是等比数列;(2)设13n n n n b S S +=,求数列{}2n b 的前n 项和.【解析】(1)当1n =时,111823a a a =-,11S a =,解得22118S a ==;当2n ≥时,把1n n n a S S -=-代入题设条件得:22198n n S S -=+,即()221191nn S S -+=+,很显然}{21n S +是首项为8+1=9,公比为9的等比数列,∴1λ=;(2)由(1)知{}21n S +是首项为21190S +=≠,公比9q =的等比数列,所以291nnS =-,()()()()()()1211191919111188919919199111n nnnn n n n n n b ++++---⎛⎫==⨯=- ---⎝---⎭.故数列{}2n b 的前n 项和为:2221122334112111111111111891919191919191918891n n n n b b b ++⎛⎫⎛⎫++⋅⋅⋅+=-+-+-++-=- ⎪ ⎪---------⎝⎭⎝⎭.【例3】数列{}n a 的前n 项和n S ,342n n S a =-.(1)求n a ;(2)令2log 1n n b a =,求数列{}1n n b b +的前n 项和n T .)问的结论以及对数的运算性质,再利用裂项相消法进行求解【例4】(湖北省二十一所重点中学2023届高三上学期第三次联考数学试题)已知等差数列{}n a 的首项10a >,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)证明:数列2n S n ⎧⎫⎨⎬⎩⎭为常数列;(2)设数列11n n n a S a a +⎧⎫⎨⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【例5】已知数列{}n a 满足1n a +=11a =.(1)求数列{}n a 的通项公式;(2)1n c a a =+,n S 是数列{}n c 的前n 项和,求n S .【题型专练】1.记n S 为等比数列{}n a 的前n 项和.已知53227S S S -=-,且12,1,a a -成等差数列.(1)求{}n a 的通项公式;2.已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设4n b a a =,数列{}n b 的前n 项和为n T ,证明:3n T <.3.已知数列{}n a 是公差不为零的等差数列,2414a a +=,且1a ,2a ,6a 成等比数列.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n S .【解析】(1)等差数列{}n a 中,324214a a a =+=,解得37a =,因1a ,2a ,6a 成等比数列,即2216a a a =,设{}n a 的公差为d ,于是得()()()277273d d d -=-+,整理得230d d -=,而0d ≠,解得3d =,所以()3332n a a n d n =+-=-.(2)由(1)知,()()1111()323133231n b n n n n ==--+-+,所以111111[(1)()()]34473231n S n n =-+-+⋅⋅⋅+--+11(1)33131nn n =-=++.4.记n S 为数列{}n a 的前n 项和,已知11a =,且13n n S a +=-.(1)求数列{}n a 的通项公式;(2)已知数列{}n c 满足________,记n T 为数列{}n c 的前n 项和,证明:2n T <.从①211(1)(2)n n n n c a a a +++--=②221log n n n a c a ++=两个条件中任选一个,补充在第(2)问中的横线上并作答.【解析】(1)13n n S a +=- ①,当1n =时,123a a =-,24a ∴=;当2n ≥时,13n n S a -=-②①-②得,即12n n a a +=又2142a a =≠,∴数列{}n a 是从第2项起的等比数列,即当2n ≥时,2222n nn a a -=⋅=.1,1,2, 2.n n n a n =⎧∴=⎨≥⎩.(2)若选择①:()()()()()()2211111122211212212121222121n n n n n n n n n n n n a c a a ++++++++⋅⎛⎫====- ⎪--------⎝⎭,2231111111121212212121212121n n n n T ++⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪------⎝⎭⎝⎭.若选择②122n n n c ++=,则23134122222nn n n n T +++=++++ ③,34121341222222n n n n n T ++++=++++ ④,③-④得341212131112311212422224422n n n n n n n T ++-+++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ ,14222n n n T ++∴=-<.5.已知数列{}n a 前n 项和为n S ,且()21n S n n =+,记221(1)nn n n na b a a +=-+.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T ,求2021T .【解析】(1)()112n S n n =+,当1n =时,111212S =⨯⨯=;当2n ≥,n *∈N 时,()1112n S n n -=-,()()1111122n n n a S S n n n n n -=-=+--=.当1n =时也符合,()n a n n N *∴=∈.(2)()()()()()()221212111111111nn n n n n n n n n a n b a a n n n n n n ++++⎛⎫=-=-=-=-+ ⎪++++⎝⎭202111111111 (122)33420212022T ⎛⎫⎛⎫⎛⎫⎛⎫∴=-++-++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112023=1 (1223342021202220222022)--++--+--=--=-.题型三:错位相减法求和【例1】已知数列{}n a 满足12a =,且11220n n n n a a a a +++⋅-=,数列{}n b 是各项均为正数的等比数列,n S 为{}n b 的前n 项和,满足14b a =,378S =.(1)求数列{}n a 的通项公式;(2)设nnb C a =,记数列{}n C 的前n 项和为n T ,求n T 的取值范围.【例2】已知各项均不为零的数列{}n a 满足()1212320n n n n n a a a a a ++++-+=,且11a =,23a =,设1n n nb a a +=-.(1)证明:{}n b 为等比数列;(2)求1n n a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【例3】已知数列{}n a 的首项*112,322,N n n a a a n n -==+≥∈.(1)求n a ;(2)记()3log 1n n n b a a =⋅+,设数列{}n b 的前n 项和为n S ,求n S .【例4】已知各项为正数的数列{}n a 前n 项和为n S ,若()214n n S a =+.(1)求数列{}n a 的通项公式;(2)设3nn na b =,且数列{}n b 前n 项和为n T ,求证:1n T <.【例5】已知数列{}n a 的前n 项和n S 满足()*22N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)令4n n b a n =-,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【题型专练】1.若公比为c 的等比数列{}n a 的首项11a =且满足12(3,4,)2n n n a a a n --+==⋅⋅⋅.(1)求c 的值;(2)求数列{}n na 的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,11a =,121n n S a +=-.(1)求数列{}n a 的通项公式;(2)设(21)n n b n a =-,数列{}n b 的前n 项和为n T ,若存在*n ∈N 且2n ≥,使得2(1)(1)(1)n T n n n λ-≤-+成立,求实数λ的最小值.3.已知数列{}n a 前n 项和为12,n S a =,且满足()*1,N 2n n S a n n +=+∈.(1)求数列{}n a 的通项公式;(2)设()()211n n b n a =--,求数列{}n b 的前n 项和n T .4.已知数列{}n a 的前n 项和为n S ,且26a =,()121n n a S +=+.(1)证明:{}n a 为等比数列,并求{}n a 的通项公式;(2)求数列{}n na 的前n 项和n T .【答案】(1)证明见解析,123n n a -=⨯(*n ∈N )5.已知等差数列{}n a 的前n 项和为n S ,12a =,426S =.正项等比数列{}n b 中,12b =,2312b b +=.(1)求{}n a 与{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)31n a n =-,2nn b =,(2)()13428n n T n +=-+【解析】【分析】(1)由等差数列的通项公式与求和公式,等比数列的通项公式求解即可;(2)由错位相减法求解即可(1)设等差数列的公差为d ,由已知得,4342262d ⨯⨯+=,解得3d =,所以()()1123131n a a n d n n =+-=+-=-,即{}n a 的通项公式为31n a n =-;设正项等比数列{}n b 的公比为(),0q q >,因为12b =,2312b b +=,所以()2212q q+=,所以260qq +-=,解得2q =或3q =-(负值舍去),所以2nn b =.(2)()312n n n a b n =-,所以()()1231225282342312n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()23412225282342312n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-,相减得,()123412232323232312n n n T n +-=⨯+⨯+⨯+⨯+⋅⋅⋅+⋅--()()211132122231212n n n -+⨯⨯-=⨯+---,所以()13428n n T n +=-+.题型四:先求和,再证不等式【例1】设n S 为数列{n a }的前n 项和,已知123n n S a a +=,且10a ≠.(1)证明:{n a }是等比数列;(2)若12341,21,a a a -+成等差数列,记32log 1n n b a =-,证明12231111n n b b b b b b ++++ <12.【答案】(1)证明见解析(2)证明见解析【例2】已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记(1)(1)n n a b a a =--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.项和,再将不等式恒成立问题转化求函数的最值问【例3】(2022江西丰城九中高二阶段练习)等差数列{}n a 中,前三项分别为,2,54x x x -,前n 项和为n S ,且2550k S =.(1)求x 和k 的值;(2)求n T =1231111nS S S S ++++ (3)证明:n T 1<【例4】(2022·浙江·高二期末)已知数列{}n a 满足114a =,134n n a a +=-.(1)证明数列{}2n a -为等比数列,并求{}n a 的通项公式;(2)设()()()113131nnn nn a b +-=++,数列{}n b 的前n 项和为n T ,若存在*n ∈N ,使n m T ≥,求m 的取值范围.【题型专练】1.已知数列{}n a 满足:()2222*12323N n a a a n a n n n ++++=+∈ .(1)求数列{}n a 的通项公式;(2)记n S 为数列{}1n n a a +的前n 项和()*N n ∈,求证:24n S ≤<.2.(2022陕西安康市教学研究室高一期末)已知数列{}n a 满足12a =,1(2)2(1)n n n a n a ++=+.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,证明:6n S <.3.已知数列{}n a 的首项13a =,()*1212,N n n a a n n -=+≥∈,()2log 1n n b a =+.(1)证明:{}1n a +为等比数列;(2)证明:1223111112n n b b b b b b +++⋅⋅⋅+<.【答案】(1)证明见解析4.已知数列{n a }的前n 项和为n S ,342n n S a =-,(1)求数列{n a }的通项公式;(2)设33log 4n n a b =,n T 为数列12n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.证明:12n T ≤<【答案】(1)143n n a -=⨯;(2)证明见解析.【分析】(1)利用,n n a S 关系及等比数列的定义求通项公式;,结合数列单调性即可证结论5.已知数列{}n a 的前n 项和31n n S =-,其中*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,()132n n n b b a n -=+≥,(i )证明:数列13nn b -⎧⎫⎨⎬⎩⎭为等差数列;(ii )设数列{}n b 的前n 项和为n T ,求380n n T n -⋅<-成立的n 的最小值.【答案】(1)()1*2·3n n a n -=∈N (2)(i )证明见解析;(ii )5【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩即可求解;(2)11323n n n b b --=+⨯,两边除以13n -即可证明等差数列;利用错位相减法求n T ,解不等式即可求得n 的最小值.(1)31n n S =-,6.(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=- 且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:132<≤n T .【答案】(1)()*2n n a n =∈N (2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=- 两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明.(1)题型五:先放缩,再求和【例1】已知数列{}n a 的前n 项和为12n S a =,,当2n ≥时,()21212n n n S nS n n --=+-.(1)求数列{}n a 的通项公式;(2)求证:2222111123a a a a +++< .【例2】(2022·浙江省义乌中学模拟预测)已知数列{}n a 单调递增且12a >,前n 项和n S 满足2441n n S a n =+-,数列{}n b 满足212n n nb b b ++=,且123a a b +=,233b a +=.(1)求数列{}n a 、{}n b 的通项公式;(2)若1n c a b =,求证:123415n c c c c ++++< .【例3】已知数列{}n a 的前n 项和为n S ,且满足12a =,()1202n n n a S S n -+=≥(1)求n a 和n S (2)求证:22221231124n S S S S n+++⋯+≤-.【例4】已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+.(1)求n a ;(2)求证:121112111n a a a +++<+++ .【答案】(1)()12n n a n -*=∈N (2)证明见解析【分析】(1)分析可知数列{}21k a -是首项为11a =,公比为4的等比数列,数列{}2k a 是首项为22a =,公比【题型专练】1.已知数列{}n a 满足:12a =,132n n a a +=-,n *∈N .(1)设1n n b a =-,求数列{}n b 的通项公式;(2)设31323log log log n n T a a a =++⋅⋅⋅+,()n *∈N ,求证:()12n n n T ->.【答案】(1)13n n b -=(2)证明见解析2.(2022·全国·高三专题练习)已知数列{}n a 前n 项积为n T ,且*1()n n a T n +=∈N .(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)设22212n n S T T T =++⋅⋅⋅+,求证:112n n S a +>-.为以3.已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列,并求数列{}n a 的前n 项和为n S ;(2)设()31log 1n n b a +=+,证明:222121111nb b b ++⋅⋅⋅+<.【解析】(1)当1n =时,11322a S =+,即12a =由322n n a S n =+,则()1132212n n a S n n --=+-≥两式相减可得13223n n n a a a -=+-,即132n n a a -=+所以()1131n n a a -+=+,即1131n n a a -+=+数列{}1n a +为等比数列则()112133n n n a -+=+⨯=,所以31n n a =-则()()1231333333132nn n n n n S +--=+++-==--L (2)()1313log 1log 31n n n b a n ++=+==+()()2211111111n b n n n n n =<=+++所以2221211111111111122311n b b b n n n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭L4.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n n T n >>+.。
2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】
2025年高考数学一轮复习-6.4-数列求和-专项训练【原卷版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.82.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.93.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.634.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.45.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C.12,D.23,+∞6.(多选)已知数列{a n}满足a1=1,且对任意的n∈N*都有a n+1=a1+a n+n,则下列说法中正确的是()A.a n=n(n+1)2B2020项的和为20202021C2020项的和为40402021D.数列{a n}的第50项为25507.(多选)设数列{a n}的前n项和为S n,若S2nS4n为常数,则称数列{a n}为“吉祥数列”.则下列数列{b n}为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .202011.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n n 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +1412.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.2025年高考数学一轮复习-6.4-数列求和-专项训练【解析版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.8解析:A设{a n}的公差为d,根据题意得a23=a2·a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2,所以数列{a n}的前6项和为S6=6a1+6×52d=1×6+6×52×(-2)=-24.2.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.9解析:C∵1+2+22+…+2n-1为公比为2,首项为1的等比数列的前n项和S n,∴S n=12-1(2n-1)=2n-1>128=27,∴n≥8,∴n的最小值为8.故选C.3.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.63解析:D因为log2a n+1=1+log2a n,所以log2a n+1=log22a n,即a n+1=2a n,即数列{a n}是以2为公比的等比数列,又a3=4,所以a1=a34=1,因此S6=a1(1-26)1-2=26-1=63.故选D.4.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.4解析:A显然数列{a n}的公比不等于1,所以S n=a1·(q n-1)q-1=a1q-1·q n-a1q-1=4n+b,所以b=-1.5.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C .12,D .23,+∞解析:D设等比数列{a n }的公比为q ,q ≠0,则q 3=a 4a 1=18,解得q =12,所以a n =12n -1,所以a n a n +1=12n -1×12n =122n -1,所以数列{a n a n +1}是首项为12,公比为14的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=21-14=<23.因为a 1a 2+a 2a 3+…+a n a n +1<k ,所以k ≥23.故k 的取值范围是23,+D .6.(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是()A .a n =n (n +1)2B2020项的和为20202021C2020项的和为40402021D .数列{a n }的第50项为2550解析:AC因为a n +1=a 1+a n +n ,a 1=1,所以a n +1-a n =1+n ,即a n -a n -1=n (n ≥2),所以n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,a 1=1也适合此式,所以a n =n (n +1)2,a 50=1275,A 正确,D 错误;1a n =2n(n +1)=2020项和S 2020=-12+12-13+…+12020-=40402021,B 错误,C 正确.故选A 、C .7.(多选)设数列{a n }的前n 项和为S n ,若S2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n解析:BC对于A ,S n =(1+n )n 2,S 2n =n (1+2n ),S 4n =2n (1+4n ),所以S2n S 4n =n (1+2n )2n (1+4n )=1+2n 2(1+4n )不为常数,故A 错误;对于B ,由并项求和法知:S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 正确;对于C ,S n =2+4n -22×n =2n 2,S 2n =8n 2,S 4n =32n 2,所以S 2n S 4n =14,故C 正确;对于D ,S n =2(1-2n )1-2=2(2n -1),S 2n =2(4n -1),S 4n =2(16n -1),所以S2n S 4n =4n -116n -1=14n +1不为常数,故D 错误.故选B 、C .8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析:S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n ,∴S n-na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案:59.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d a 1+10d =20,1+2d )2=(a 1+d )(a 1+4d ),化简得1+2d =4,1d =0,因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *,因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n n -n 2,n 为偶数,a n ,n 为奇数,n 为偶数,n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2)=n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .2020解析:D设{a n }的公差为da 1+6d =a 1+3d +7,1+9d =19,1=1,=2,∴a n =2n-1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2019+b 2020)=2×20202=2020.11.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A nn 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +14解析:ABD由a n =a 2n -1+a n -1,得a 2n -1=a n -a n -1≥0,所以a n ≥a n -1≥32,A n =a 21+a 22+…+a 2n =a 2-a 1+a 3-a 2+…+a n +1-a n =a n +1-a 1=a n +1-32,故A 正确;由a n =a 2n -1+a n -1=a n-1(a n -1+1),得1a n =1a n -1(a n -1+1)=1a n -1-1a n -1+1,即1a n -1+1=1a n -1-1a n ,所以B n =1a 1+1+1a 2+1+…+1a n +1=1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=23-1a n +1,故B 正确;易知A n ≠0,B n ≠0,所以A nB n =a n +1-3223-1a n +1=32a n +1,故C 不正确;易知a n =a 2n -1+a n -1<2a 2n -1,所以a n +1<2a 2n <23a 4n -1<…<22n -1a 2n 1=22n-1n =12×32n ,所以A n B n=32an +1<32×12×32n =32n +14,故D 正确.故选A 、B 、D .12.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2,两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2,即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1),则数列{a n -1}是首项为1,公比为3的等比数列,则a n -1=3n -1,故a n =1+3n -1.(2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1),设M n =1·30+2·31+3·32+…+n ·3n -1,3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n=1-3n 1-3-n ·3n ,化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.证明:二项展开式的通项为T k +1=C -k=C -k x12-3k,令12-3k =0,得k =4,得展开式的常数项为a 1=12.可选择的条件为①或②或③:若选择①:在S n =-a n +t 中,令n =1,得t =1,所以S n =-a n +1,当n ≥2时,S n -1=-a n -1+1.两式相减得a n =12a n -1,故{a n }是以12为首项,12为公比的等比数列,所以S n =a 1(1-q n )1-q =1<1.所以S n <1对任意的n ∈N *恒成立.若选择②:由(n +1)b n +1=nb n 得b n +1b n =nn +1,所以b n =b n b n -1·b n -1b n -2·…·b 2b 1b 1=1n (n ≥2),n =1时也满足,则a n =1n (n +1)=1n -1n +1,S n …1-1n +1<1.所以S n <1对任意的n ∈N *恒成立.若选择③:由题意得3a 2n +1-3a 2n =-(a n +1+a n ),得a n +1-a n =-13或a n +1+a n =0,又a 1=12,当a n +1+a n =0时,有S n n 为偶数,n 为奇数,所以S n <1,当a n +1-a n =-13时,有S n =n 2-n (n -1)6=-16(n 2-4n )=-16(n -2)2+23,当n =2时,S n 有最大值,为23<1.所以S n <1对任意的n ∈N *恒成立.。
高考数学 数列求和 专题
高考数学 数列求和 专题时间:45分钟 分值:100分一、选择题(每小题5分,共30分)1.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列{S nn}的前11项和为( )A .-45B .-50C .-55D .-66解析:S n =n [-1+(-2n +1)]2=-n 2,即S n n =-n ,则数列{S nn }的前11项和为-1-2-3-4-…-11=-66.答案:D2.若S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( )A .1B .-1C .0D .2解析:S 2n =-n ,S 2n +1=S 2n +a 2n +1=-n +2n +1=n +1,∴S 17+S 33+S 50=9+17-25=1. 答案:A3.数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1020,那么n 的最小值是( )A .7B .8C .9D .10解析:a n =1+2+22+…+2n -1=2n -1, ∴S n=(21+22+…+2n )-n =2(2n -1)2-1-n =2n +1-2-n . S n >1020 即2n +1-2-n >1020. ∵210=1024,1024-2-9=1013<1020. 故n min =10. 答案:D4.已知数列{2(n +1)2-1}的前n 项和为S n ,则lim n →∞S n 等于 ( )A .0B .1 C.32D .2解析:∵2(n +1)2-1=2n (n +2)=1n -1n +2∴S n =(11-13)+(12-14)+(13-15)+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)=1+12-1n +1-1n +2.∴lim n →∞S n =lim n →∞ (1+12-1n +1-1n +2)=32. 答案:C5.已知S n 是等差数列{a n }的前n 项和,S 10>0且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的构成集合为( )A .{5}B .{6}C .{5,6}D .{7}解析:由S 10>0,且S 11=0得 S 10=10(a 1+a 10)2>0⇒a 1+a 10=a 5+a 6>0 S 11=11(a 1+a 11)2=0⇒a 1+a 11=2a 6=0,故可知{a n }为递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6.答案:C6.(2009·江西高考)数列{a n }的通项a n =n 2(cos 2nπ3-sin 2nπ3),其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510解析:a n =n 2·cos 2n 3π,a 1=12·(-12),a 2=22(-12),a 3=32,a 4=42(-12),…S 30=(-12)(12+22-2·32+42+52-2·62+…+282+292-2·302)=(-12)∑k =110[(3k -2)2+(3k-1)2-2·(3k )2]=(-12)∑k =110 (-18k +5)=-12=470. 答案:A二、填空题(每小题5分,共20分)7.数列{a n }的通项公式为a n =n +2n (n =1,2,3,…),则{a n }的前n 项和S n =__________. 解析:由题意得数列{a n }的前n 项和等于(1+2+3+…+n )+(2+22+23+…+2n )=n (n +1)2+2-2n +11-2=n (n +1)2+2n +1-2. 答案:n (n +1)2+2n +1-28.数列112+2,122+4,132+6,142+8…的前n 项和等于________.解析:a n =1n 2+2n =12⎝ ⎛⎭⎪⎫1n -1n +2∴S n =12⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…⎦⎤+⎝⎛⎭⎫1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2).答案:34-2n +32(n +1)(n +2)9.已知数列{a n }的通项公式为a n =2n -1+1,则a 1C 0n +a 2C 1n +a 3C 2n +…+a n +1C n n =________.解析:a 1C 0n +a 2C 1n +…+a n +1C n n =(20+1)C 0n +(21+1)C 1n +(22+1)C 2n +…+(2n +1)C n n =20C 0n +21C 1n +22C 2n +…+2n C n n +C 0n +C 1n +…+C n n =(2+1)n +2n =3n +2n .答案:2n +3n10.(2010·重庆质检二)设数列{a n }为等差数列,{b n }为公比大于1的等比数列,且a 1=b 1=2,a 2=b 2,a 2+a 62=b 2b 4,令数列{c n }满足c n =a n b n2,则数列{c n }的前n 项和S n 等于________.解析:设{a n }的公差为d ,{b n }的公比为q (q >1),∵a 2+a 62=b 2b 4,∴a 4=b 3,∴2+3d =2q 2①,由a 2=b 2,得:2+d =2q ②, 由①②得d =2,q =2,∴a n =2+(n -1)·2=2n ,b n =2·2n -1=2n .∴c n =a n b n2=n ·2n ,∴S n=c 1+c 2+…+c n =1·2+2·22+…+n ·2n ③∴2S n =1·22+2·23+…+n ·2n +1④,③-④得:-S n =2+(22+23+…+2n )-n ·2n +1=2(1-2n )1-2-n ·2n +1=(1-n )·2n +1-2, ∴S n =(n -1)2n +1+2.答案:(n -1)2n +1+2 三、解答题(共50分)11.(15分)求和:(1)11×3+13×5+…+1(2n -1)(2n +1).(2)12!+23!+34!+…+n (n +1)!. 解:(1)∵1(2n -1)(2n +1)=12(12n -1-12n +1)∴原式=12(1-13)+12(13-15)+…+12(12n -1-12n +1)=12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1)=n 2n +1. (2)∵n (n +1)!=(n +1)-1(n +1)!=1n !-1(n +1)!∴原式=11!-12!+12!-13!+…+1n !-1(n +1)!=1-1(n +1)!.12.(15分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1,数列{b n }的前n 项和为S n ,T n =S 2n -S n .(1)求数列{b n }的通项公式; (2)求证:T n +1>T n ;解:(1)由b n =a n -1得a n =b n +1,代入2a n =1+a n a n +1,得2(b n +1)=1+(b n +1)(b n +1+1),整理,得b n b n +1+b n +1-b n =0,从而有1b n +1-1b n=1,∵b 1=a 1-1=2-1=1,∴{1b n }是首项为1,公差为1的等差数列, ∴1b n =n ,即b n =1n. (2)∵S n =1+12+…+1n,∴T n =S 2n -S n =1n +1+1n +2+…+12n ,T n +1=1n +2+1n +3+…+12n +12n +1+12n +2,T n +1-T n =12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0,(∵2n +1<2n +2)∴T n +1>T n .13.(20分)(2009·全国卷Ⅰ)在数列{a n }中,a 1=1,a n +1=(1+1n )a n +n +12n .(1)设b n =a nn,求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由已知得b 1=a 1=1,且a n +1n +1=a n n +12n ,即b n +1=b n +12n ,从而b 2=b 1+12,b 3=b 2+122,…b n =b n -1+12n -1(n ≥2),于是b n =b 1+12+122+…+12n -1=2-12n -1(n ≥2).又b 1=1,故所求数列{b n }的通项公式为b n =2-12n -1.(2)由(1)知a n =n (2-12n -1)=2n -n2n -1.令T n =∑k =1nk2k -1,则2T n =∑k =1nk2k -2,于是T n =2T n -T n =∑k =0n -112k -1-n2n -1=4-n +22n -1. 又∑k =1n(2k )=n (n +1),所以S n =n (n +1)+n +22n -1-4.。
高考数学《数列》大题训练50题含答案解析整理版
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
高考数学一轮复习: 专题6.4 数列求和(练)
专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n-1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n ∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,。
数列的求和-高考数学复习
研题型·通法悟道 举题说法
目标 3 错位相减法求和
3 (2023·全国甲卷)已知在数列{an}中,a2=1,设Sn为{an}的前n项和,2Sn= nan. (1)求数列{an}的通项公式;
【解答】 因为 2Sn=nan①,当 n=1 时,2S1=a1,解得 a1=0,当 n≥2 时,2Sn-1=(n -1)an-1②,①-②得 2an=nan-(n-1)an-1,所以(n-1)an-1=(n-2)an,当 n≥3 时, 可得aan-n1=nn- -12,所以 an=21×32×43×…×nn- -12×a2=n-1,又 a1=0,a2=1 也适合上 式,所以{an}的通项公式为 an=n-1.
总结 提炼
若数列{cn}的通项公式为 cn=abnn,,nn为为奇偶数数,,其中数列{an},{bn}是等比数列或等差数 列,可采用分组求和法求{cn}的前 n 项和.
研题型·通法悟道 举题说法
变式 (2023·马鞍山一模)已知数列{an}中,a1=3,a2=5,数列{bn}为等比数
列,满足bn+1=an+1bn-anbn,且b2,2a4,b5成等差数列. (1)求数列{an}和{bn}的通项公式;
点击对应数字即可跳转到对应题目
1
2
3
4
5
链教材·夯基固本 激活思维
4.已知函数 y=f(x)满足 f(x)+f(1-x)=1,若数列{an}满足 an=f(0)+f1n+f2n+…+
fn-n 1+f(1),则数列{an}的前 20 项和为
( D)
A.100
B.105
C.110
D.115
点击对应数字即可跳转到对应题目
研题型·通法悟道 举题说法
变式 (2023·韶关二模)设等比数列{an}的前n项和为Sn,已知an+1=Sn+1,
高考数学专项复习《数列中错位相减法求和问题》真题练习含答案
高考数学专项复习《数列中错位相减法求和问题》真题练习【高考真题】2022年没考查【方法总结】错位相减法求和错位相减法:错位相减法是在推导等比数列的前n 项和公式时所用的方法,适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.(3)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.【题型突破】1.已知等差数列{a n }的前n 项和为S n ,a 1=2,且S 1010=S 55+5. (1)求a n ;(2)若b n =a n ·4S n a n求数列{b n }的前n 项的和T n .2.(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.3.(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0, b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,2S n =(n +1)a n -2.(1)求a 2,a 3和通项a n ;(2)设数列{b n }满足b n =a n ·2n -1,求{b n }的前n 项和T n .5.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *).(1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n .6.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).数列{b n }是公差d 不等于0的等差数列,且满足:b 1=32a 1,b 2,b 5,b 14成等比数列. (1)求数列{a n },{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n .7.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n . 8.已知数列{a n }满足a 1=12,a n +1=a n 2a n +1. (1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求{a n }的通项公式; (2)若数列{b n }满足b n =12n ·a n,求数列{b n }的前n 项和S n . 9.(2020·全国Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .10.在等差数列{a n }中,已知a 6=16,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解. 注:若选择多个条件分别解答,按第一个解答计分.11.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下 面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列.(1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .12.在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .注:如果选择不同方案分别解答,按第一个解答计分.13.在①已知数列{a n }满足:a n +1-2a n =0,a 3=8;②等比数列{a n }中,公比q =2,前5项和为62,这两个条件中任选一个,并解答下列问题:(1)求数列{a n }的通项公式;(2)设b n =n a n,数列{b n }的前n 项和为T n ,若2T n >m -2 022对n ∈N *恒成立,求正整数m 的最大值. 注:如果选择两个条件分别解答,则按第一个解答计分.14.(2021·全国乙)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列. (1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. 15.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34. 16.已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12. (1)当n ∈N *时,求f (n )的表达式;(2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2.17.已知各项均不相等的等差数列{a n }的前4项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前3项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)设K n 为数列{a n b n }的前n 项和,若不等式λS n T n ≥K n +n 对一切n ∈N *恒成立,求实数λ的最小值.18.(2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n 对任意n ∈N *恒成立, 求实数λ的取值范围.19.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.20.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =12log n n a a ,S n =b 1+b 2+…+b n ,求使S n +n ×2n +1>30成立的正整数n 的最小值.。
高考数学解答题(新高考)数列求和(倒序相加法、分组求和法)(典型例题+题型归类练)(解析版)
专题05 数列求和(倒序相加法、分组求和法)(典型例题+题型归类练)一、必备秘籍1、倒序相加法,即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.2、分组求和法2.1如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.2.2如果一个数列可写成n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的形式,在求和时可以使用分组求和法.二、典型例题类型1:倒序相加法例题1.(2022·全国·高三专题练习)已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的前20项和为( )A .100B .105C .110D .115思路点拨:根据题意:,对应关系作用下的量“”和“”始终满足: ;再结合求解目标:,可使用倒序相加法解答过程:;倒序重写一次: ;两式相加因为函数()y f x =满足()(1)1f x f x +-=, 121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭①,121(1)(0)n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫∴=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②, 由①+②可得21n a n =+,12n n a +∴=, 所以数列{}n a 是首项为1,公差为12的等差数列,其前20项和为20120121152+⎛⎫+ ⎪⎝⎭=. 故选:D.例题2.(2022·全国·高三专题练习)设函数()221x f x =+,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112思路点拨:通过观察求解目标:求,注意到对应关系作用下的量头尾复合关系“”,故先验证的值.解答过程:设 倒序重写一次: 则 两式相加()221x f x =+,()()()22222212121221x x x x x x f x f x --⋅∴+-=+=+++++()2122222211221x x x x x +⋅=+==+++,设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B.类型2:分组求和角度1:通项为n n n c a b =±型求和例题3.(2022·河南郑州·三模(文))已知数列{}n a 满足111,1n n a a S +==+,其中n S 为{}n a 的前n 项和,n *∈N . (1)求数列{}n a 的通项公式;(2)设数列{}n n b a -是首项为1,公差为2的等差数列,求数列{}n b 的前n 项和. 【答案】(1)12n na (2)221n n -+(1)11a =,11n n a S +=+, 当1n =时,可得2112a a =+=.当2n ≥时,11n n a S -=+,则1n n n a a a +-=,即12n n a a +=,且212a a =. 故{}n a 是以1为首项,2为公比的等比数列 所以12n n a第(2)问解题思路点拨:由(1)知:,并且知是首项为1,公差为2的等差数列,可先求出的通项,再求出的通项.解答过程:设的前项和为由是首项为1,公差为2的等差数列,,由(1)知注意到表达式为等差+等比;可用分组求和(2)由题意12(1)21n n b a n n -=+-=-,所以1221n n b n -=+-, 设{}n b 的前n 项和为n T()()()01121212112222132121.122n n n n n n n T b b b n n -+--=+++=+++++++-=+=-+- 角度2:通项为nn na n c bn ⎧⎪=⎨⎪⎩为奇数为偶数型求和例题4.(2022·湖北·荆门市龙泉中学二模)已知数列{}n a 的前n 项和为112n n S a +=-,且214a = (1)求数列{}n a 的通项公式;(2)()0.5*log ,,n n n a n b n N a n ⎧=∈⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T ; 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)211334nn +-⨯ (1)在数列{}n a 中, 由112n n S a +=-可知1212n n S a ++=-,两式作差可得()()1211212n n n n S a S a +++---=-,即2112n n a a ++=,当1n =时,1212S a =-,,即112a =,211412a a ==,所以数列{}n a 是以12为首项,12为公比的等比数列,即1111222n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭;第(2)问解题思路点拨:由(1)知:,可代入到第(2)问中,求出的通项公式:,注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的为偶数项和,最后一项一定是代入偶数的通项公式,否则,若是求,最后一项是代入奇数项通项,还是代入偶数项通项,则需要讨论)分组求和(2)由(1)知()*,1,2nn n n b n N n ⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数,所以()()21321242n n n T b b b b b b -=+++++++()211113214162n n ⎛⎫=+++-++++ ⎪⎝⎭()111441211214nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦=+-211334nn =+-⨯. 例题5.(2022·江西·新余四中模拟预测(理))在数列{}n a 中,21,,2,n nn n a n -⎧=⎨⎩为奇数为偶数 (1)求1a ,2a ,3a ; (2)求数列{}n a 的前n 项和n S .第(2)问解题思路点拨:由题意知,注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧当为偶数时,数列{的前项中有个奇数项,有个偶数项. (注意到本例求解的,最后一项是代入奇数项通项,还是代入偶数项通项,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:21n b -++1n a -+,注意到最后一项n 为偶数,再利用1n n a -+,其中奇数项,偶数项各为【答案】(1)11a =,24a =,35a =(2)212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 (1)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数所以12111a =⨯-=,2224a ==,32315a =⨯-=,(2)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数 所以1a ,3a ,5a ,是以1为首项,4为公差的等差数列,2a ,4a ,6a ,是以4为首项,4为公比的等比数列.当n 为奇数时,数列的前n 项中有12n +个奇数项,有12n -个偶数项.所以()()1231322431n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++12211141411242214221423n n n n n n n -+⎛⎫++⎛⎫-- ⎪ ⎪++-⎝⎭⎝⎭=⨯+⨯+=+-; 当n 为偶数时,数列{{}n a 的前n 项中有2n 个奇数项,有2n个偶数项.所以()()1231331242n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++2224141242214221423nn n n n n n +⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭=⨯+⨯+=+-. 所以212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 三、题型归类练1.(2022·全国·高三专题练习)已知1()12F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,*121(0)(1)()n n a f f f f f n n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭N ,则数列{}n a 的通项公式为( )A .n a n =B .2n a n =C .1n a n =+D .223n a n n =-+【答案】C由题已知()112F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,故()()F x F x -=-, 代入得:()11222f x f x x R ⎛⎫⎛⎫-++=∈ ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 关于点112⎛⎫⎪⎝⎭,对称, 令12t x =-, 则112x t +=-, 得到()()12f t f t +-=, ∵()()1101n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,倒序相加可得()221n a n =+, 即1n a n =+, 故选:C .2.(2022·全国·高三专题练习)已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A .2018B .2019C .4036D .4038【答案】A()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加得:222018S =⨯,2018S ∴=. 故选:A .3.(2022·黑龙江·鹤岗一中高二阶段练习)已知函数()1e e xx f x =+,数列{}n a 为等比数列,0n a >,1831a =,则()()()()123365ln ln ln ln f a f a f a f a ++++=______.【答案】3652∵()e e 1xx f x =+,∴()()e e e e 1)e (e 1)2e e 1e 1e 1(e 1)(e (e 1)2e x x x x x x x xxx x x x xf x f x -------++++++-=+===++++++. ∵数列{}n a 是等比数列,∴2136523641831a a a a a ====,∴2136523643651183ln ln ln ln ln ln ln 0a a a a a a a +=+==+==.设()()()36512365ln ln ln S f a f a f a =+++,①则()()()3653653641ln ln ln S f a f a f a =+++,②①+②,得()()()()()()()()()3651365236436512ln ln ln ln ln ln S f a f a f a f a f a f a =++++++365=,∴3653652S =. 故答案为:36524.(2022·全国·高三专题练习)已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______. 【答案】992因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ①,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ②,①+②,得99299=S ,所以99992=S . 5.(2022·黑龙江双鸭山·高二期末)设4()42xx f x =+,若122014()()()201520152015S f f f =++⋯⋯+,则S =________. 【答案】1007解:∵函数f (x )442xx =+,∴f (x )+f (1﹣x )11114444442424242(42)44242x x x x x x xx x x x x x ----⋅=+=+=+=++++⋅++ 1 故可得S =f (12015)+f (22015)…+f (20142015)=1007×1=1007, 故答案为:10076.(2022·全国·高二课时练习)已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005.因为()442x x f x =+,所以()1144214242442x x xx f x ---===++⨯+, 所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 两式相加得22010S =,故1005S =.7.(2022·黑龙江·哈师大附中三模(理))已知数列{}n a 的前n 项和为n S ,且1n n a S +=. (1)求数列{}n a 的通项公式;(2)设2log n n n b a a =+,求数列{}n b 的前n 项和n T . 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)22122++⎛⎫- ⎪⎝⎭nn n(1)∵1n n a S +=,① 当1n =时,111a a +=,即112a =, 当2n ≥时,111n n a S --+=.②由①-②得120n n a a --=,即112n n a a -=, ∴数列{}n a 是以12为首项,12为公比的等比数列, ∴12nn a ⎛⎫= ⎪⎝⎭.(2)由(1)知22lo 111log 222g ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-nnnn n n n b a a ,∴()121211112222⎛⎫⎛⎫⎛⎫=+++=+++-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nn n n T b b b∴()()21112211121112222212⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭++++⎢⎥⎛⎫⎛⎫⎣⎦=+=-+=- ⎪ ⎪⎝⎭⎝⎭-nn n n n n n n n .8.(2022·广东·二模)已知递增等比数列{}n a 的前n 项和为n S ,且满足2134a a a =,314S =. (1)求数列{}n a 的通项公式.(2)若数列{}n b 满足()()*,3,313k n a n k b k N k k n k=⎧=∈⎨-<<⎩,求数列{}n b 的前15项和. 【答案】(1)2n n a =(2)92(1)设{}n a 的公比为q ,则由2134a a a =,得21114a q a a q =⋅.整理得14a q =.又314S =,得()21114a q q ++=.联立得()1214114a q a q q =⎧⎪⎨++=⎪⎩,消去1a ,得22520q q -+=. 解得2q 或12q =. 又因为{}n a 为递增等比数列, 所以2q,12a =.所以112n nn a a q -==.(2)(方法一)当1k =时,()1*,31,03n a n b n N n =⎧=∈⎨<<⎩,则121b b ==,312b a ==,同理,列举得452b b ==,2622b a ==,783b b ==,3932b a ==,10114b b ==,41242b a ==,13145b b ==,51552b a ==.记{}n b 的前n 项和为n T ,则 151215123451122334455T b b b a a a a a =+++=++++++++++++++()()1234521234522222=⨯+++++++++()()5212155292212⨯-+⨯=⨯+=-. 所以数列{}n b 的前15项和为92.(方法二)由()()*,3,313k n a n k b k N k k n k=⎧=∈⎨-<<⎩, 得()*,32,31,3n k k n k b k n k k N a n k =-⎧⎪==-∈⎨⎪=⎩,记{}n b 的前n 项和为n T ,则151215123451122334455T b b b a a a a a =+++=++++++++++++++ ()()1234521234522222=⨯+++++++++()()5212155292212⨯-+⨯=⨯+=-. 所以数列{}n b 的前15项和为92.9.(2022·甘肃兰州·一模(理))在①5913S S =,②2a 是1a 和4a 的等比中项,这两个条件中任选一个,补充在下面问题中,并解答.问题:已知公差d 不为0的等差数列{}n a 的前n 项和为n S ,36a =.(1)______,求数列{}n a 的通项公式;(2)若数列2n a n b =,n n n c a b =+,求数列{}n c 的前n 项和n T . 【答案】(1)答案见详解;(2)()24413n n T n n =++- (1)选①:由于()1553552a a S a +==,()1995992a a S a +== 所以53955193S a S a ==,又36a =,所以510a =,故()53122d a a =-= 所以()332n a a n d n =+-=;选②:2a 是1a 和4a 的等比中项,则2214a a a =,所以()()()23332d d a d a a -=-+,又36a =,解得2d =,0d =(舍去)所以()332n a a n d n =+-=;(2)24==n a n n b ,24n n n n c a b n =+=+,则()()()22422424n n T n =++⨯++++ ()()2212444n n =+++++++ ()()22414441143n n n n n n -=++=++-- 10.(2022·重庆·二模)设n S 为数列{}n a 的前n 项和,已知0n a >,()2243n n n a a S n *+=+∈N .若数列{}n b 满足12b =,24b =,212n n n b b b ++=()n N *∈. (1)求数列{}n a 和{}n b 的通项公式;(2)设()()1,21,,2,n n n n k k NS c b n k k N **⎧=-∈⎪=⎨⎪=∈⎩,求数列{}n c 的前2n 项的和2n T . 【答案】(1)21n a n =+,2n n b =(2)1244213n n n T n +-=++ (1)由0n a >,2243n n n a a S +=+①,得:当1n =时,211230a a --=,解得13a =或11a =-(负值舍去),当2n ≥时,2111243n n n a a S ---+=+②,-①②得:()()()1112n n n n n n a a a a a a ---+-=+, 所以12n n a a --=,所以数列{}n a 是以3为首项,2为公差的等差数列.所以()*21n a n n N =+∈.因为数列{}n b 满足12b =,24b =,212n n n b b b ++=.所以数列{}n b 是等比数列,首项为2,公比为2.所以2n n b =.(2)因为()*21N n a n n =+∈,所以()()2321222n n n S n n n n ++==+=+, 所以()()242211112221335572121n n T n n =+++⋅⋅⋅++++⋅⋅⋅+⨯⨯⨯-+ ()414111111111233557212114n n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎢⎥-+-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()41411122114n n -⎛⎫=-+ ⎪+-⎝⎭ 144213n n n +-=++. 11.(2022·陕西咸阳·二模(理))已知函数()()*21f n n n N =-∈,数列{}n b 满足()()*2f n n b n N =∈.数列{}n a为等差数列,满足11a b =,322a b =-.(1)求数列{}n a 、{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)2n a n =;212n n b -=;(2)21212233n n S n n +=⋅++-. (1)由题意得:212n n b -=,112a b ==,3226a b =-=,∴等差数列{}n a 的公差3122a a d -==, ()2212n a n n ∴=+-=;(2)由(1)得:2122n n n a b n -+=+;()()()()1352121421232222114n n n S n n n --∴=+++⋅⋅⋅+++++⋅⋅⋅+=++-()()2122121412333n n n n n n +=++-=⋅++-。
第4节 数列求和--2025年高考数学复习讲义及练习解析
第四节数列求和课标解读考向预测1.熟练掌握等差、等比数列的前n 项和公式.2.掌握数列求和的几种常见方法.数列求和是高考考查的重点知识,预计2025年高考会考查等差、等比数列的前n 项和公式以及其他求和公式,可能与通项公式相结合,也有可能与函数、方程、不等式等相结合,综合命题,难度适中.必备知识——强基础数列求和的几种常用方法1.公式法(1)等差数列的前n 项和公式①已知等差数列的第1项和第n 项求前n 项和S n =n (a 1+a n )2;②已知等差数列的第1项和公差求前n 项和S n =na 1+n (n -1)2d .(2)等比数列的前n 项和公式当q =1时,S n =na 1;当q ≠1时,①已知等比数列的第1项和第n 项求前n 项和S n =a 1-a n q1-q ;②已知等比数列的第1项和公比求前n 项和S n =a 1(1-q n )1-q .2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解,如等差数列的前n 项和公式即是用此法推导的.1.1+2+3+4+…+n =n (n +1)2.2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的变形(1)分式型:1n (n +k )=1(2n -1)(2n +1)=1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2)等.(2)指数型:2n (2n +1-1)(2n -1)=12n -1-12n +1-1,n +2n (n +1)·2n =1n ·2n -1-1(n +1)·2n 等.(3)根式型:1n +n +k =1k(n +k -n )等.(4)对数型:log m a n +1a n=log m a n +1-log m a n ,a n >0,m >0且m ≠1.1.概念辨析(正确的打“√”,错误的打“×”)(1)设数列{a n }的前n 项和为S n ,若a n =1n +1+n,则S 9=2.()(2)1n 2<1(n -1)n =1n -1-1n.()(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求和.()(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n=3n-12.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第二册4.4练习T2改编)数列{a n}的前n项和为S n,若a n=1n(n+1),则S5=()A.1B.56C.16D.130答案B解析∵a n=1n(n+1)=1n-1n+1,∴S5=a1+a2+…+a5=1-12+12-13+…+15-16=56.故选B.(2)(人教A选择性必修第二册4.4练习T1改编)数列{a n}的通项公式a n=(-1)n(2n-1),则该数列的前100项和为()A.-200B.-100C.200D.100答案D解析S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D.(3)(人教A选择性必修第二册习题4.3T3改编)若数列{a n}的通项公式a n=2n+2n-1,则数列{a n}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2答案C解析S n=a1+a2+a3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n-1)=(2+22+…+2n)+2(1+2+3+…+n)-n=2(1-2n)1-2+2×n(n+1)2-n=2(2n-1)+n2+n-n=2n+1+n2-2.故选C.(4)在数列{a n}中,a1=1,a n a n+1=-2,则S100=________.答案-50解析根据题意,由a1=1,a1a2=-2,得a2=-2,又a2a3=-2,得a3=1,a3a4=-2,得a4=-2,…,所以{a n}中所有的奇数项均为1,所有的偶数项均为-2,所以S100=a1+a2+…+a 99+a 100=1-2+…+1-2=50×(-1)=-50.考点探究——提素养考点一拆项分组法求和例1(2023·湖南岳阳统考三模)已知等比数列{a n }的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列{a n }的通项公式;(2)已知b n log 13a n ,n 为奇数,n ,n 为偶数,求数列{b n }的前n 项和T n .解(1)因为{a n }是等比数列,公比q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 1(1-34)1-3=9a 1+93,解得a 1=3,所以数列{a n }的通项公式为a n =3n .(2)由(1)得b nn ,n 为奇数,n ,n 为偶数.当n 为偶数时,T n =b 1+b 2+…+b n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-(1+3+…+n -1)+(32+34+…+3n )=-n2·[1+(n -1)]2+9(1-9n2)1-9=98(3n -1)-n 24;当n 为奇数时,T n =T n +1-b n +1=98(3n +1-1)-(n +1)24-3n +1=18·3n +1-98-(n +1)24.综上所述,T nn +1-98-(n +1)24,n 为奇数,3n -1)-n 24,n 为偶数.【通性通法】拆项分组法求和的常见类型【巩固迁移】1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值为________.答案n 2+1-12n解析由题意可得,通项公式为a n =(2n -1)+12n,则S n =[1+3+5+…+(2n -1)]++122+123+…=n [1+(2n -1)]2+21-12=n 2+1-12n .考点二并项转化法求和例2在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式;(2)若b n =(-1)n ·a n ,求数列{b n }的前n 项和S n .解(1)由题意,设等差数列{a n }的公差为d,1+5d =12,1+17d =36,1=2,=2,∴a n =2+(n -1)×2=2n .(2)由(1),得b n =(-1)n ·a n =(-1)n ·2n ,∴S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n ,(ⅰ)当n 为偶数时,S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=2+2+…+2=n2×2=n ;(ⅱ)当n 为奇数时,n -1为偶数,S n =b 1+b 2+…+b n =S n -1+b n =n -1-2n =-n -1.∴Sn ,n 为偶数,n -1,n 为奇数.【通性通法】并项转化法求和【巩固迁移】2.(2024·浙江台州中学质检)已知数列{a n }满足a 1+2a 2+…+na n =2n ,数列{b n }满足对任意正整数m ≥2均有b m -1+b m +b m +1=1a m 成立.(1)求数列{a n }的通项公式;(2)求数列{b n }的前99项和.解(1)因为a 1+2a 2+…+na n =2n ,所以当n ≥2时,a 1+2a 2+…+(n -1)a n -1=2(n -1).两式相减,得na n =2,所以a n =2n (n ≥2).又当n =1时,a 1=2,也符合上式,所以a n =2n .(2)由(1)知1a n =n2.因为对任意的正整数m ≥2,均有b m -1+b m +b m +1=1a m =m2,故数列{b n }的前99项和b 1+b 2+b 3+b 4+b 5+b 6+…+b 97+b 98+b 99=(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 97+b 98+b 99)=1a 2+1a 5+…+1a 98=22+52+…+982=825.考点三裂项相消法求和例3(2023·承德模拟)已知数列{a n }的前n 项和为S n ,且a n +1S n=2n .(1)证明:数列{a n }是等差数列;(2)若a 2+1,a 3+1,a 5成等比数列.从下面三个条件中选择一个,求数列{b n }的前n 项和T n .①b n =na 2n a 2n +1;②b n =1a n +a n +1;③b n =2n +3a n a n +12n +1.注:如果选择多个条件分别解答,按第一个解答计分.解(1)证明:因为a n +1S n=2n ,即n (a n +1)=2S n ,当n =1时,a 1+1=2S 1,解得a 1=1,当n ≥2时,(n -1)(a n -1+1)=2S n -1,所以n (a n +1)-(n -1)(a n -1+1)=2S n -2S n -1,即n (a n +1)-(n -1)(a n -1+1)=2a n ,所以(n -2)a n -(n -1)a n -1+1=0,当n =2时,上述式子恒成立,当n >2时,两边同除以(n -2)(n -1)可得a n n -1-a n -1n -2=-1(n -1)(n -2)=1n -1-1n -2,即a n n -1-1n -1=a n -1n -2-1n -2,,即a n -1n -1=a 2-1,所以a n -1=(n -1)(a 2-1),即a n =(n -1)(a 2-1)+1,当n =1时,也适合上式,所以a n +1-a n =n (a 2-1)+1-(n -1)(a 2-1)-1=a 2-1,所以数列{a n }是以1为首项,a 2-1为公差的等差数列.(2)设{a n }的公差为d ,因为a 2+1,a 3+1,a 5成等比数列,所以(a 3+1)2=a 5(a 2+1),即(2+2d )2=(1+4d )(2+d ),解得d =2,所以a n =2n -1.若选①b n =na 2n a 2n +1,则b n =n (2n -1)2(2n +1)2=181(2n -1)2-1(2n +1)2,所以T n =18112-132+132-152+…+1(2n -1)2-1(2n +1)2=181-1(2n +1)2.若选②b n =1a n +a n +1,则b n =12n -1+2n +1=2n +1-2n -1(2n -1+2n +1)(2n +1-2n -1)=12(2n +1-2n -1),所以T n =12(3-1+5-3+…+2n +1-2n -1)=12(2n +1-1).若选③b n =2n +3a n a n +12n +1,则b n =2n +3(2n -1)(2n +1)2n +1=1(2n -1)×2n -1(2n +1)×2n +1,所以T n =11×21-13×22+13×22-15×23+…+1(2n -1)×2n -1(2n +1)×2n +1=12-1(2n +1)×2n +1.【通性通法】利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=,1a n a n +2=【巩固迁移】3.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =()A .25B .576C .624D .625答案C解析a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24,得n =624.故选C.4.(2022·新高考Ⅰ卷)记S n 为数列{a n }的前n 项和,已知a 1=1是公差为13的等差数列.(1)求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <2.解(1)1,公差为13的等差数列,所以S n a n =1+13(n -1)=n +23,故S n =n +23a n .①当n ≥2时,S n -1=n +13a n -1.②由①-②可知a n =n +23a n -n +13a n -1,所以(n -1)a n =(n +1)a n -1,即a n a n -1=n +1n -1.所以a 2a 1×a3a 2×…×a n -1a n -2×a n a n -1=31×42×53×…×n n -2×n +1n -1=n (n +1)2(n ≥2),所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式,所以a n =n (n +1)2(n ∈N *).(2)证明:因为1a n =2n (n +1)=2n -2n +1所以1a 1+1a 2+…+1a n =21-22+22-23+…+2n -2n +1=2-2n +1<2.考点四错位相减法求和例4(2023·全国甲卷)已知数列{a n }中,a 2=1,设S n 为{a n }的前n 项和,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2(S n-S n-1)=na n-(n-1)a n-1,即2a n=na n-(n-1)a n-1,化简得(n-2)a n=(n-1)a n-1,当n≥3时,a nn-1=a n-1n-2=…=a32=1,即a n=n-1,当n=1,2时都满足上式,所以a n=n-1(n∈N*).(2)因为a n+12n=n2n,所以T n=+++…+n,1 2T n=++…+(n-+n+1,两式相减得12T n+…-n+1=12×11-12-n+1=1-,即T n=2-(2+n,n∈N*.【通性通法】1.错位相减法求和的适用条件若{a n}是公差为d(d≠0)的等差数列,{b n}是公比为q(q≠1)的等比数列,求数列{an b n}的前n项和S n.2.错位相减法求和的步骤3.错位相减法求和的注意事项注意在写出S n与qS n的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出点一S n -qS n ,特别是等比数列公比为负数的情形注意点二等式右边由第一项、中间n -1项的和式、最后一项三部分组成注意点三经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误【巩固迁移】5.(2023·河北示范性高中调研)已知数列{a n }的前n 项和为S n ,且a 2=6,a n +1=2(S n +1).(1)证明{a n }为等比数列,并求{a n }的通项公式;(2)求数列{na n }的前n 项和T n .解(1)因为a n +1=2(S n +1),所以a n =2(S n -1+1)(n ≥2),故a n +1-a n =2(S n -S n -1)=2a n ,即a n +1a n=3(n ≥2),又a 2=2(S 1+1)=2a 1+2,故a 1=2,即a2a 1=3,因此a n +1a n=3(n ∈N *).故{a n }是以2为首项,3为公比的等比数列.因此a n =2×3n -1(n ∈N *).(2)因为T n =2×1+2×2×3+2×3×32+…+2n ×3n -1,①故3T n =2×1×3+2×2×32+…+2(n -1)×3n -1+2n ×3n ,②①-②,得-2T n =2+(2×3+2×32+…+2×3n -1)-2n ×3n=2+2×3(3n -1-1)3-1-2n ×3n =-1+(1-2n )×3n ,即T n =(2n -1)×3n +12.考点五倒序相加法求和例5已知数列{a n },{b n }满足a 1=118,2a n +1-a n =16a n +1a n ,b n =1a n-16.(1)证明{b n }为等比数列,并求{b n }的通项公式;(2)求a 1b 1+a 2b 2+a 3b 3+…+a 7b 7.解(1)由2a n +1-a n =16a n +1a n ,可得1a n +1=2a n-16,于是1a n +1-16=即b n +1=2b n ,而b 1=1a 1-16=2,所以{b n }是首项为2,公比为2的等比数列.所以b n =2×2n -1=2n .(2)由(1)知a n =12n +16,所以a n b n =2n2n +16.因为a k b k +a 8-k b 8-k =2k 2k +16+28-k 28-k +16=2k -42k -4+1+11+2k -4=1,所以2(a 1b 1+a 2b 2+a 3b 3+…+a 7b 7)=(a 1b 1+a 7b 7)+(a 2b 2+a 6b 6)+…+(a 7b 7+a 1b 1)=7,因此a 1b 1+a 2b 2+a 3b 3+…+a 7b 7=72.【通性通法】倒序相加法的使用策略策略一将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法)策略二和对称性有关求和时可用倒序相加,比如函数关于点对称的性质,组合数中C k n =C n -kn 的性质【巩固迁移】6.已知函数f (x )对任意的x ∈R ,都有f (x )+f (1-x )=1,数列{a n }满足a n =f (0)+…+f (1),则数列{a n }的通项公式为________.答案a n =n +12解析∵f (x )+f (1-x )=1,∴1,又a n =f (0)+…+f (1)①,∴a n =f (1)+…+f (0)②,①+②,得2a n =n +1,∴a n =n +12.∴数列{a n }的通项公式为a n =n +12.课时作业一、单项选择题1.(2024·黑龙江牡丹江第二次阶段测试)已知等差数列{a n },a 2=3,a 5=6前8项和为()A .15B .25C .35D .45答案B解析由a 2=3,a 5=6可得公差d =a 5-a 23=1,所以a n =a 2+(n -2)d =n +1,因此1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,8…=12-110=25.故选B.2.在数列{a n }中,a n =(-1)n -1(4n -3),前n 项和为S n ,则S 22-S 11为()A .-85B .85C .-65D .65答案C解析∵S 22=a 1+a 2+a 3+…+a 21+a 22=(1-5)+(9-13)+…+(81-85)=(-4)×11=-44,S 11=a 1+a 2+a 3+…+a 10+a 11=(1-5)+(9-13)+…+(33-37)+41=(-4)×5+41=21,∴S 22-S 11=-44-21=-65.3.(2023·青岛调研)已知数列{a n }的前n 项和是S n ,且满足a 1=3,a 2k =8a 2k -1,a 2k +1=12a 2k ,k ∈N *,则S 2023=()A .42023-1B .3×22023-3C .3×41012-9D .5×41011-2答案C解析∵a 2k =8a 2k -1,a 2k +1=12a 2k ,∴a 2k +1=4a 2k -1.又a 1=3,∴数列{a 2k -1}是首项为3,公比为4的等比数列.∵a 2=8a 1=24,a 2k +2a 2k =a 2k +2a 2k +1·a 2k +1a 2k=4,∴数列{a 2k }是首项为24,公比为4的等比数列.∴S 2023=(a 1+a 3+…+a 2023)+(a 2+a 4+…+a 2022)=3(1-41012)1-4+24(1-41011)1-4=3×41012-9.4.已知数列{a n }的前n 项和为S n ,且满足a n +a n +1+a n +2=cosn π3,a 1=1,则S 2023=()A .0B .12C .1D .32答案C解析S 2023=a 1+(a 2+a 3+a 4)+(a 5+a 6+a 7)+…+(a 2021+a 2022+a 2023)=1+cos2π3+cos 5π3+…+cos 2018π3+cos 2021π3=1+cos 2π3+1.故选C.5.数列{a n }的前n 项和S n =2n +2,数列{log 2a n }的前n 项和为T n ,则T 20=()A .190B .192C .180D .182答案B解析当n =1时,a 1=S 1=21+2=4,当n ≥2时,a n =S n -S n -1=2n +2-(2n -1+2)=2n -2n -1=2n -1,经检验a 1=4不满足上式,所以a n,n =1,n -1,n ≥2.设b n =log 2a n ,则b n,n =1,-1,n ≥2,所以T 20=b 1+b 2+b 3+b 4+…+b 20=2+1+2+3+…+19=192.故选B.6.(2024·湖北黄冈调研)已知数列{a n }满足a n ·(-1)n +a n +2=2n -1,S 20=650,则a 23=()A .231B .234C .279D .276答案B解析由a n ·(-1)n +a n +2=2n -1,S 20=650可知,当n 为偶数时,a n +a n +2=2n -1,当n 为奇数时,a n +2=a n +2n -1,所以S 20=(a 1+a 3+…+a 19)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)+(a 18+a 20)=650,即a 1+(a 1+1)+(a 1+6)+(a 1+15)+(a 1+28)+(a 1+45)+(a 1+66)+(a 1+91)+(a 1+120)+(a 1+153)+3+11+19+27+35=650,由此解得a 1=3,所以a 23=a 1+231=234.故选B.7.(2024·江苏常州高三阶段考试)已知正项数列{a n }是公差不为0的等差数列,且a 1,a 2,a 4成等比数列.若∑24k =11a k +a k +1=3,则a 1=()A .169B .916C .43D .34答案A解析设正项等差数列{a n }的公差为d ,且d ≠0,∵a 1,a 2,a 4成等比数列,∴a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),整理得,d 2=a 1d ,∵d ≠0,∴d =a 1,∵∑24k =11a k +a k +1=∑24k =1a k +1-a k(a k +1+a k )(a k +1-a k )=∑24k =1a k +1-a k a k +1-a k =∑24k =11d(a k +1-a k )=1d (a 2-a 1+a 3-a 2+…+a 25-a24)=1d (a25-a 1)=1d (a 1+24d -a 1)=3,即1a 1(5a 1-a 1)=3,即4a 1=3a 1,∵a 1>0,∴a1=169.故选A.8.已知函数fg(x )=f (x )+1,若an ={a n }的前2022项和为()A.2023B .2022C .2021D .2020答案B 解析由于函数f,则x 即0,所以f (x )+f (1-x )=0,所以g (x )+g (1-x )=[f (x )+1]+[f (1-x )+1]=2,所以2(a 1+a 2+…+a 2022)=2g…+=g+g +…+g2×2022,因此数列{a n }的前2022项和为a 1+a 2+…+a 2022=2022.故选B.二、多项选择题9.(2024·广东梅州市大埔县高三质检)已知数列{a n }的首项为4,且满足2(n +1)a n -na n +1=0(n ∈N *),则()A B .{a n }为递增数列C .{a n }的前n 项和S n =(n -1)·2n +1+4D n 项和T n =n 2+n 2答案BD解析由2(n +1)a n -na n +1=0得a n +1n +1=2·a n n ,是以a11=a 1=4为首项,2为公比的等比数列,故A 错误;因为an n =4·2n -1=2n +1,所以a n =n ·2n +1,显然递增,故B 正确;因为S n=1×22+2×23+…+n ×2n +1,2S n =1×23+2×24+…+n ×2n +2,所以-S n =1×22+23+…+2n +1-n ×2n +2=22(1-2n )1-2-n ·2n +2,故S n =(n -1)·2n +2+4,故C 错误;因为a n 2n +1=n ·2n +12n +1=n ,所n 项和T n =n (1+n )2=n 2+n 2,故D 正确.故选BD.10.设数列{a n }的前n 项和为S n ,若a n =1+1n 2+1(n +1)2,则下列结论中正确的是()A .a n =n 2+n +1n (n +1)B .S n =n 2+n -1n +1C .a n ≤32D .满足S n ≤2024的n 的最大值为2023答案ACD 解析a n =1+1n 2+1(n +1)2=[n (n +1)+1]2n 2(n +1)2=n 2+n +1n (n +1),故A 正确;因为a n =1+1n (n +1)=1+1n -1n +1,所以S n =n …n +1-1n +1=n 2+2n n +1,故B 错误;因为1+1n (n +1)>1+1(n +1)(n +2),所以a n >a n +1,所以{a n }是递减数列,所以a n ≤a 1=32,故C正确;因为a n =1+1n -1n +1>0,所以S n 递增,且S 2023<2024,S 2024>2024,所以满足S n ≤2024的n 的最大值为2023,故D 正确.故选ACD.三、填空题11.12!+23!+34!+…+n (n +1)!=________.答案1-1(n +1)!解析∵k (k +1)!=k +1-1(k +1)!=1k !-1(k +1)!,∴12!+23!+34!+…+n(n +1)!=1-12!+12!-13!+13!-14!+…+1(n -1)!-1n !+1n !-1(n +1)!=1-1(n +1)!.12.已知数列{a n }满足a n +2n +2,n 为奇数,a n ,n 为偶数,且a 1=2,a 2=1,则此数列的前20项和为________.答案1133解析当n 为奇数时,由a n +2=a n +2可知,{a n }的奇数项成等差数列,且公差为2,首项为a 1=2;当n 为偶数时,由a n +2=2a n 可知,{a n }的偶数项成等比数列,且公比为2,首项为a 2=1,故前20项和为a 1+a 2+a 3+…+a 19+a 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)+10×92×2+1-2101-2=110+1023=1133.13.(2024·云南曲靖高三月考)已知正项数列{a n }满足a 1=2且a 2n +1-2a 2n -a n a n +1=0,令b n =(n +2)a n -257,则数列{b n }的前7项和为________.答案2021解析由a 2n +1-2a 2n -a n a n +1=0可得(a n +1+a n )(a n +1-2a n )=0,因为a n +1+a n >0,所以a n +1=2a n ,即a n +1a n=2,所以数列{a n }是以a 1=2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =2n (n +2)-257,令c n =2n (n +2),{c n }的前n 项和为T n ,则T 7=3×21+4×22+5×23+…+9×27,2T 7=3×22+4×23+5×24+…+9×28,两式相减可得,-T 7=3×21+22+23+…+27-9×28=6+4×(1-26)1-2-9×28=6+4×63-9×256=-2046,所以T 7=2046,所以数列{b n }的前7项和为T 7-257×7=2046-25=2021.14.(2023·湖北重点中学模拟)已知数列{a n }的前n 项和为S n ,且2a n -S n =2,记数列n 项和为T n .若对于任意n ∈N *,不等式k >T n 恒成立,则实数k 的取值范围为________.答案13,+解析依题意2a n -S n =2,当n =1时,a 1=2,由2a n -1-S n -1=2,n ≥2,两式相减并化简得a n =2a n -1,所以数列{a n }是首项为2,公比为2的等比数列,即a n =2n ,所以a n(a n +1)(a n +1+1)=2n(2n +1)(2n +1+1)=12n +1-12n +1+1,所以T n …+=13-12n +1+1<13,所以实数k 的取值范围是13,+四、解答题15.(2024·湖北恩施模拟)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1·4na n a n +1,求数列{b n }的前n 项和T n .解(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12.由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -1·4na n a n +1=(-1)n -1·4n(2n -1)(2n +1)=(-1)n -1当n 为偶数时,T n…1-12n +1=2n2n +1;当n 为奇数时,T n…1+12n +1=2n +22n +1.所以T nn为奇数n 为偶数T n16.已知数列{a n }的前n 项和为S n ,且a 1=1,a n =-2S n -1S n (n ≥2).(1)求a n ;(2)设b n =2nS n ,求数列{b n }的前n 项和T n .解(1)∵a n =-2S n -1S n ,∴S n -S n -1=-2S n -1S n ,∴S n -1-S n =2S n S n -1,∴1S n -1S n -1=2,∴,且1S n =1S 1+2(n -1)=1+2n -2=2n -1,∴S n =12n -1(n ∈N *),∴当n ≥2时,a n =-2(2n -1)(2n -3),又a 1=1不满足上式,∴a nn ≥2.(2)由(1)可得b n =(2n -1)2n ,则T n =1×21+3×22+…+(2n -3)2n -1+(2n -1)2n ,2T n =1×22+3×23+…+(2n -3)2n +(2n -1)2n +1,两式相减得-T n =2+23+24+…+2n +1-(2n -1)2n +1=2+23(1-2n -1)1-2-(2n -1)2n +1=2-8+2n +2-(2n -1)2n +1=-6-(2n -3)2n +1,∴T n =(2n -3)2n +1+6.17.(2024·江西临川一中阶段考试)函数f (x )=ln x ,其中f (x )+f (y )=2,记S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n(n ∈N *),则∑2024i =11S i =()A .20242025B .20252024C .20254048D .40482025答案A解析∵f (x )=ln x ,f (x )+f (y )=2,∴f (x )+f (y )=ln x +ln y =ln (xy )=2.S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n ,即S n =ln y n +ln (xy n -1)+…+ln (x n -1y )+ln x n ,两式相加得,2S n =(n +1)ln(x n y n )=n (n +1)ln (xy )=2n (n +1),∴S n =n (n +1),∑2024i =11S i =∑2024i =11i (i +1)=∑2024i =11-12025=20242025.故选A.18.(2023·广西玉林统考三模)已知函数f (x )=e -x -e x ,若函数h (x )=f (x -4)+x ,数列{a n }为等差数列,a 1+a 2+a 3+…+a 11=44,则h (a 1)+h (a 2)+…+h (a 11)=________.答案44解析由题意,可得h (x )=f (x -4)+x =e -(x -4)-e x -4+x ,设等差数列{a n }的前n 项和为S n ,公差为d ,则S 11=11a 1+11×102d =11(a 1+5d )=11a 6=44,解得a 6=4,则h (a 6)=h (4)=e -(4-4)-e 4-4+a 6=a 6=4,根据等差中项的性质,可得a 1+a 11=2a 6=8,则h (a 1)+h (a 11)=e-(a 1-4)-e a 1-4+a 1+e-(a11-4)-e a 11-4+a 11=1e a 1-4+1e a 11-4-(e a 1-4+e a 11-4)+a 1+a 11=e a 1-4+e a 11-4e a 1+a 11-8-(e a 1-4+e a 11-4)+a 1+a 11=a 1+a 11=8,同理可得,h (a 2)+h (a 10)=8,h (a 3)+h (a 9)=8,h (a 4)+h (a 8)=8,h (a 5)+h (a 7)=8,所以h (a 1)+h (a 2)+…+h (a 11)=5×8+4=44.19.(2023·山西太原二模)已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3.(1)求数列{a n }的通项公式;(2)设b n =-3a n(a n +1)(a n +1+1),求数列{b n }的前n 项和T n .解(1)设数列{a n }的公比为q ,依题意得S 1+(-S 3)=2S 2,所以-(a 2+a 3)=2(a 1+a 2),即-a 1(q +q 2)=2a 1(1+q ),因为a 1≠0,所以q 2+3q +2=0,解得q =-1或q =-2,因为S n ≠0,所以q =-2,又因为a 1a 2=a 3,所以a 21q =a 1q 2,即a 1=q =-2,所以a n =(-2)n .(2)由题意可得,b n =-3(-2)n[(-2)n +1][(-2)n +1+1]=(-2)n +1-(-2)n[(-2)n +1][(-2)n +1+1]=1(-2)n +1-1(-2)n +1+1,则T n =1(-2)1+1-1(-2)2+1+1(-2)2+1-1(-2)3+1+…+1(-2)n +1-1(-2)n +1+1=-1-1(-2)n +1+1.20.(2024·新疆阿克苏地区质检)已知正整数数列{a n },a 1=1,a 2=2,当n ≥2时,a 2n -1a n +1<a n -2025年高考数学复习讲义及练习解析211<a 2n +1a n +1恒成立.(1)证明数列{a n }是等比数列并求出其通项公式;(2)定义:|x |表示不大于xn 项和为S n ,求|S 1|+|S 2|+|S 3|+…+|S 2024|的值.解(1)由a 2n -1a n +1<a n -1<a 2n +1a n +1,得a 2n -1<a n -1a n +1<a 2n +1.因为{a n }是正整数数列,所以a n -1a n +1=a 2n (n ≥2,n ∈N *),于是{a n }是等比数列.又a 1=1,a 2=2,所以a n =2n -1,n ∈N *.(2)因为2n -1a n =2n -12n -1,S n =120+321+522+…+2n -12n -1,12S n =121+322+523+…+2n -12n ,两式相减得,12S n =1++122+123+…-2n -12n =3-2n +32n,所以S n =6-2n +32n -1<6,又S n +1-S n =2n +12n >0,即{S n }为递增数列,S 1=1,2<S 2=52<3,3<S 3=154<4,4<S 4=378<5,S 5=8316>5,所以|S 1|=1,|S 2|=2,|S 3|=3,|S 4|=4,|S n |=5(n ≥5),所以|S 1|+|S 2|+|S 3|+…+|S 2024|=1+2+3+4+=10110.。
专题32 数列求和(解析版)
【解析】由题意知数列{2n-1}为1,3,5,7,9,11,13,…,{3n-2}为1,4,7,10,13,16,19,…,所以数列
为1,7,13,19,…,即an=1+6(n-1)=6n-5,所以数列 的前n项和为 =3n2-2n.
8.(2020·全国卷Ⅱ文科·T14)记Sn为等差数列 的前n项和.若a1=-2,a2+a6=2,则S10=.
9.(2020·全国卷Ⅱ文科·T6)记Sn为等比数列{an}的前n项和.若a5-a3=12,a6-a4=24,则 =()
A.2n-1B.2-21-nC.2-2n-1D.21-n-1
【解析】选B.设等比数列的公比为q,由a5-a3=12,a6-a4=24可得: ⇒ ,
所以an=a1qn-1=2n-1,Sn= = =2n-1,因此 = =2-21-n.
答案:25
【解析】设等差数列 的公差为d.因为 是等差数列,且a1=-2,a2+a6=2,根据等差数列通项公式:an=a1+ d,可得a1+d+a1+5d=2,即-2+d+ +5d=2,整理可得:6d=6,解得:d=1.根据等差数列前n项和公式:Sn=na1+ d,n∈N*,可得:S10=10× + =-20+45=25,所以S10=25.
解析:(Ⅰ)当 时, ,因为 ,所以 =3,
当 时, = = ,即 ,因为 ,所以 =2,所以数列{ }是首项为3,公差为2的等差数列,所以 = ;
(Ⅱ)由(Ⅰ)知, = ,
所以数列{ }前n项和为 = = .
讲典例 备高考
类型一、公式法求和
基础知识:
(1)等差数列前n项和公式:Sn=na1+ d= .
高考数列求和的八种重要方法与例题
分裂通项法:
把数列旳通项拆成两项之差,即数 列旳每一项都可按此法拆成两项之差, 在求和时某些正负项相互抵消,于是前 n项旳和变成首尾若干少数项之和,这 一求和措施称为分裂通项法. (见到分式型旳要往这种措施联想)
拆项分组求和: 典例-1, 求该数列旳前n项和.
(nN)(2)求数列{an}旳通项公式an
1 2
an
(4
an ).
an1
1 2
an
(4
an )
1 2 [(an
2)2
4],
2(an1 2) (an 2)2
令bn an 2,
则bn
1 2
b2 n1
1 2
1 2
b2 n2
2
1 2
12
2n1
b2n 0
又b0=-1
bn
1 2
2n
1
,
总旳方向: 1.转化为等差或等比数列旳求和 2.转化为能消项旳 思索方式:求和看通项(怎样旳类型) 若无通项,则须先求出通项 措施及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
5.拆项分组求和法 6.并项求和法
热点题型1:递归数列与极限.
设数列{an}旳首项a1=a≠
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
高考数学《数列递推与数列求和》练习题
数列递推与数列求和一、单项选择题1.数列112 ,314 ,518 ,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 3-n +1-12nC .n 2+1-12n -1 D .n 2-n +1-12n 2.设S n 是数列{}a n 的前n 项和,且a 1=-1,a n +1=S n ·S n +1,则a 5=( ) A .130 B .-130 C .120 D .-1203.若数列{a n }满足a 1=3,a n =3a n -1+3n (n ≥2),则数列{a n }的通项公式a n =( )A .2×3nB .3n nC .n ·3nD .n 3n4.求和1+11+2 +11+2+3 +…+11+2+3+…+n的值为( ) A .2-1n B .1-1n +1 C .2n 2n -1 D .2-2n +15.行列式是近代数学中研究线性方程的有力工具,其中最简单的二阶行列式的运算定义如下:⎪⎪⎪⎪⎪⎪a 11 a 12a 21 a 22 =a 11a 22-a 21a 12,已知S n 是等差数列{}a n 的前n 项和,若⎪⎪⎪⎪⎪⎪1 ()10-a 71 a 9 =0,则S 15=( ) A .152B .45C .75D .150 6.数列{}a n 满足递推公式a n +2=a n +a n +1,且a 1=a 2,a 2 021·a 2 022=2 022,则a 21 +a 22 +…+a 22 021 =( )A .1 011B .2 022C .3 033D .4 0447.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4,这三种分解中,因数3与4差的绝对值最小,则称3×4为12的最佳分解,当正整数n 的最佳分解为p ×q ()p ,q ∈N 时,记f ()n =||p -q .设a n =f ()2n ,则数列{}a n 的前99项和为( )A .249-1B .250-1C .298-1D .299-18.在一个正三角形的三边上,分别取一个距顶点最近的十等分点,连接形成的三角形也为正三角形(如图1所示,图中共有2个正三角形).然后在较小的正三角形中,以同样的方式形成一个更小的正三角形,如此重复多次,可得到如图2所示的优美图形(图中共有11个正三角形),这个过程称之为迭代.在边长为243的正三角形三边上,分别取一个三等分点,连接成一个较小的正三角形,然后迭代得到如图3所示的图形(图中共有10个正三角形),其中最小的正三角形面积为( )A.334 B .1 C .32 D .34二、多项选择题9.已知数列{}a n 中,a 1=1,a n ·a n +1=2n ,n ∈N +,则下列说法正确的是( )A .a 4=4B .{}a 2n 是等比数列C .a 2n -a 2n -1=2n -1D .a 2n -1+a 2n =2n +110.已知各项均为正数的数列{}a n 的前n 项之积为T n ,且a n +1=⎩⎪⎨⎪⎧2a n,0<a n ≤11a n ,a n >1 ()n ∈N * ,则( )A .当n ≥2时,0<a n ≤2B .当12 <a 1<1时,T 4n =1C .无论a 1取何值,均存在λ∈N *使得a n +λ=a n 对任意n ∈N *成立D .无论a 1取何值,数列{}a n 中均存在与a 1的数值相同的另一项11.若数列{a n }的前n 项和是S n ,且S n =2a n -2,数列{b n }满足b n =log 2a n ,则下列选项正确的有( )A .数列{a n }是等差数列B .a n =2nC .数列{a 2n }的前n 项和为22n +1-23D .数列⎩⎨⎧⎭⎬⎫1b n ·b n +1 的前n 项和为T n ,则T n <1 12.已知数列{}a n 的前n 项和为S n ,S n =n 2+an +1,则( )A .{}a n 是等差数列B .{}a n 不是等差数列C .若{}S n 是递增数列,则a 的取值范围是[-2,+∞)D.若{}S n 是递增数列,则a 的取值范围是(-3,+∞)三、填空题13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则a 2 022=________. 14.已知数列{a n }的前n 项和为S n ,满足a 1=32 ,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前n 项和S n =________.15.已知数列{}a n 满足a 12 +a 24 +…+a n 2n =2n +n ,则数列{}a n 的通项公式为________.16.已知数列{}a n 满足a 1=a 2=32 ,a n +2=a n +2×3n ()n ∈N * ,且b n =a n +a n +1()n ∈N * .则数列{}b n 的通项公式为________.若b n c n =4(n +1)3()4n 2-1 ()n ∈N * ,则数列{}c n 的前n 项和为________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和练习1
1. 已知是等差数列,其前项和为,是等比数列,且 a 1=b 1=2,a 4+b 4=27,s 4-b 4=10.
(1)求数列与的通项公式;
(2)记S n 、T n 分别为数列{a n }{b n }的前n 项和,求S n 、T n
2. 设数列的前项和为,数列的前项和为,满足,.(1)求的值;(2)求数列的通项公式.
3. 设为数列的前项和,,,其中是常数.
(1) 求及;
(2) 若对于任意的,,,成等比数列,求的值 {}n a n n S {}n b {}n a {}n b {}n a n n S {}n S n n T 22n n T S n =-n ∈
*N 1a {}n a n S {}n a n 2n S kn n =+*n N ∈k 1a n a *m N ∈m a 2m a 4m a k
4.等比数列中,已知
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式
及前项和。
5.已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a
{}n a 142,16a a =={}n a 35,a a {}n b {}n b n n S
6.已知数列满足, . (1)令,证明:是等比数列;
(2)求的通项公式。
7.若数列的递推公式为11113,
2()n n
a n a a +==-∈,则求这个数列的通项公式。
8.已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式n a 。
9.数列{a n }中,a 1=1, a n+1=2a n +2n .
{}n a *11212,,2
n n n a a a a a n N ++=∈’+2==1n n n b a a +=-{}n b {}n a
(1)设1
2n n n a b -=.证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S
10.设数列的前项和为 已知
(1)设,证明数列是等比数列 (2)求数列的通项公
式。
11.已知数列的前项和为,且,
(1) 证明:是等比数列;
(2)求数列的通项公式,并求出使得 {}n a n ,n S 11,a =142n n S a +=+12n n n b a a +=-{}n b {}n a {}n a n n S 585n n S n a =--*n N ∈{}1n a -{}n S 1n n S S +>
成立的最小正整数.
12.已知数列的前项和是,且 .
(1)求数列的通项公式;
(2)记,求数列的前项和
13.已知数列{}n a 满足11=a ,123-+=n n n a a )2(≥n ,求n a
14.设数列的前项和为,满足,,且、、成 n {}n a n n S 22n n S a =-{}n a n n b a n =+{}n b n n T {}n a n n S 11221n n n S a ++=-+n ∈*N 1a 25a +3a
等差数列.
(1)求的值;
(2)求数列的通项公式;
15.在数列{}n a 中, 11a =,123n n a a +=+,求数列{}n a 的通项公式。
16.若数列的递推公式为*111,22()+==-∈n n a a a n N ,则求这个数列的通项公式
17.已知数列{a n }中,a 1=1,a n = 2
1a 1-n + 1(2)n ≥求通项a n
1a {}n a
18.数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
19.已知11a =,111
n n n a a n --=
+(2n ≥),求n a 。
20.已知数列{}n a 满足321=
a ,n n a n n a 1
1+=+,求n a 。
21.已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式
数列求和练习2
1.在等差数列中,首项,数列满足 (I )求数列的通项公式;
(II )求
}{n a 11=a }{n b .64
1,)21(321==b b b b n a n 且}{n a .22211<+++n n b a b a b a
2、求111112123123412(1)n ++++
++++++++++的值.
3、求和.)12)(12(1751531311+-+⋯⋯+⨯+⨯+⨯=
n n S n
4、已知数列n n n b 4
249⋅+=
,求数列{}n b 的前n 项和n T 。
5、(1)n n n a a a a n a +++++= 321,2
12求 (2)n n n a a a a a ++++-= 321),110(3
1求
6. 数列}{n a 的前n 项和记为n S ,t a =1,)(121*+∈+=N n S a n n .
(1)当t 为何值时,数列}{n a 是等比数列?
(2)在(1)的条件下,若等差数列}{n b 的前n 项和n T 有最大值,且153=T ,又,11b a +3322,b a b a ++成等比数列,求n T .
7.数列{}n a 中,a 1=8,a 4=2且满足212,.N n n n a a a n *++=-∈
(Ⅰ)求数列{}n a 的通项公式; (Ⅰ)设12||||||,,N n n S a a a n *=++
+∈求n S 的解析式;
8.已知等比数列{}n a 中,234,,a a a 分别是某等差数列的第5项,第3项,第2项, 且164a =,公比1q ≠;
(1)求n a
(2)(2)设2log n n b a =,求数列{}n b 的前n 项和n T 。
9.已知数列{}n a 是等差数列,256,18a a ==;数列{}n b 的前n 项和是{}n T ,且
112
n n T b +=. (1) 求数列{}n a 的通项公式;
(2) 求证:数列{}n b 是等比数列;
(3) 记n n n c a b =+,求{}n c 的前n 项和n S .。