中考数学压轴题专题十动态几何问题
初中数学压轴题--动态几何证明及实验题
动态几何证明及实验题所谓动态几何是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.此类题目注重对几何图形运动变化能力的考查.动态几何问题是近几年各地试题中常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
解动态几何题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.抓住变化中的“不变量”,以不变应万变.实验操作【要点导航】通过实验操作——观察猜想——科学论证,使我们体验和学到了发现、获得知识的过程和方法. 实验操作探索——理解题意、实验操作是基本保证,观察猜想、探索结论是关键,论证猜想的结论是落实.【典例精析】例1 取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图1;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为B ',得R t △AB 'E ,如图2;第三步:沿EB '线折叠得折痕EF ,使A 点落在EC 的延长线上,如图3.利用展开图4探究: (1)△AEF 是什么三角形?证明你的结论;(2)对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.【思路分析】1.图形翻折后能重叠部分的图形全等,所以∠BEA =∠AEB '=∠FEC ,它们都是60°角,所以△AEF 是等边三角形. 2.由操作可知AF >AD 时,不能完整折出这种三角形.当图3中的点F 、D 重合时,便可求得矩形的长与宽的比例为2︰3.解(1)△AEF 是等边三角形.由折叠过程可得:60BEA AEF FEC ∠=∠=∠=︒.因为BC ∥AD ,所以60AFE FEC ∠=∠=︒.所以△AEF 是等边三角形.(2)不一定.当矩形的长恰好等于等边△AEF 的边AF 时,即矩形的宽∶长=AB ∶AF =2:3时正好能折出.如果设矩形的长为A ,宽为B ,可知当a b 23≤时,按此种方法一定能折叠出等边三角形;当图1 图2图3图4a b a <<23时,按此法无法折出完整的等边三角形. 〖方法点睛〗要从操作实验题中抽象出数学模型来,并借助图形运动的基本性质求解.例2 已知:在△ABC 中,∠BAC =90°,M 为BC 中点.操作:将三角板的90°角的顶点与点M 重合,并绕着点M 旋转,角的两边分别与边AB 、AC 相交于点E 、F .(1)探究1:线段BE 、EF 、FC 是否能构成三角形?如果可以构成三角形,那么是什么形状的三角形?请证明你的猜想.(2)探究2:若改变为:“角的两边分别与边AB 、直线AC 相交于点E 、F .”其它条件都不变的情况下,那么结论是否还存在?请画出对应的图形并请证明你的猜想. 〖思路分析〗1.由点M 是BC 中点,所以构造绕点M 旋转180°重合的全等三角形,将线段BE 、EF 、FC 移到同一个三角形中.2.当角的两边分别与边AB 、直线AC 相交于点E 、F 时,构造和证明的方法不变.证明(1)线段BE 、EF 、FC 可以构成直角三角形.如图1,延长EM 到G ,使得EM =M G ,联结GC 、FG .因为M 为BC 中点,所以BM =CM ,又因为∠EMB =∠GMC ,EM =M G ,所以△EMB ≌△GMC ,所以BE =GC ,EM =MG ,∠B =∠MCG .因为FM 垂直平分EG ,所以FE =FG .又因为∠BAC =90°,所以∠B +∠ACB =90°,所以∠MCG +∠ACB FCG =90°,所以222FG FC GC =+,所以22FC BE =+(2)如图2,当点F 在CA 的延长线上时,延长EM 到G ,联结GC 、FG .因为M 为BC 中点,所以BM =CM ,又因为∠EM =EG ,所以△EMB ≌△GMC ,所以BE =GC ,EM =MG ,∠B 为FM 垂直平分EG ,所以FE =FG .又因为∠BAC =90°B +∠ACB =90°,所以∠MCG +∠ACB =90°,即∠FCG =90所以222FG FC GC =+,所以222EF FC BE =+.如图3,当点F 在AC 的延长线上时,同理可证222EF FC BE =+.M〖方法点睛〗线段之间常见的关系是和差关系或者满足勾股定理.若能将所要求线段移动到同一条直线上,则线段之间是和差关系的可能性较大,若能将所要求线段移动后能构成三角形,则线段之间满足勾股定理的可能性较大.【星级训练】第 天 ,年 月 日1. ★★★如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1)操作:由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论;(2)连结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;(3)如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离.2. ★★★操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)GFD ACBD ACB供试验操作用DCB图5DC B图6DCB图73. ★★★在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .(1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由),2B (5,3) 、C (-2,5) 关于直线l 的对称点B '、B ' 、 C ' ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为 (不必证明); 运用与拓广:(3)已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.探索性问题探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.条件探索【要点导航】图1“探索”是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,数学中的“条件探索”题型,是指命题中缺少一定的题设,需经过推断、补充并加以证明的命题,因而必须利用题设大胆猜想、分析、比较、归纳、推理,由结论去探索未给予的条件。
中考复习 动态几何型压轴题
1、解决这类问题时,要 、解决这类问题时, 理解图形运动的过程, 理解图形运动的过程, 探索运动的特点和规律, 探索运动的特点和规律, 掌握好动静的切换---“动 掌握好动静的切换 动 中求静” 中求静”。 2、多作出几个符合要求 、多作出几个符合要求 草图。 的草图。
Page 4
例题: 中考回放 例题:09中考回放
(1)当t = 2时,AP = ) 时 ,点Q到AC的距离是 到 的距离是 ; 运动的过程中, 的面积S与 的 (2)在点 从C向A运动的过程中,求△APQ的面积 与t的 )在点P从 向 运动的过程中 的面积 函数关系式;(不必写出t的取值范围 ;(不必写出 的取值范围) 函数关系式;(不必写出 的取值范围) 运动的过程中, (3)在点 从B向C运动的过程中,四边形 )在点E从 向 运动的过程中 四边形QBED能否成为 能否成为 直角梯形?若能, 的值 若不能,请说明理由; 的值. 直角梯形?若能,求t的值.若不能,请说明理由; 经过点C 请直接写出t的值 的值. (4)当DE经过点 时,请直接写出 的值. ) 经过点
解:②如图5,当PQ∥BC时,DE⊥BC, 如图 , ∥ 时 ⊥ , 四边形QBED是直角梯形. 是直角梯形. ∴四边形 是直角梯形 此时∠ 此时∠APQ =90°. ° 由△AQP ∽△ABC,得 AQ = AP , AB AC Q 即 t = 3-t ,解得t= 15 解得 3 5 8 D
A P B
解:(3)能. :( ) ①当DE∥QB时,如图 .∵DE⊥PQ, ∥ 时 如图4. ⊥ , 是直角梯形. ∴PQ⊥QB,四边形 ⊥ ,四边形QBED是直角梯形. 是直角梯形 此时∠ 此时∠AQP=90° ° AQ = AP 由△APQ ∽△ABC,得 AC AB , 9 t 即 3 = 3-t ,解得,t= 8 5
2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)
2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。
2020年中考数学压轴题突破之动态问题(几何)(含详解)
2020年中考数学压轴题突破之动态问题(几何)1.如图,点O是等边ABC内一点,AOB 110 , BOC .以OC为一边作等边三角形OCD,连接AC、AD .(1)若120 ,判断OB OD BD (填“,或”)(2)当150 ,试判断AOD的形状,并说明理由;(3)探究:当时,AOD是等腰三角形.(请直接写出答案)【答案】(1) 二; (2) ADO是直角三角形,证明见详解;(3) 125、110、140 .【分析】(1)根据等边三角形性质得出COD 60 ,利用?BOC a = 120。
求出BOD 180 ,所以B, 0, D三点共线,即有OB+ OD = BD ;(2)首先根据已知条件可以证明BOC ADC ,然后利用全等三角形的性质可以求出ADO的度数,由此即可判定AOD的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.2 .如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A C在坐标轴上,B(18,6),将矩形沿EF折叠,使点A与点C重合.图3 G(1)求点E的坐标;(2)P O O A E2E时停止运动,设P的运动时间为t, VPCE的面积为S,求S与t的关系式,直接写出t 的取值范围;3(3)在(2)的条件下,当PA=]PE 时,在平面直角坐标系中是否存在点Q,使得以点P 、E 、G Q 为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q 的坐标.【答案】(1) E (10, 6); (2) S= -8t+54 (0<t<3)或 S=-6t+48 (3vtW8); (3)存 在,Q (14.4 , -4.8 )或(18.4 , -4.8 ). 【详解】解:(1)如图 1,矩形 ABO, B (18, 6),• .AB=18 BC=6,设 AE=x,贝U EC=x BE=18-x,Rt^EBC 中,由勾股定理得: EB"+BC 2=EC 2,(18-x) 2+62=x 2, x=10,即 AE=10,①当P 在OA 上时,0WtW3,如图 2,=18X 6-1X10(62) — - X8X6 - 1X 18X2t , 2 2 2=-8t+54 ,②当P 在AE 上时,3<t<8,如图3,S = S 矩形 OABC S △ PAE -S △ BEC -S △OPCj• •E ( 10, 6);(2)分两种情况:S=1PE?BC=1 X 6X(16-2t)=3 (16-2t ) =-6t+48 ;2 2(3)存在,由PA=3PE可知:P在AE上,如图4,过G作GHLOC于H,2•.AP+PE=10.•.AP=6 PE=4,设OF=y,则FG=y, FC=18-y,由折叠得:/ CGFW AOF=90 ,由勾股定理得:FC2=FC+CG,•. ( 18-y) 2=y2+62,y=8,•.FG=8 FC=18-8=10,1FC?GH= 1FG?CG221X10XGH= 1 X6X8,22GH=4.8,由勾股定理得:FH=J82 4 82 =6.4 ,• .OH=8+6.4=14.4,.•.G ( 14.4 , -4.8 ),•・•点P、E G Q为顶点的四边形为平行四边形,且PE=4,.•.Q ( 14.4 , -4.8 )或(18.4 , -4.8 ). k ,3.如图1,平面直角坐标系xoy中,A(-4, 3),反比例函数y —(k 0)的图象分别x交矩形ABOC勺两边AC, BC于E, F (E, F不与A重合),沿着EF将矩形ABO所叠使A, D重合.②若折叠后点 D 落在矩形ABOCrt (不包括边界),求线段CE 长度的取值范围.(2)若折叠后,△ ABD 是等腰三角形,请直接写出此时点 D 的坐标.7 . 23 3. 11 3.【答案】(1)①EC= 2;②3 CE 4; (2)点D 的坐标为(一,一)或(一,一)88 2 5 5【详解】,k k解:(1)①由题意得E(k,3) , F( 4,-), 3 4k kk 0 ,则 EC — , FB 一, 3 4AF 3 一, 417(12 k) 4 3 1 3 4(12 k) 3..由 A(-4, 3)得:AC 4, AB 3,,AC 4一 --- 一,AB 3 AE AC AF AB '又A=Z A,・ .△AE% AACB ・ •/AEF4 ACB ・ •.EF// CB如图2,连接AD 交EF 于点H ,••• AE.AE (1)①如图2,当点D 恰好在矩形 ABOC 勺对角线BC 上时,求CE 的长;②由折叠得EF 垂直平分AD,••• /AHE 90 ,则 EAH AEF又• BAD EAH BAC 90 ,BAD AEF ,・ .△AE% ABAQAE AF 口"AB AE 4--- ----- ,则 ----- ------ -,AB BD BD AF 34 3 9 BDAB - 3 - 3 4 4设 AF=x,贝U FB=3— x, FD=AF=x 在Rt^BDF 中,由勾股定理得:FB 2 BD 2 FD 2,r i图2由折叠的性质得: •••D 在 BC 上, ,AE AHEC DH 1 EC AC 2AH=DH 1,则 AE EC 2;即(3 x)2x 2 ,解得:如图,当D 落在BO 上时,: EAF ABD 90 ,B力。
中考数学压轴题专题十动态几何问题
中考数学压轴题专题十动态几何问题试题特点用运动的观点来探究几何图形变化规律的问题称为动态几何问题,此类问题的显著特点是图形中的某个元素(如点、线段、三角形等)或整个图形按照某种规律运动,图形的各个元素在运动变化过程中互相依存、和谐统一,体现了数学中“变”与“不变”、“一般”与“特殊”的辩证思想.其主要类型有:1.点的运动(单点运动、多点运动);2.线段(直线)的运动;3.图形的运动(三角形运动、四边形运动、圆运动等).方式趋势动态几何题已成为中考试题的一大热点题型.在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,总体呈现源于教材、高于教材,入口宽、难易适度、梯度分明,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力.热点解析一、点的运动【题1】(2011盐城)如图1,已知一次函数y=-x+7与正比例函数y=43x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴,动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.【思路】(1)联立方程y=-x+7和y=43x即可求出点A的坐标,令-x+7=0即可得点B的坐标.(2)①只要把三角形的面积用t表示,求出即可.应注意分P在OC上运动和P在CA上运动两种情况.(D只要把有关线段用t表示,找出满足AP=AQ,AP=PQ,AQ=PQ的条件时t的值即可,应注意分别讨论P在OC上运动(此时直线∠与AB相交)和P在CA上运动(此时直线∠与AO相交)时AP=AQ,AP=PQ,AQ=PQ的条件.【失分点】以A、P、Q为顶点的三角形是等腰三角形有多种可能,容易考虑不周.【反思】涉及的主要知识点有:一次函数的图象和性质,解二元一次方程组,勾股定理,锐角三角函数,解一元二次方程,等腰三角形的判定.【牛刀小试】1.(2010湖北咸宁)如图6,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动,当点M到达点B 时,两点同时停止运动.过点M作直线∠∥AD,与线段CD的交点为E,与折线A-C -B的交点为Q.点M运动的时间为t(秒).(1)当t=时,求线段QM的长.(2)当0<t<2时,如果以C,P,Q为顶点的三角形为直角三角形,求t的值.(3)当t>2时,连接PQ交线段AC于点R,请探究CQRQ是否为定值.若是,试求这个定值;若不是,请说明理由.2.(2010湖南娄底)如图7,在梯形ABCD中,AB∥CD,AB=2,DC=10,AD=BC=5,点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E,F.(1)求梯形ABCD的面积.(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由.(3)探究二:四边形MNFF能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.3.(2010广西钦州)如图8,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点0运动,点N沿CB向终点B运动,当两个动点运动了ts时,过点N作NP⊥BC,交OB 于点P,连接MP.(1)点B的坐标为_______;用含£的式子表示点P的坐标为_______.(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6).并求t为何值时,S有最大值.(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的13?若存在,求出点T的坐标;若不存在,请说明理由.二、线的运动【题2】(2010云南昭通)如图,已知直线l的解析式为y=-x+6,它与x轴,y 轴分别相交于A,B两点.平行于直线l的直线n从原点出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l.直线n与x轴,y轴分别相交于C,D两点.线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S.当直线n与直线l重合时,运动结束.(1)求A,B两点的坐标.(2)求S与t的函数关系式及自变量t的取值范围.(3)直线n在运动过程中,①当t为何值时,半圆与直线l相切?②是否存在这样的T值,使得半圆面积S=12S梯形ABCD?若存在,求出t值;若不存在,说明理由。
中考数学专题 动态几何与函数10题-含答案
动态几何与函数10题(1)请直接写出1y ,2y 与t 之间的函数关系式以及对应的t 的取值范围;
(2)请在平面直角坐标系中画出1y ,2y 的图象,并写出1y 的一条性质;
(3)求当12y y >时,t 的取值范围.
(1)求出12,y y与x的函数关系式,并注明
(2)先补全表格中1y的值,再画出
x123456
y12632
1
(3)在直角坐标系内直接画出2y的函数图像,结合1y和2y的函数图像,x的取值范围.(结果取精确值)
(1)请求出1y 和2y 关于x 的函数解析式,并说明x 的取值范围;
(2)在图2中画出1y 关于x 的函数图象,并写出一条这一函数的性质:(3)若12103
y y -≥,请结合函数图像直接写出x 的取值范围(近似值保留一位小数,误差不超过0.2)
4.
(2023春·重庆江津·九年级校联考期中)如图,在矩形ABCD 中,3AB =,4BC =,点P 从点A 出发,以每秒2个单位的速度沿折线A B C D →→→运动,当它到达D 点时停止运动;同时,点Q 从点A 出发,以每秒1个单位的速度沿射线AD 运动,过Q 点做直线l 平行于AB ,点M 为直线l 上的一点,满足AMQ △的面积为2,设点P 点Q 的运动时间为t (0t >),ADP △的面积为1y ,QM 的长度为2y .
(1)分别求出1y ,2y 与t 的函数关系,并注明t 的取值范围;
(2)在坐标系中画出1y ,2y 的函数图象;
(3)结合函数图象,请直接写出当12y y <时t 的取值范围.。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
最新中考数学总复习几何动态压轴题专题分类讲练(含参考答案)
最新中考数学总复习几何动态压轴题专题分类讲练考情分析几何动态综合一般以特殊平行四边形或三角形为背景,考查线段长度、角度、点的坐标、菱形或平行四边形的判定、直角或等腰三角形的存在性、与面积有关的函数关系式及最值,涉及解直角三角形、三角形的面积公式、勾股定理、二次函数的性质及最值等.题目一般有3~4问,第一问较为简单,熟练运用基础知识即可;后几问综合性较强,经常用到分类讨论、数形结合思想.类型点动型综合题例1 如图1,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A以每秒1个单位长度的速度匀速运动,同时动点Q以相同的速度从(1,0)出发在x轴正半轴上运动,当点P第一次回到A点时,两点同时停止运动,设运动的时间为t秒.(1)求正方形边长及顶点C的坐标;(2)当点P在AB上时,设△O PQ的面积为S,求S与t的函数关系式,并写出当t为何值时S最大;(3)如果点P,Q保持原速度不变,当点P沿A→B→C→D匀速运动时,O P与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.图1思路点拨 解决几何动态问题的关键是“化动为静”,找出几何图形中的自变量与时间t或线段长x的关系,并用函数关系式表示出来,再结合已知条件和图象性质求解.训练 1.如图2,Rt△ABC中,∠C=90°,BC=8 cm,AC=6 cm.点P从B出发沿BA 向A运动,速度为每秒1 cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2 cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.图2(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)当t为何值时,△AEQ为等腰三角形?2. 正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON__________(可能,不可能)过D点;(图3仅供分析)②如图4,在ON上截取O E=O A,过E点作EF垂直于直线BC,垂足为点F,EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且O G=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PK O=4S△O BG,连接GP,求四边形PKBG的最大面积.图3 图4 备用图类型线动型综合题例2 如图5,在△ABC中,AB=AC=10 cm,BD⊥AC于点D,BD=8 cm.点M从点A出发,在AC上以每秒2 cm的速度匀速向点C运动,同时直线PQ从点B出发,沿BA 的方向以每秒1 cm的速度匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接P M,设运动时间为t秒(0<t≤5).图5(1)当t为何值时,四边形PQC M是平行四边形?(2)设四边形PQC M的面积为y cm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.训练 3.如图6,在△ABC中,∠C=90°,∠A=60°,AC=2 cm.长为1 cm的线段MN 在△ABC的边AB上沿AB方向以1 cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为t s.图6(1)若△A M P的面积为y,写出y与t的函数关系式;(写出自变量t的取值范围)(2)线段MN运动过程中,四边形MN QP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?4.如图7,在△ABC中,AB=AC,∠BAC=90°,AD⊥BC于点D,BC=20 cm,AD=10 cm.点P从点B出发,在线段BC上以每秒2 cm的速度向点C匀速运动,与此同时,垂直于AD的直线l从点A沿AD出发,以每秒1 cm的速度沿AD方向匀速平移,分别交AB,AC,AD于M,N,E.当点P到达点C时,点P与直线l同时停止运动,设运动时间为t 秒(t >0).(1)在运动过程中(点P 不与B ,C 重合),连接P N ,求证:四边形M BP N 为平行四边形;(2)如图8,以MN 为边向下作正方形M FG N ,FG 交AD 于点H ,连接PF ,PG ,当0<t <时,求△PFG 的面积最大值;103(3)在整个运动过程中,观察图8,9,是否存在某一时刻t ,使△PFG 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由. 图7 图8 图9类型形动型综合题例3 已知:把Rt △ABC 和Rt △DEF 按如图10摆放(点C 与点E 重合),点B ,C (E ),F 在同一条直线上.∠ACB =∠EDF =90°,∠DEF =45°,AC =8 cm ,BC =6 cm ,EF =9 cm.如图11,△DEF 从图10的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s)(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P ,Q ,F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.图10 图11 训练 5.如图12所示,在▱ABCD中,AB=3 cm,BC=5 cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△P NM,速度为1 cm/s,同时,点Q从点C出发,沿射线CB 方向匀速运动,速度为1 cm/s,当△P NM停止平移时,点Q也停止运动,如图13所示,设运动时间为t(s)(0<t<4).(1)当t=__________时,PQ∥MN;(2)设△Q M C的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得PQ=Q M,若存在,求出t的值;若不存在,请说明理由.图12 图136.已知矩形O ABC的顶点O(0,0),A(4,0),B(4,-3).动点P从O出发,以每秒1个单位的速度,沿射线O B方向运动.设运动时间为t秒.(1)求P点的坐标;(用含t的代数式表示)(2)如图14,以P为一顶点的正方形PQ MN的边长为2,且边PQ⊥y轴.设正方形PQ MN与矩形O ABC的公共部分面积为S,当正方形PQ MN与矩形O ABC无公共部分时,运动停止.①当t<4时,求S与t之间的函数关系式;②当t>4时,设直线M Q,MN分别交矩形O ABC的边BC,AB于D,E,是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.图14参考答案例1 解:(1)如图1,过点B 作BF ⊥y 轴于F ,BE ⊥x 轴于E ,过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H ,图1∵A (0,10),∴OA =10.∵B (8,4),∴BF =8,OF =4.∴AF =10-4=6.∴AB ==10.AF 2+BF 2∵∠ABC =90°,∴∠ABF +∠CBH =90°.∵∠BAF +∠ABF =90°,∴∠BAF =∠CBH .又AB =BC ,∠AFB =∠BHC =90°,∴△ABF ≌△BCH .∴BH =AF =6,CH =BF =8.∴OG =FH =8+6=14,CG =8+4=12.∴点C 的坐标为(14,12).(2)如图1,过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N ,∴PM ∥BF .则△APM ∽△ABF ,∴==.AP AB AM AF PM BF∴==.∴AM =t ,PM =t .t 10AM 6PM 83545∴PN =OM =10-t ,ON =PM =t .3545∴S =PN ·OQ =×(1+t )=-t 2+t +5=-2+(0≤t ≤10).1212(10-35t )3104710310(t -476)8 407360∴当t =时,S 取到最大值.476(3)OP 与PQ 可以相等,根据等腰三角形的相关性质可知,相等时P 点的横坐标等于Q 点的横坐标的一半.①当P 在AB 上时,如图1,t =(t +1),t =;451253②当P 在BC 上时,如图2,图2则PB =t -10,sin ∠ABF =sin ∠BPM ==,AF AB BM PB∴=.∴BM =(t -10).610BM t -1035∴ON =BF +BM =8+(t -10)=(t +1).解得t =-15(舍去);3512③当P 在CD 上时,如图3,过点C 作CR ⊥PN 于R ,则PC =t -20,图3cos ∠PCR =cos ∠BCH ==,CH BC CR PC∴=.810CR t -20∴CR =NG =(t -20).45∴ON =OG -NG =14-(t -20)=(t +1),4512解得t =.29513综上所述,当t =或时,OP 与PQ 相等.2951353训练 1.解:(1)∵∠C =90°,BC =8 cm ,AC =6 cm ,∴AB =10 cm.∵BP =t ,AQ =2t ,∴AP =AB -BP =10-t .∵PQ ∥BC ,∴=.AP AB AQ AC∴=,解得t =.10-t 102t 63013即当t =时,PQ ∥BC .3013(2)∵S 四边形PQCB =S △ACB -S △APQ =AC ·BC -AP ·AQ ·sin A ,1212∴y =×6×8-×(10-t )·2t ·=24-t (10-t )=t 2-8t +24.12128104545即y 关于t 的函数关系式为y =t 2-8t +24.45(3)△AEQ 为等腰三角形分三种情况讨论:①如果AE =AQ ,那么10-2t =2t ,解得t =;52②如果AE =QE ,如图4,过点E 作EF ⊥AQ 于F,图4则F 为AQ 的中点,∴AF =AQ =t .12又AC ⊥BC ,∴EF ∥BC .∴sin ∠AEF =sin B ===.AF AE AC AB 610即=,解得t =;t 10-2t 6103011③如果AQ =QE ,可作QM ⊥AE 于M ,同理可得cos A ==,即=,解得t =.AM AQ AC AB 10-2t 22t 6102511故当t 为秒或秒或秒时,△AEQ 为等腰三角形.52301125112.(1)①解:不可能.【提示】若ON 过点D ,则OA >AB ,OD >CD ,∴OA 2>AD 2,OD 2>AD 2.∴OA 2+OD 2>2AD 2≠AD 2.∴∠AOD ≠90°,这与∠MON =90°矛盾,∴ON 不可能过D 点.②证明:∵EH ⊥CD ,EF ⊥BC ,∴∠EHC =∠EFC =90°,且∠HCF =90°.∴四边形EFCH 为矩形.∵∠MON =90°,∴∠EOF =90°-∠AOB .在正方形ABCD 中,∠BAO =90°-∠AOB ,∴∠EOF =∠BAO .∵∠EFO =∠B ,OE =OA ,∴△OFE ≌△ABO .∴EF =OB ,OF =AB .又OF =CF +OC =AB =BC =OB +OC =EF +OC ,∴CF =EF .∴四边形EFCH 为正方形.(2)解:如图5,∵∠POK +∠BOG =∠OGB +∠BOG =90°,图5∴∠POK =∠OGB .∵∠PKO =∠OBG ,∴△PKO ∽△OBG .∵S △PKO =4S △OBG ,∴=2=4.∴OP =2.S △PKO S △OBG (OP OG )∴S △POG =OG ·OP =×1×2=1.1212∵S 四边形PKBG =S △POG +S △PKO +S △OBG =1+5S △OBG ,∴只需求出S △OBG 的最大值.设OB =a ,BG =b ,则a 2+b 2=OG 2=1,∴b =.1-a 2∴S △OBG =ab =a =12121-a 212-a 4+a 2=.12-(a 2-12)2+14∴当a 2=时,△OBG 有最大值为,此时S △PKO =4S △OBG =1.1214∴四边形PKBG 的最大面积为1+1+=.1494例2 解:(1)若四边形PQCM 是平行四边形,则PM ∥QC ,∴AP ∶AB =AM ∶AC .∵AB =AC ,∴AP =AM ,即10-t =2t ,解得t =.103∴当t =时,四边形PQCM 是平行四边形.103(2)∵PQ ∥AC ,∴△PBQ ∽△ABC .∴△PBQ 为等腰三角形,PQ =PB =t .∴=,即=,解得BF =t .BF BD PB AB BF 8t 1045∴FD =BD -BF =8-t .45∴y =S △ABC -S △APM -S △BPQ =×10×8-×2t ×-×t ×t =t 2-8t +40.1212(8-45t )124525(3)假设存在某一时刻t ,使点M 在线段PC 的垂直平分线上,则MP =MC ,图6过M 作MH ⊥AB ,交AB 于H ,如图6所示,∵∠A =∠A ,∠AHM =∠ADB =90°,∴△AHM ∽△ADB .∴==.HM BD AH AD AM AB又AD =6,∴==.HM 8AH 62t 10∴HM =t ,AH =t .8565∴HP =10-t -t =10-t .65115在Rt △HMP 中,MP 2=2+2=t 2-44t +100,(85t )(10-115t )375又MC 2=(10-2t )2=100-40t +4t 2,MP 2=MC 2,∴t 2-44t +100=100-40t +4t 2.375解得t 1=,t 2=0(舍去).2017∴t =秒时,点M 在线段PC 的垂直平分线上.2017训练 3.解:(1)当点P 在AC 上时,∵AM =t ,∴PM =AM ·tan 60°=t .3∴y =t ·t =t 2(0<t ≤1).12332当点P 在BC 上时,PM =BM ·tan 30°=(4-t ),33∴y =t ·(4-t )=-t 2+t (1≤t <3).123336 2 33(2)∵AC =2,∴AB =4.∴BN =AB -AM -MN =4-t -1=3-t .∴QN =BN ·tan 30°=(333-t ).若要四边形MNQP 为矩形,需PM =QN ,且P ,Q 分别在AC ,BC 上.即t =(3-t ),∴t =.33334∴当t = s 时,四边形MNQP 为矩形.34(3)由(2)知,当t = s 时,34四边形MNQP 为矩形,此时PQ ∥AB ,∴△PQC ∽△ABC .除此之外,当∠CPQ =∠B =30°时,△QPC ∽△ABC ,此时=tan 30°=.CQ CP 33∵=cos 60°=,∴AP =2AM =2t .∴CP =2-2t .AM AP 12∵=cos 30°=,∴BQ ==(3-t ).BN BQ 32BN 32 2 33又BC =2 ,∴CQ =2 -(3-t )=.33 2 33 2 3t 3∴=,解得t =.2 3t32-2t 3312∴当t = s 或 s 时,以C ,P ,Q 为顶点的三角形与△ABC 相似.12344.(1)证明:∵l ⊥AD ,BC ⊥AD ,∴l ∥BC .∴=.AM AB AN AC ∵AB =AC ,∴AM =AN .∵∠BAC =90°,∴ME =NE .∴MN =2AE =2t .∵BP =2t ,∴MN =BP .∴四边形MBPN 为平行四边形.(2)解:∵四边形MFGN 是正方形,∴FG =MN =MF =2AE =2t .∵EH =MF =2t ,∴DH =AD -AH =10-3t .∴S △PFG =FG ·DH =×2t ×(10-3t )=-32+.1212(t -53)253∵-3<0,0<t <,103∴当t =时,S △PFG 最大为.53253(3)解:存在,t =或.30±10 27103【提示】如图7,过点F 作FK ⊥BC 于K ,过点G 作GL ⊥BC 于L ,图7则FK =GL =DH =10-3t ,PK =BD -BP -KD =10-3t ,PL =PD +DL =10-2t +t =10-t .利用勾股定理得:PF 2=2(10-3t )2,PG 2=(10-3t )2+(10-t )2,FG 2=(2t )2.当PF =FG 时,2(10-3t )2=(2t )2,解得t =;30±10 27当PF =PG 时,2(10-3t )2=(10-3t )2+(10-t )2,解得t =5,或t =0(舍去);当t =5时,点P 为BC 中点,而F ,P ,G 三点共线,舍去.当FG =PG 时,(2t )2=(10-3t )2+(10-t )2,解得t =,或t =10(舍去);103综上所述,t =或时,△PFG 为等腰三角形.30±10 27103例3 解:(1)∵点A 在线段PQ 的垂直平分线上,∴AP =AQ .∵∠DEF =45°,∠ACB =90°,∠DEF +∠ACB +∠EQC =180°,∴∠EQC =45°.∴∠DEF =∠EQC .∴CE =CQ .由题意知CE =t ,BP =2t ,∴CQ =t .∴AQ =8-t .在Rt △ABC 中,由勾股定理得AB =10 cm ,则AP =10-2t .∴10-2t =8-t ,解得t =2.(2)如图8,过点P 作PM ⊥BE 于M ,图8∴∠BMP =90°.∴sin B ==,即=.AC AB PM PB PM 2t 810解得PM =t .85∵BC =6 cm ,CE =t ,∴BE =6-t .∴y =S △ABC -S △BPE =×BC ×AC -×BE ×PM =×6×8-×(6-t )×t =t 2-t +24=(t -121212128545245453)2+.845∵>0,∴抛物线开口向上.45∴当t =3时,y 最小=.845(3)假设存在某一时刻t ,使点P ,Q ,F 三点在同一条直线上,如图9,过点P 作PN ⊥AC 于N,图9∴∠ANP =∠ACB =∠PNQ =90°.∵∠PAN =∠BAC ,∴△PAN ∽△BAC .∴==,即==.PN BC AP AB AN AC PN 610-2t 10AN 8解得PN =6-t ,AN =8-t .6585∵NQ =AQ -AN ,∴NQ =8-t -=t .(8-85t )35∵∠ACB =90°,B ,C (E ),F 在同一条直线上,∴∠QCF =90°,∠QCF =∠PNQ .∵∠FQC =∠PQN ,∴△QCF ∽△QNP .∴=,即=,解得t =1.PN FC NQ CQ 6-65t 9-t 35t t训练 5.解:(1);209【提示】如图10,由题意得,CQ =AP =t,图10∵AB =3,BC =5,∴AC =4.∴CP =4-t .由平移的性质可得MN ∥AB ,∵PQ ∥MN ,∴PQ ∥AB .∴=,即=,解得t =.CP AC CQ BC 4-t 4t 5209(2)如图11,过点P 作PF ⊥BC 于点F ,过点A 作AE ⊥BC 于点E,图11由S △ABC =AB ×AC =AE ×BC ,1212即×3×4=×5AE ,可得AE =.1212125∴CE ===.AC 2-AE 242-(125)2165∵PF ⊥BC ,AE ⊥BC ,∴AE ∥PF .∴△CPF ∽△CAE .∴==,即==.CP AC CF CE PF AE 4-t 4CF 165PF 125∴PF =,CF =.12-3t 516-4t 5∵PM ∥BC ,∴点M 到QC 的距离h =PF =.12-3t 5∴y =CQ ×h =×t ×=-t 2+t (0<t <4).121212-3t 531065(3)如图12,过点Q 作QK ⊥PM 于点D ,QE 交AC 于点H .图12∵PQ =MQ ,∴PK =KM =,且KQ ⊥BC .52∵∠A =∠HQC ,∠ACB =∠QCH ,∴△CQH ∽△CAB ,∴=,即=.CQ AC CH BC t 4CH 5∴CH =t .∴PH =AC -AP -CH =4-t -t =4-t .545494易证△PHK ∽△CBA ,∴=,即=,解得t =.PH BC PK AC 4-94t 5524718∴当t =时,PQ =QM .7186.解:(1)设设PN 与x 轴交于点G ,∵OA =4,AB =3,∠OAB =90°,∴OB =5.∵PG ∥AB ,∴△OPG ∽△OBA .∴==.∴==.OG OA PG AB OP OB OG 4PG 3t 5∴OG =t ,PG =.453t 5∴P 点的坐标为.(45t ,-35t )(2)①当0<t ≤时,S =t ×t =t 2;5245351225当<t ≤时,S =2×t =t ;521033565当<t <4时,S =4.103②当QM 运动到AB 位置时,恰好无公共部分,t <4+2,45即t <.152(ⅰ)当4<t <5时,∠DPE >∠DBE =90°,△PDE 不可能为直角三角形;(ⅱ)当t =5时,∠DPE =∠DBE =90°,此时△PDE 是直角三角形;(ⅲ)当5<t <时,如图13,ME =MN -NE =2-=6-t ,DM =MQ -QD =2152(45t -4)45-=5-t .(35t -3)35此时∠DPE <90°,有∠PDE =90°或∠PED =90°两种可能.若∠PDE =90°,则=,PQ QD DM ME图13可得=,235t -35-35t 6-45t 整理得9t 2-160t +675=0,解得t =,应取t =;80±5 13980-5 139若∠PED =90°,则=,PN NE ME DM可得=,245t -46-45t 5-35t 整理得8t 2-115t +425=0,注意到Δ<0,该方程无实数解.综上所述,符合条件的t 的值有两个,t =5或t =.80-5 139。
中考数学专题——动态问题(非常全面)
(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。
最新中考数学复习:动态几何问题压轴题专项训练(带答案)
2022年中考数学复习:动态几何问题压轴题专项训练1.已知AD是等边△ABC的高,AC=2,点O为直线AD上的动点(不与点A重合),连接BO,将线段BO 绕点O顺时针旋转60°,得到线段OE,连接CE、BE.(1)问题发现:如图1,当点O在线段AD上时,线段AO与CE的数量关系为,△ACE的度数是.(2)问题探究:如图2,当点O在线段AD的延长线上时,(1)中结论是否还成立?请说明理由.(3)问题解决:当△AEC=30°时,求出线段BO的长2.如图1,在平面直角坐标系中,已知△ABC中,△ABC=90°,B(4,0),C(8,0),tan△ACB=2,抛物线y=ax2+bx经过A,C两点.(1)求点A的坐标及抛物线的解析式;(2)如图2,过点A作AD△AB交BC的垂线于点D,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE△AB交AC于点E.△过点E作EF△AD于点F,交抛物线于点G.当t为何值时,线段EG取得最大值?最大值是多少?△连接EQ,在点P,Q运动过程中,t为何值时,使得△CEQ与△ABC相似?3.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x32=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和△CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.4.如图,在□ABCD 中,△ABD =90°,AD =,BD =8cm .点P 从点A 出发,沿折线AB —BC 向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm /s /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且QM =2PQ ,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与□ABCD 重叠部分的面积为S (cm 2).(1)求边AB 的长;(2)当0<t <4时,PQ = ,当4<t <8时,PQ = (用含t 的代数式表示);(3)当点M 落在BD 上时,求t 的值;(4)当矩形PQMN 与□ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.5.如图,四边形ABCD 是菱形,其中60B ∠=︒,点E 在对角线AC 上,点F 在射线CB 上运动,连接EF ,作60FEG ∠=︒,交DC 延长线于点G .(1)试判断EFG 的形状,并说明理由;(2)图中7AB =,1AE =.△当CF 10=时,以点B 为原点,射线BC 为正半轴建立平面直角坐标系.平面内是否存在一点M ,使得以点M、E、F、G为顶点的四边形与菱形ABCD相似?若存在,求出点M的坐标,若不存在,说明理由;△记点F关于直线AB的轴对称点为点N.若点N落在EDC的内部(不含边界),求CF的取值范围.6.如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE=43,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.(1)求点B的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;7.小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm 的正方形ABCD 中,点E 从点A 出发,沿边AD 向点D 运动,同时,点F 从点B 出发,沿边BA 向点A 运动,它们的运动速度都是2cm/s ,当点E 运动到点D 时,两点同时停止运动,连接CF 、BE 交于点M ,设点E , F 运动时问为t 秒.(1)【问题提出】如图1,点E ,F 分别在方形ABCD 中的边AD 、AB 上,且BE CF =,连接BE 、CF 交于点M ,求证:BE CF ⊥.请你先帮小明加以证明.(2)如图1,在点E 、F 的运动过程中,点M 也随之运动,请直接写出点M 的运动路径长 cm .(3)如图2,连接CE ,在点E 、F 的运动过程中.△试说明点D 在△CME 的外接圆O 上; △若△中的O 与正方形的各边共有6个交点,请直接写出t 的取值范围.8.如图,菱形ABCD ,120ABC ∠=︒,点E 为平面内一点,连接AE .(1)如图1,点E 在BC 的延长线上,将AE 绕点A 顺时针旋转60°得AF ,交EB 延长线于点G ,连接EF 交AB 延长线于点H ,若15AEB ∠=︒,4HF =,求AE 的长;(2)如图2,点E 在AC 的延长线上,将AE 绕点A 逆时针旋转60°得AF ,连接EF ,点M 为CE 的中点,连接BM ,FM ,证明:FM =;(3)如图3,将AB 沿AS 翻折得()120AE BAE ∠<︒,连DE 交AS 于点S ,点T 为平面内一点,当DS 取得最大值时,连接TD ,TE ,若3AT =,AD =6,求TD TE -的最大值.9.已知抛物线()()12y x x m m=+-与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,点P 为抛物线上一动点(点P 不与点C 重合).(1)当ABC 为直角三角形时,求ABC 的面积(2)如图,当AP BC ∥时,过点P 作PQ x ⊥轴于点Q ,求BQ 的长.(3)当以点A ,B ,P 为顶点的三角形和ABC 相似时(不包括两个三角形全等),求m 的值.10.已知:如图,在△ABC 纸片中,AC =3,BC =4,AB =5,按图所示的方法将△ACD 沿AD 折叠,使点C恰好落在边AB上的点C′处,点P是射线AB上的一个动点.(1)求折痕AD长.(2)点P在线段AB上运动时,设AP=x,DP=y.求y关于x的函数解析式,并写出此函数的定义域.(3)当△APD是等腰三角形时,求AP的长.11.如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P 是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.A-和点B,与y轴交于点C,顶点D 12.在平面直角坐标系中,抛物线2y ax bx c=++与x轴交于点(1,0)-.的坐标为(1,4)(1)直接写出抛物线的解析式;∠=∠,求点P的坐标;(2)如图1,若点P在抛物线上且满足PCB CBD⊥轴交抛物线于点N,Q是直线AC上一个动点,当(3)如图2,M是直线BC上一个动点,过点M作MN x∆为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标QMNB-,与y轴交于点C,且13.如图,已知抛物线2(0)=++≠与x轴交于点(1,0)y ax bx c aA和点(3,0)=.OC OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90︒后,点A的对应点'A恰好也落在此抛物线上,求点P 的坐标.14.综合与探究如图,已知抛物线228y x x =--与x 轴相交于点A ,B (点B 在点A 的右侧),与y 轴相交于点C ,其顶点为点D ,连接AC ,BC .(1)求点A ,B ,D 的坐标;(2)设抛物线的对称轴DE 交线段BC 于点E ,P 为第四象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F .若四边形DEFP 为平行四边形,求点P 的坐标;(3)设点M 是线段BC 上的一个动点,过点M 作MN AB ,交AC 于点N .点Q 从点B 出发,以每秒1个单位长度的速度沿线段BA 向点A 运动,运动时间为t (6t <)秒,直接写出当t 为何值时,QMN 为等腰直角三角形.15.如图△,在平面直角坐标系中,点A 、B 的坐标分别为A (4,0)、B (0,3),连结AB .抛物线234y x bx c =++经过点B ,且对称轴是直线52x =-.(1)求抛物线的函数关系式.(2)将图△中的△ABO 沿x 轴向左平移得到△DCE (如图△),当四边形ABCD 是菱形时,说明点C 和点D 都在该抛物线上.(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C 、D 重合),过点M 作MN △y 轴交直线CD 于点N .设点M 的横坐标为m ,线段MN 的长为l .求l 与m 之间的函数关系式.(4)在(3)的条件下,直接写出m 为何值时,以M 、N 、C 、E 为顶点的四边形是平行四边形.16.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上.△求点F 的坐标;△直接写出点P 的坐标.17.如图1,直线AB 与x 轴,y 轴分别交于A ,B 两点,点C 在x 轴负半轴上,这三个点的坐标分别为A(4,0),B(0,4),C(−1,0) .(1)请求出直线AB的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF//BC交AB于点F,当△BEF的面积是52时,求点E的坐标;(3)如图2,将点B向右平移1个单位长度得到点D,在x轴上存在动点P,若△DCO+△DPO=△α,当tan△α=4时,请直接写出点P的坐标.18.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.△求证:BE平分△AEC.△取BC的中点P,连接PH,求证:PH∥CG.△若BC=2AB=2,求BG的长.(2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.19.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P 的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.20.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).参考答案:1.解:AO =CE ,△ACE =90°,理由如下:△线段BO 绕点O 顺时针旋转60°,得到线段OE ,△BO =OE ,△BOE =60°,△△BOE 为等边三角形,△△OBE =60°,BE =BO ,△△OBE =60°=△OBD +△DBE ,△△ABC 为等边三角形,△△ABC =60°=△ABO +△OBD ,AB=AC ,△△ABO =△CBE ,在△ABO 和△CBE 中,AB AC ABO CBE BO BE =⎧⎪∠=∠⎨⎪=⎩,△△ABO △△CBE (SAS),△AO =CE ,△BAO =△BCE ,△AD 是等边三角形ABC 的高,△△ACB =60°,AD 也是△BAC 的平分线,△△BAO =30°=△BCE ,△△ACE =△BCE +△ACB =30°+60°=90°,故答案为:AO =CE ,△ACE =90°;(2)解:成立,理由如下:如图:连接BE .△线段BO 绕点O 顺时针旋转了60°得EO ,△BO =EO ,△BOE =60°,△△BOE 是等边三角形,△BO =BE ,△OBE =60°,△△ABC 是等边三角形,△BA =BC ,△ABC =60°,△△ABC +△OBC =△OBE +△OBC ,即△ABO =△CBE ,在△ABO 和△CBE 中,AB AC ABO CBE BO BE =⎧⎪∠=∠⎨⎪=⎩△△ABO △△CBE (SAS),△AO =CE ,△BAO =△BCE ,△AD 是等边△ABC 的高,△△BCE =△BAO =30°,△BCA =60°,△△ACE =△BCE +△ACB =30°+60°=90°,△AO =CE ,△ACE =90°;(3)解:△当点O 1在线段AD 的延长线上时,由(1)和(2)知:△BO 1E 1是等边三角形,△ACE 1=90°,△△ACE 1=90°,△AE 1C =30°,△△E 1AC =60°,△△BAC =60°,△点A 、B 、E 1在一条直线上,△在Rt △ACE 1中,AC =2,△AE 1C =30°,△A E 1=4,△BO 1=BE 1=2;△当点O 2在线段DA 的延长线上时,△△ACE 2=90°,△AE 2C =30°,AC =2,△AE 2=4,2CE△△ABO 2△△CBE 2(SAS),△22AO CE ==△AD 是等边△ABC 的高,AB =AC =2,△BD =1,AD ==在Rt △O 2DB 中,BD =1,而22O D AO AD ==+△2BO ===综上,BO =2或2.解:△B (4,0),C (8,0),△BC =4,△△ABC =90°,tan△ACB =2,△AB =BC •tan△ACB =8,△A 的坐标为(4,8),将A (4,8),C (8,0)代入y =ax ²+bx ,得:16486480+=⎧⎨+=⎩a b a b , 解得:124⎧=-⎪⎨⎪=⎩a b , △抛物线得解析式为:2142y x x =-+; (2)解:△由题得:AP =t ,△APE =△ABC =90°,△EAP =△CAB ,△tan△EAP =tan△CAB ==EP BC AP AB , △4=8PE t ,即PE =2t , △PB =AB ﹣AP =8﹣t ,△E 的坐标为(4+2t ,8﹣t ), 将x =4+2t 代入2142y x x =-+, 得:2188=-+y t , △G 的纵的坐标为2188-+t , △EG =218(8)8-+--t t =21+8-t t =21(4)+28--t ,△0≤t ≤8, △t =4时,线段EG 有最大值且为2;△△CQ =t ,PE =2t ,AP =t ,BC =4,AB =8, △AE=,AC= △CE =AC ﹣AE=,当△CEQ △△ACB 时,=CE CQ AC AB ,代入数据:8=t ,解得:t =4,当△CEQ △△ABC 时,=CE CQ AB AC ,代入数据:△28=解得t =409, △综上,t =4或409. 3. 解:由题意:32216410b a a b ⎧-=⎪⎨⎪++=⎩, 解得1434a b ⎧=-⎪⎪⎨⎪=⎪⎩, △抛物线的解析式为y 14=-x 234+x +1, 令y =0,可得x 2﹣3x ﹣4=0,解得x =﹣1或4,△A (﹣1,0),令y =0,得到x =1,△C (0,1),△OA =OC =1,△△CAO =45°.(2)解:如图1中,过点C 作CE △OA 于E ,过点D 作DF △AB 于F .△△NEM=△DFM=△NMD=90°,△△NME + △DMF=90°,△DMF+△MDF=90°,△△NME=△MDF,△NM=DM,△MEN DFM AAS≌()△NE=MF,EM=DF,△△CAO=45°,AN=,AM=3t,△AE=EN=t,△EM=AM﹣AE=2t,△DF=2t,MF=t,OF=4t﹣1,△D(4t﹣1,2t),△14-(4t﹣1)234+(4t﹣1)+1=2t,△t>0,故可以解得t34 =,经检验,t34=时,M,N均没有达到终点,符合题意,△D(2,32).(3)解:如图3﹣1中,当点Q在点C的下方,点P在y的右侧,△QCP=△MDB时,取E (12,0),连接EC ,过点E 作EG △EC 交PC 于G , △M (54,0),D (2,32),B (4,0) △53244FM =-=,DM =,BM 114=,BD 52=, △DF =2MF ,△OC =2OE ,△tan△OCE =tan△MDF 12=, △△OCE =△MDF ,△△OCP =△MDB ,△△ECG =△FDB ,△tan△ECG =tan△FDB 43=, △EC =, △EG =G (116,23), △直线CP 的解析式为y 211=-x +1, 由2211113144y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得01x y =⎧⎨=⎩或411139121x y ⎧=⎪⎪⎨⎪=⎪⎩, △4139(,)11121P ,(0,1)C ,△PC =当MD BD CQ CP =或时MD BD PC CQ =,△QCP 与△MDB 相似,可得615242CQ =或2050363,△373(0,)242Q -或1687(0,)363-. 如图3﹣2中,当点Q 在点C 的下方,点P 在y 的右侧,△QCP =△DMB 时,设PC 交x 轴于K .△tan△OCK =tan△DMB =2,△OK =2OC =2,△点K 与F 重合,△直线PC 的解析式为112y x =-+, 由211213144y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得01x y =⎧⎨=⎩或532x y =⎧⎪⎨=-⎪⎩, △3(5,)2P -,△PC =当DM BM PC CQ =或DM BM CQ PC =时,△QCP 与△MDB 相似,可得556CQ =或7522, △49(0,)6Q -或53(0,)22-. 当点Q 在点C 的下方,点P 在y 的右侧,△QCP =△DBM 时,同法可得2591257(,)(0,)3918P Q --,或1151(0,)99, 当点Q 在点C 上方,△QCP =△DMB 时,同法可得P (1,32),Q (0,176)或(0,3722), 当点Q 在点C 上方,△QCP =△MDB 时,同法可得25171617(,)(0,)11121242P Q ,或1613(0,).363,当点Q 在点C 下方,点P 在y 轴的左侧时,△QCP =△DBM 时,同法可得71959(,)(0,)3918P Q ---,或251(0,)99-. 4(1)解:△△ABD =90°,AD =,BD =8cm .△4cm AB = ;(2)解:当0<t <4时,点P 在AB 边上,cm AP t = ,如图,△PQ △AB ,△ABD =90°,△PQ △BD ,△△APQ △△ABD ,△AP PQ AB BD = , △4182AP AB PQ BD === , 即12t PQ = , △2cm PQ t = ;当4<t <8时,点P 在BC 边上,)4cm BP t =- ,如图,△四边形ABCD 是平行四边形,△BC AD == ,AB △CD ,△BDC =△ABD =90°,△)()4cm CP BC BP t =-=-= ,△PQ △AB ,△PQ △CD ,△PQ △BD ,△△CPQ △△CBD , △CP PQ BC BD= ,△CP BC PQ BD === , △()162cm PQ t =- ;(3)解:如图,当点P 在AB 上时,cm AP t = ,则()4cm BP t =- ,在矩形PQMN 中, BP =QM ,△QM =2PQ ,△BP =2PQ ,△2cm PQ t =,△224t t ⨯=- ,解得:45t = ;如图,当点P 在BC 边上时,点M 与点D 重合,由(2)得:此时4182CQ CD PQ BD === , △()162cm PQ t =-,△()18cm 2CQ PQ t ==- , △()4cm MQ CD CQ t =-=- ,△QM =2PQ ,△()42162t t -=- ,解得:365t = ; 综上所述,当点M 落在BD 上时, t 的值为45或365; (4) 解:如图,当405t ≤≤ 时,△2cm PQ t =,QM =2PQ ,△4cm QM t =,△矩形PQMN 与□ABCD 重叠部分的面积为22248cm S PQ QM t t t =⋅=⨯= ; 如图,当445t << 时,设MQ 交BC 于点T ,根据题意得:AQ △BT ,QT △AB ,△四边形ABTQ 是平行四边形,△4cm QT = ,△()4cm BP AB AP t =-=- ,2cm PQ t =,△矩形PQMN 与□ABCD 重叠部分的面积为()()()2114428cm 22S PB QT PQ t t t t =+⨯=-+⨯=-+; 如图,当点N 落在AD 边上时,四边形ABPN 是平行四边形,△4cm PN AB == ,△4cm MQ PN == ,△QM =2PQ ,()162cm PQ t =-,△()21624t -= ,解得:7t = ,如图,当47t <≤ 时,设PN 交AD 于点K ,此时四边形ABPK 是平行四边形,△4cm PK AB == ,△()162cm PQ t =-,4182CQ CD PQ BD ===, △()18cm 2CQ PQ t ==- , △()()484cm DQ t t =--=- ,△矩形PQMN 与□ABCD 重叠部分的面积为()()()()211441628cm 22S PK DQ PQ t t t t =+⨯=-+⨯-=-+; 如图,当3685t ≤< 时,△()162cm PQ t =-,QM =2PQ ,△()324cm MQ t =- ,△矩形PQMN 与□ABCD 重叠部分的面积为()()()221623248128512cm S PQ MQ t t t t =⨯=-⨯-=-+ ,综上所述,S 与t 的函数关系式为222248(0)548(4)58(47)368128512(8)5t t t t t S t t t t t t ⎧≤≤⎪⎪⎪-+<<⎪=⎨⎪-+<≤⎪⎪-+≤<⎪⎩.5.(1) EFG 是等边三角形,理由如下:如图,过点E 作EM AB ∥,交FC 于M ,△四边形ABCD 是菱形,△AB CB =,△60ACB ABC ∠=∠=︒,△60ACD ACB ∠=∠=︒,△120ACG ∠=︒,△EM AB ∥,△60ABC EMC ∠∠==︒,△120EMF ∠=︒,△60EMC ECM ∠=∠=︒,△EMC △是等边三角形,△EM EC =,60MEC ∠=︒,△60FEG MEC ∠=∠=︒,△FEM GEC ∠=∠,在FEM △和GEC 中,FGM GEC EM ECEMF ECG ∠=∠⎧⎪=⎨⎪∠=∠⎩, △()FEM GEC ASA ≅,△EF EG =,△EFG 是等腰三角形,△60FEG ∠=︒,△EFG 是等边三角形;(2)△如图所示,过点A 作AT y ⊥轴交于点T ,△60ABC ∠=︒,△30TBA ∠=︒, △1722AT AB ==,BT == 过点E 作EH y ⊥轴交于点H ,交AB 于点K ,△EH CF ∥,△AKE 是等边三角形,△1AK KE AE ===,△6BK =,△sin 6sin 606BH BK BKH =⋅∠=⨯︒==132HK BK ==,△E ,△4HE HK KE =+=,△四边形ABCD 是菱形,△7BC AB ==,△(7,0)C ,21(2D , △CD 的解析式为373yx ,设(G x -, △EFG 是等边三角形,△22EG EF =,即2222(4)(34)x -+-=--+,解得:15=x 或212x =(舍去),当5x =时,y =-△(5,G -,当是菱形EFMG 时,(2,M --,当是菱形EFGM 时,M ,当是菱形FGEM 时,(M -,综上所述,(2,M --或(或(-;△如图,当N 在CD 上时,作CP AB ⊥于P ,点F '关于AB 的对称点N 在CD 上,△OF ON CP '==,CP BC ==△OF '=, 在Rt BOF '中,7sin 60OF OBF ''∠==︒, △14CF '=,如图,当N 在DE 上时,N 与F '关于AB 对称,AB 与DN 交于点Q , △60ABN ABC ∠=∠=︒,△60BAC ∠=︒,△60ABN BAC ∠=∠=︒,△BN AE ∥, △AE AQ BN QB=, △AD BC ∥,△ADE CME ,AQD BQM , △16AD AE MC CE ==,AQ AD QB MB =, △716MC =, △42MC =,△42735MB =-=, △71355AQ QB ==, △115BN =, △5BN =,△5BF BN '==,△752CF BC BF ''=-=-=,△214CF<<.6.解:由x2﹣4x﹣5=0,解得x=5或﹣1,∵OA是方程的根,∴OA=5,∴AB=OA=5,在Rt△ABE中,tan∠BAE=BEAE=43,AB=5,∴BE=4,AE=3,∴OE=OA+AE=5+3=8,∴B(8,4);(2)解:如图1中,当点F落在OB上时,AM=t,DM=45t,AD=35t,∵FM OA∥,∴FM MB OA BA=,∴45555tt-=,∴t=259,如图2中,当0<t≤259时,重叠部分是四边形ACFM,S=12•(AC+FM)•DM=14434 25555t t t t ⎛⎫⋅+-⋅ ⎪⎝⎭=25t2,如图3中,259<t ≤5时,重叠部分是五边形ACHGM , S =S 梯形ACFM ﹣S △FGH =()22211455225t t t ⎡⎤-⨯⨯--⎢⎥⎣⎦=﹣41100t 2+92t ﹣254;综上所述,S =25t 2(0<t ≤259)或S =﹣41100t 2+92t ﹣254(259<t ≤5). 7.(1)四边形ABCD 是正方形,AB BC ∴=,BAE CBF ∠=∠又,E F 的运动速度都是2cm/s ,2AE BF t ∴==BAE CBF ∴≌BCF ABE ∴∠=∠90ABE EBC ABC ∠+∠=∠=︒90BCF EBC ∴∠+∠=︒90MBC ∴∠=︒(2)△90CMB ∠=.△点M 在以CB 为直径的圆上,如图1,当t =0时,点M 与点B 重合;如图2,当t =3时,点M 为正方形对角线的交点.点M 的运动路径为14圆,其路径长13642ππ⨯=. 故答案为:32π (3)△如图3.由前面结论可知:90CME ∠=△△CME 的外接圆的圆心O 是斜边CE 的中点, 则12OM OC OE CE === 在Rt △CDE 中,90D ∠=,O 是CE 的中点. △12OD CE =, △OM OC OE OD ===△点D 、C 、M 、E 在同一个圆(O )上,即点D 在△CME 的外接圆O 上;. △304t <<. 如图4,当O 与AB 相切时,O 与正方形的各边共有5个交点,如图5则有6个交点,所以“当O 与AB 相切时”是临界情况.如图4,当O 与AB 相切(切点为G ),连接OG ,并延长GO 交CD 于点H . △AB 与O 相切,△OG AB ⊥,又△AB CD ∥,132CH DC ∴== 设O 的半径为R .由题意得:在Rt △CHO 中,2223(6)R R +-=,解得154R =△159,22CE DE =△32AE =,即3t 4= △如图5,当304t <<时,O 与正方形的各边共有6个交点.8.(1)解:过点H 作HL △EF ,交AF 于L ,△菱形ABCD ,120ABC ∠=︒△△DAB =180°-18012060ABC ∠=-=︒︒︒,AD∥BC ,△△DAE =△AEB ,△15AEB ∠=︒,△△DAE =15°,△AE 绕点A 顺时针旋转60°得AF ,△△AEF为等边三角形,△△F=60°,△HL△EF,△△HLF=90°-△F=30°,△LF=2HF=2×4=8,根据勾股定理LH△△DAE+△EAH=△EAH+△HAF=60°△△DAE=△HAF=15°,△△HLF为△AHL的外角,△△AHL=△HLF-△HAF=30°-15°=15°,△△AHL=△HAF,△AL=LH=△AE=AF=AL+LF=;(2)证明:过B作BL△AC于L,过F作FK△AE于K,设AE=m,AC=n,△将AE绕点A逆时针旋转60°得AF,△AE=AF=m,△EAF=60°,△△AEF为等边三角形,△AF=EF,△FK△AE,△△AFK=△EFK=30°,AK=EK=12 m,在Rt△AKF中,FK==,△菱形ABCD ,120ABC ∠=︒,BL △AC ,△AL =CL =12n ,△CBL =△ABL =60°,△△LCB =90°-△CBL =30°,△BC =2BL ,在Rt △BCL 中,根据勾股定理222+BC BL CL =,即2224+BL BL CL =,解得2n BL ==, △点M 为CE 中点,△CM =EM =()1122EC m n =+, △MK =ME -KE =()111222m n m n +-=,M L=MC -CL =()111222m n n m +-=,在Rt △MKF 中,根据勾股定理FM =在Rt △MLB 中,根据勾股定理BM ,△BM =,△FM =;(3)解:连结SB ,过E 作TL △DE ,,过G 作GI △AD 于I ,过T 作TJ △AB 于J ,在TD 上截取TE ′=TE ,△将AB 沿AS 翻折得()120AE BAE ∠<︒,△△BAS =△EAS ,AB =AE ,在△ABS 和△AES 中,AB AE BAS EAS AS AS =⎧⎪∠=∠⎨⎪=⎩,△△ABS △△AES (SAS ),△△ABS =△AES ,△四边形ABCD 为菱形,△AD =AB =AE =6,△ABC =120°,△△ADE =△AED =△ABS ,△DAB =180°-△ABC =60°,△A 、S 、B 、D 四点共圆,△点S 在△ABD 的外接圆劣弧AB 上运动,△当AS △AB 时,AS 长最大,△△ADH =90°-△DAH =30°,△AH =3,DH=△点T 在以点A 为圆3为半径的圆上运动,当点A 关于TJ 直线的对称点在△ADH 的角平分线DT 上时,TD TE -的值最大,设点A 的对称点为G ,△△ADG =△HDG =1152ADH ∠=︒,GI △AD ,GH △DH , △GI =GH =m ,AG =AH –GH =3-m ,AI =AD -DI -DH=6-在Rt △AIG 中,根据勾股定理222+AG AI IG =即()(22236+m m -=-,解得9m =,在Rt △DGH 中,根据勾股定理DG△DT=DG +TG =3,△AG =12-△AJ =JG =6-△JH =AH -AJ =3-(6-=,△TJ △AB ,DE △AB ,TL △DE ,△△TJH =△JHL =△TLH =90°,△四边形JTLH 为矩形,△JH =TL =,在DL 上截取DN =TN ,△△NDT =△NTD =15°,△△FNL =△NDT +△NTD =30°,△DN =TN =2TL =6,在Rt △TNL 中,根据勾股定理,NL9=-△DL =DN +NL =6+93-=,在Rt △AHE 中,△EAH =60°,△DE =sin60°×AE△DE△LE =DE -DL ()3=TL ,△TE=△GT -TE 最大=3-.9.(1) 解:由抛物线()()12y x x m m=+-开口向上,则m >0令x =0,则y =-2,即C 点坐标为(0,-2),OC =2令y =0,则()()102x x m m=+-,解得x =-2或x =m ,即点A (-2,0),点B (m ,0) △OA =2,OB =m△AB =m +2由勾股定理可得AC 2=(-2-0)2+[0-(-2)]2=8, BC 2=(m -0)2+[0-(-2)]2=m 2+4 △当ABC 为直角三角形时,仅有△ACB =90°△AB 2= AC 2+BC 2,即(m +2)2=8+m 2+4,解得m =2△AB =m +2=4△ABC 的面积为:12·AB ·OC =12×4×2=4.(2)解:设BC 所在直线的解析式为:y =kx +b则02mk b b =+⎧⎨-=⎩ ,解得22k m b ⎧=⎪⎨⎪=-⎩ △BC 所在直线的解析式为y =2m x -2 设直线AP 的解析式为y =2m x +c 则有:0=2m×(-2)+c ,即c =4m △线AP 的解析式为y =2m x +4m 联立()()1224y x x m m y x m m⎧=+-⎪⎪⎨⎪=+⎪⎩ 解得x =-2(A 点横坐标),x =m +2(P 点横坐标) △点P 的纵坐标为:()24822+m m m m⨯++= △点P 的坐标为(m +2,28m m +) △OQ =m +2△BQ =OQ -OB = m +2-m =2.(3)解:△点P 为抛物线()()12y x x m m=+-上一动点(点P 不与点C 重合).△设P (x ,()()12x x m m+-) △在△ABC 中,△BAC =45°△当以点A ,B ,P 为顶点的三角形和ABC 相似时,有三种情况:△a .若△ABC △△BAP △BP AC AB AB= 又△BP =AC△△ABC △△BAP 不符合题意;b . 若△ABP △△BAC △BP AB AB AC= 过P 作PQ △x 轴于点Q ,则△PQB =90°△△BPQ =90°-△PBQ =45°△PQ =BQ =m -x由于PQ =()()12x x m m +- △1(2)()m x x x m m-=+- △1()(2)10x m x m ⎡⎤-++=⎢⎥⎣⎦△x -m =0或1(2)10x m++= △x =m (舍去),x =-m -2△BQ =m -(-m -2)=2m +2△1)PB m ==+=△m 2-4m -4=0,解得:m =2-m =△m =2-△当△P AB =△BAC =45°时,分两种情况讨论:a . 若△ABP △△ABC ,则AP AC AB AB = ,点C 与点P 重合,不合题意; b . 若△ABP △△BAC ,则PB AB AB AC= , 过P 作PQ △x 轴于点Q ,则△PQA =90°△△APQ =90°-△P AB =45°△PQ =AQ =x +2由于PQ =()()12x x m m +- △12(2)()x x x m m+=+- △1(2)(2)10x x m ⎡⎤+++=⎢⎥⎣⎦△x +2=0或1()10x m m--= △x =-2(舍去),x =2m△AQ = =2m +2△1)AP m ==+=△m 2-4m -4=0,解得:m =2-m =△m =△当△APB=△BAC=45°时,分两种情况讨论:a.过点A作PM//BC交抛物线于点M,则△MAB=△ABC,△△MAB≠△P AB,△△P AB≠△ABC,△△P AB与△BAC不相似;b. 取点C关于x轴的对称点C',连接并延长BC'交抛物线于点N,则△NBA=△CBA,△△PBA≠△NBA,△△PBA≠△CBA,△△P AB与△BAC不相似;综上,m的值为m=2-m=10.解:如图1中,由翻折可知:CD=DC′,AC=AC′=3,设CD=DC′=x,在Rt△BDC中,△BD2=C′D2+C′B2,△(4-x)2=x2+22,解得:x=32,△AD==(2)如图2中,当点P在C'D左侧,AC=AC'=3,则PC'=3-x,△DP△10)y x =≤≤.当点P 在C 'D 右侧,同理可得10)y x =≤≤.△y 关于x 的函数解析式为10)y x =≤≤. (3) 如图3中,△当P A =PD 时,设P A =PD =m , 在Rt △PCD 中,△PD 2=DC ′2+C ′P 2,△2223((3))2m m =+-,解得:158=m , △P A =158.△当AD =AP P 在P′时,△ADP 是等腰三角形, △当PD =AD 时,点P 在AB 的延长线上.如图4,AP =2AC '=6.综上所述,满足条件的P A 的值为1586. 11. (1)解:把A (﹣3,0)和C (1,0)代入y =ax 2+bx ﹣3,得,093303a b a b =--⎧⎨=+-⎩,解得,12a b =⎧⎨=⎩,△抛物线解析式为y =x 2+2x ﹣3; (2)解:设P (x ,x 2+2x ﹣3),直线AB 的解析式为y =kx +b , 由抛物线解析式y =x 2+2x ﹣3, 令x =0,则y =﹣3, △B (0,﹣3),把A (﹣3,0)和B (0,﹣3)代入y =kx +b ,得,033k b b=-+⎧⎨-=⎩,解得,13k b =-⎧⎨=-⎩,△直线AB 的解析式为y =﹣x ﹣3, △PE △x 轴, △E (x ,﹣x ﹣3),△P在直线AB下方,△PE=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+32)2+94,当x=﹣32时,y=x2+2x﹣3=154-,△当PE最大时,P点坐标为(﹣32,154-);(3)存在,理由如下,△x=﹣221⨯=-1,△抛物线的对称轴为直线x=-1,设Q(-1,a),△B(0,-3),A(-3,0),△当△QAB=90°时,AQ2+AB2=BQ2,△22+a2+32+32=12+(3+a)2,解得:a=2,△Q1(-1,2),△当△QBA=90°时,BQ2+AB2=AQ2,△12+(3+a)2+32+32=22+a2,解得:a=﹣4,△Q2(-1,﹣4),△当△AQB=90°时,BQ2+AQ2=AB2,△12+(3+a)2+22+a2=32+32,解得:a1a1△Q3(-1,Q4(-1,综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1-1,.12.解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴304k ek e+=⎧⎨+=-⎩,解得:26ke=⎧⎨=-⎩,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC 是正方形,∴OC =CG =BG =3,∠COE =∠G =90°,∠OCB =∠GCB =45°, ∴∠OCB ﹣∠BCE =∠GCB ﹣∠BCF , 即∠OCE =∠GCF , ∴△OCE ≌△GCF (ASA ),∴FG =OE =32,∴BF =BG ﹣FG =3﹣32=32,∴F (3,﹣32),设直线CF 解析式为y =k 1x +e 1,∵C (0,﹣3),F (3,﹣32),∴1113332e k e =-⎧⎪⎨+=-⎪⎩,解得:11123k e ⎧=⎪⎨⎪=-⎩, ∴直线CF 解析式为y =12x ﹣3,结合抛物线y =x 2﹣2x ﹣3,可得x 2﹣2x ﹣3=12x ﹣3, 解得:x 1=0(舍),x 2=52,∴P 2(52,﹣74),综上所述,符合条件的P 点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC 解析式为y =m 1x +n 1,直线BC 解析式为y =m 2x +n 2, ∵A (﹣1,0),C (0,﹣3),∴11103m n n -+=⎧⎨=-⎩,解得:1133m n =-⎧⎨=-⎩,∴直线AC 解析式为y =﹣3x ﹣3, ∵B (3,0),C (0,﹣3),∴222303m n n +=⎧⎨=-⎩, 解得:2213m n =⎧⎨=-⎩,∴直线BC 解析式为y =x ﹣3, 设M (t ,t ﹣3),则N (t ,t 2﹣2t ﹣3), ∴MN =|t 2﹣2t ﹣3﹣(t ﹣3)|=|t 2﹣3t |,①当△QMN 是以NQ 为斜边的等腰直角三角形时,此时∠NMQ =90°,MN =MQ ,如图2,∵MQ ∥x 轴, ∴Q (﹣13t ,t ﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43 t,解得:t=0(舍)或t=53或t=133,∴154 (,) 33M-,154 (,)93Q--;2134 (,) 33M,2134 (,)93Q-;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(223t t-+,t2﹣2t﹣3),∴NQ=|t﹣223t t-+|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,262t t--),∴Q(26t t-+,262t t--),∴QH=|t﹣26t t-+|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:154 (,) 33M-,154 (,)93Q--;2134 (,) 33M,2134 (,)93Q-;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).13.解:(1)△抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(-3,0),△OB=3,△OC=OB,△OC=3,△c=3,△30 9330a ba b++=⎧⎨-+=⎩,解得:12ab=-⎧⎨=-⎩,△所求抛物线解析式为:223y x x=--+;(2)如图2,连接BC,过点E作EF△x轴于点F,设E(a,-a2-2a+3)(-3<a<0),△EF=-a2-2a+3,BF=a+3,OF=-a,△S△BEC=S四边形BOCE-S△BOC=12BF•EF+12(OC+EF)•OF-12•OB•OC=1 2(a+3)•(-a2-2a+3)+12(-a2-2a+6)•(-a)-92=-32a2-92a=-32(a+32)2+278,△当a=-32时,S△BEC最大,且最大值为278.。
九年级中考数学复习专题十 几何动态探究题
专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。
2023年九年级数学中考压轴复习专题几何综合——动点问题课件
∴
=
4
Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,
25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,
4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,
∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我
展
九年级数学中考专题:动态几何综合压轴题
2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。
2022中考数学压轴题之动态几何专题《动态几何问题探究》PPT讲义 - 副本
从点B开始沿BC向点C以2 cm/s的速度移动,点Q从点C开始沿CA边向
点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,第几秒时
PQ∥AB?
A
(陕西省咸阳市中考试题)
Q
B
P
C
图9—2
分析:如图9—2,假设运动开始后t秒时,PQ∥AB根据这时图形的特殊位置, 利用平行线分线段成比例定理求解.
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明 理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数。
中考动态几何问题探索
线动实质就是点动,即点动带动线 动,进而还会产生面动,因而线动型几 何问题可以通过转化成点动型问题来求 解.解决此类题的关键是要把握图形运 动与变化的全过程,抓住其中的等量关 系和变量关系.从运动变化得图形的特 殊位置,进而探索出一般的结论或者从 中获得解题启示,这种由特殊到一般的 思想对我们解决运动变化问题是极为重 要的.
2、图形旋转型
例7(临沂)
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板
DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为
DF),将直角三角板DEF绕D点按逆时针方向旋转。
⑴在图1中,DE交AB于M,DF交BC于N。①证明DM=DN;②在这一过程中,
B P RC (图2)
D
变化?若变化,请说明理由;若不变,求出四边 A
E
形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相
O
似?
B
C
D
(备用图)
1
中考动态几何问题探索
(眉山)、如图:∠MON = 90°,在∠MON的内部有一个 正方形AOCD,点A、C分别在射线OM、ON上,点B1是ON上的 任意一点,在∠MON的内部作正方形AB1C1D1。
最新九年级数学中考复习:动态几何综合压轴题(角度问题)含答案
2023年九年级数学中考复习:动态几何综合压轴题(角度问题)1.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图①位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置①CDG=37°,求正方形EFGH从图①位置旋转至图①位置时,旋转角的度数.(2)旋转至如图①位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.2.如图1,在Rt①ABC中,①ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将①ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;①求BF的长;(2)如图3,若AF恰好平分①DAE,直接写出CE的长.3.如图①,在ABC中,①ACB=90°,①ABC=30°,AC=1,D为ABC内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:BDA ①BFE ;(2)当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图①,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断①MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.4.已知ABC 是等腰三角形,AB AC =,将ABC 绕点B 逆时针旋转得到''A BC ,(1)感知:如图①,当'BC 落在AB 边上时,'A AB ∠与'C CB ∠之间的数量关系是 _____(不需要证明);(2)探究:如图①,当'BC 不落在AB 边上时,'A ∠AB 与'C CB ∠是否相等?如果相等;如果不相等,请说明理由;(3)应用:如图①,若90BAC ∠=︒,'AA 、'CC 交于点E ,则'A EC ∠=_____度.5.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DFAE的值_______; (2)将①EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,①EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.6.在正方形ABCD 中,AB =4,O 为对角线AC 、BD 的交点.(1)如图1,延长OC ,使CE=OC ,作正方形OEFG ,使点G 落在OD 的延长线上,连接DE 、AG .求证:DE=AG ;(2)如图2,将问题(1)中的正方形OEFG 绕点O 逆时针旋转α°(0<α<180),得到正方形OE F G ''',连接AE E G '''、. ①当α=30时,求点A 到E G ''的距离;①在旋转过程中,直接写出AE G ∆''面积的最小值为 ,并写出此时的旋转角α= .7.已知在矩形ABCD 中,①ADC 的平分线DE 与BC 交于点E ,点P 是线段DE 上一定点(其中EP <PD )(1)如图1,若点F 在CD 边上(不与C ,D 重合),将①DPF 绕点P 逆时针旋转90°后,角的两边PD ,PF 分别交射线DA 于点H ,G . ①直接写出PG 与PF 之间的数量关系;①猜想DF ,DG ,DP 的数量关系,并证明你的结论.(2)如图2,若点F 在CD 的延长线上(不与D 重合),将PF 绕点P 逆时针旋转90°,交射线DA 于点G ,判断(1)①中DF ,DG ,DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式.8.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED ,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =; (2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.9.(1)发现:如图1,点B 是线段AD 上的一点,分别以AB BD ,为边向外作等边三角形ABC 和等边三角形BDE ,连接AE ,CD ,相交于点O .①线段AE 与CD 的数量关系为:___________;AOC ∠的度数为__________. ②CBD ∆可看作ABE ∆经过怎样的变换得到的?____________________________. (2)应用:如图2,若点A B D ,,不在一条直线上,(1)的结论①还成立吗?请说明理由;(3)拓展:在四边形ABCD 中,=AB AC ,=90BAC ∠︒,=45ADC ∠︒,若8AD =,6CD =,请直接写出B ,D 两点之间的距离.10.如图①,①QPN 的顶点P 在正方形ABCD 两条对角线的交点处,①QPN =α,将①QPN 绕点P 旋转,旋转过程中①QPN 的两边分别与正方形ABCD 的边AD 和CD 交于点E 和点F (点F 与点C ,D 不重合).(1)如图①,当α=90°时,DE ,DF ,AD 之间满足的数量关系是 ;(2)如图①,将图①中的正方形ABCD 改为①ADC =120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE +DF =12AD ,请给出证明;(3)在(2)的条件下,若旋转过程中①QPN 的边PQ 与射线AD 交于点E ,其他条件不变,探究在整个运动变化过程中,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.11.如图,已知正方形ABCD ,将AD 绕点A 逆时针方向旋转(090)n n ︒<<到AP 的位置,分别过点C D 、作,CE BP DF BP ⊥⊥,垂足分别为点E 、F .(1)求证:CE EF =; (2)联结CF ,如果13DP CF =,求ABP ∠的正切值;(3)联结AF ,如果AF AB =,求n 的值.12.综合与实践如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究.在Rt ABC 中,90BAC ∠=︒,AB AC =,在Rt AMN △中,90MAN ∠=︒,AM AN =,点M ,N 分别在AC ,AB 边行,直角顶点重合在一起,将Rt AMN △绕点A 逆时针旋转,设旋转角MAC α∠=,其中090α︒<<︒. (1)当点M 落在BC 上时,如图2:①请直接写出BMN ∠的度数为______(用含α的式子表示); ①若3tan 4α=,7AC =,求AM 的长; (2)如图3,连接BN ,CM ,并延长CM 交BN 于点E ,请判断CE 与BN 的位置关系,并加以证明;(3)如图4,当BAC ∠与MAN ∠是两个相等钝角时,其他条件不变,即在ABC 与AMN 中,AB AC =,AM AN =,MAN BAC β∠=∠=,MAC α∠=,则CEN ∠的度数为______(用含α或β的式子表示).13.定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准对(记作qad).如图1,在①ABC中,AH①BC于点H,则qad①BAC=AHBC.当qad①BAC=35时,则称①BAC为这个三角形的“金角”.已知在矩形ABCD中,AB=3,BC=6,①ACE 的“金角”①EAC所对的边CE在BC边上,将①ACE绕点C按顺时针方向旋转α(0°<α<90°)得到①A'CE',A'C交AD边于点F.(1)如图2,当α=45°时,求证:①ACF是“金角”.(2)如图3,当点E'落在AD边上时,求qad①AFC的值.14.(1)观察猜想:如图①,在Rt△ABC和Rt△BDE中,①ABC=①EBD=90°,AB=BC,BE=BD,连接AE,点F是AE的中点,连接CD、BF,当点D、B、C三点共线时,线段CD与线段BF的数量关系是_____,位置关系是_____(2)探究证明:在(1)的条件下,将Rt△BDE绕点B顺时针旋转至图①位置时,(1)中的结论是否仍然成立?如果成立,请你就图①的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图①,在Rt△ABC和Rt△BDE中,①ABC=①EBD=90°,BC=2AB=8,BD=2BE=4,连接AE,点F是AE的中点,连结CD、BF,将△BDE绕点B在平面内自由旋转,请直接写出BF的取值范围,15.把我们常用的一副三角尺按照如图方式摆放:90︒∠=∠=BAO ODC,45B︒∠=,30∠=.C︒∠的度(1)如图1,两个三角尺的直角边OA、OD摆放在同一直线上,求出此图中BOC数;(2)如图2,如果把图1所示的OAB以O为中心顺时针旋转得到OA B''△,当OB'平分∠为多少度;COD∠时,求AOA'(3)如图3,两个三角尺的直角边OA、OD摆放在同一直线上,另一条直角边OB、OC 也在同一条直线上,如果把OAB以O为中心顺时针旋转一周,当旋转多少度时,两条AB CD,请直接写出答案.斜边//16.如图1,①ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC 边上,此时BD=CF,BD①CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD①CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD时,求线段CM 的长.17.(1)问题发现如图1,在等边三角形ABC 内部有一点P ,3PA =,4PB =,5PC =,求APB ∠的度数. 针对此问题,数学王老师给出了下面的思路:如图2,将APC △绕点A 逆时针旋转60°得到AP B '△,连结PP ',得到等边三角形APP ',在BPP '中,根据三角形三边关系以及勾股定理……请根据王老师的思路提示,完成本题的解答; (2)类比延伸如图3,在正方形ABCD 内部有一点P ,若135APD ∠=︒,试判断线段P A 、PB 、PD 之间的数量关系,并说明理由.18.如图,正方形ABCD 中PAQ ∠分别交BC ,CD 于点E ,F ,连接EF .(1)如图①,若128∠=︒,273∠=︒,试求3∠的度数;(2)如图①,以点A 为旋转中心,旋转PAQ ∠,旋转时保持45PAQ ∠=︒.当点E ,F 分别在边BC ,CD 上时,AE 和AF 是角平分线吗?如果是,请说出是哪两个角的平分线并给予证明;如果不是,请说明理由;(3)如图①,在①的条件下,当点E ,F 分别在BC ,CD 的延长线上时,①中的结论是否成立?只需回答结论,不需说明理由.19.如图,①AOB 中,OA =OB =6,将①AOB 绕点O 逆时针旋转得到①COD .OC 与AB交于点G ,CD 分别交OB 、AB 于点E 、F .(1)①A 与①D 的数量关系是:①A ______①D ; (2)求证:①AOG ①①DOE ;(3)当A ,O ,D 三点共线时,恰好OB ①CD ,求此时CD 的长.20.将两块完全相同的且含60°角的直角三角板ABC 和AFE 按如图1所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)若AMC 是等腰三角形,则旋转角α的度数为______.(2)在旋转过程中,连接AP ,CE ,求证:AP 所在的直线是线段CE 的垂直平分线. (3)在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.参考答案:1.(1)16°(2)DL =EN +GM2.3.①MPN 的值为定值,30°.4.(1)相等;(2)相等;(3)135︒.5.(2)DF =,(3,α的值为30°或150°,6.(2)①点A 到E G ''的距离为①在旋转过程中,直接写出AE G ∆''面积的最小值为16-α=135°.7.(1)①①DG +DF ;(2)不成立,数量关系式应为:DG -DF ,8.(2)15°;(3)存在,M ⎫⎪⎭或()4-9.(1)①AE CD =,60︒;(2)依然成立,(3)10.(1)DE +DF =AD ;(3)①当点E 落在AD 上时,DE +DF =12AD ,①当点E 落在AD 的延长线上时,DE -DF =12AD .11. (2)23;(3)3012.(1)①α;①5;(2)CE BN ⊥;(3)180β︒- 13. 2314.(1) CD =2BF BF ①CD(2)CD =2BF , BF ①CD 成立(3)13BF ≤≤15.(1)75︒∠=BOC ;(2)105︒'∠=AOA ;(3)当旋转的角度为105︒或285︒,两条斜边//AB CD .16. (3)8317.(1)150︒;(2)2222PA PD PB ,18.(1)62°(2)AE 是①FEB 的平分线,AF 是①EFD 的平分线,(3)AE 仍然是①FEB 的平分线,AF 不是①EFD 的平分线19.(1)=(3)20.(1)60°或15°(3)能,30α∠=︒或60︒。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
中考数学专题:《动态动点几何问题》带答案
《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题专题十动态几何问题试题特点用运动的观点来探究几何图形变化规律的问题称为动态几何问题,此类问题的显著特点是图形中的某个元素(如点、线段、三角形等)或整个图形按照某种规律运动,图形的各个元素在运动变化过程中互相依存、和谐统一,体现了数学中“变”与“不变” 、“一般” 与“特殊”的辩证思想.其主要类型有:1.点的运动(单点运动、多点运动);2.线段(直线)的运动;3.图形的运动(三角形运动、四边形运动、圆运动等).方式趋势动态几何题已成为中考试题的一大热点题型.在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,总体呈现源于教材、高于教材,入口宽、难易适度、梯度分明,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力.热点解析一、点的运动4 【题1】(2011 盐城)如图1,已知一次函数y=-x+7 与正比例函数y=x 的图象3交于点A ,且与x 轴交于点B.(1)求点A 和点B 的坐标;(2)过点A 作AC⊥y轴于点C,过点B 作直线l∥y 轴,动点P 从点O出发,以每秒1 个单位长的速度,沿O-C-A 的路线向点A 运动;同时直线l从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R,交线段BA 或线段AO 于点Q.当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A、P、R 为顶点的三角形的面积为8?②是否存在以A 、P、Q 为顶点的三角形是等腰三角形?若存在,请说明理由.求t 的值;若不存在,4【思路】(1)联立方程y=-x+7 和y=3x 即可求出点A 的坐标,令-x+7=0 即3可得点B 的坐标.(2)①只要把三角形的面积用t 表示,求出即可.应注意分P 在OC 上运动和P 在CA上运动两种情况.(D 只要把有关线段用t表示,找出满足AP=AQ,AP=PQ,AQ=PQ的条件时t 的值即可,应注意分别讨论P在OC上运动(此时直线∠与AB 相交)和P在CA上运动(此时直线∠与AO 相交)时AP=AQ ,AP =PQ,AQ =PQ 的条件.【失分点】以A、P、Q 为顶点的三角形是等腰三角形有多种可能,容易考虑不周.【反思】涉及的主要知识点有:一次函数的图象和性质,解二元一次方程组,勾股定理,锐角三角函数,解一元二次方程,等腰三角形的判定.【牛刀小试】1.(2010 湖北咸宁)如图6,直角梯形ABCD 中,AB ∥DC,∠ DAB =90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C-D-A 向点A 运动,当点M 到达点B 时,两点同时停止运动.过点M 作直线∠∥ AD ,与线段CD 的交点为E,与折线A-C -B 的交点为Q.点M 运动的时间为t(秒).(1)当t=时,求线段QM 的长.(2)当0<t<2 时,如果以C,P,Q 为顶点的三角形为直角三角形,求t 的值.CQ(3)当t>2 时,连接PQ 交线段AC 于点R,请探究是否为定值.若是,试求这RQ个定值;若不是,请说明理由.2.(2010 湖南娄底)如图7,在梯形ABCD 中,AB ∥CD,AB=2,DC=10,AD=BC=5,点M ,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E,F.(1)求梯形ABCD 的面积.(2)探究一:四边形MNFE 的面积有无最大值?若有,请求出这个最大值;若无,请说明理由.(3)探究二:四边形MNFF 能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.3.(2010 广西钦州)如图8,将OA=6,AB=4 的矩形OABC 放置在平面直角坐标系中,动点M,N 以每秒1个单位的速度分别从点A ,C同时出发,其中点M沿AO 向终点0 运动,点N 沿CB 向终点B 运动,当两个动点运动了ts 时,过点N 作NP⊥ BC ,交OB 于点P,连接MP .(1)点B 的坐标为__________ ;用含£的式子表示点P 的坐标为 _________________ .(2)记△ OMP的面积为S,求S与t的函数关系式(0<t<6) .并求t为何值时,S有最大值.(3)试探究:当S 有最大值时,在y 轴上是否存在点T,使直线MT 把△ ONC分割成1三角形和四边形两部分,且三角形的面积是△ ONC面积的1?若存在,求出点T 的坐标;3 若不存在,请说明理由.二、线的运动【题2】 (2010 云南昭通)如图,已知直线l 的解析式为y=-x+6,它与x 轴,y 轴分别相交于A ,B两点.平行于直线l 的直线n从原点出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t 秒,运动过程中始终保持n∥ l.直线n 与x 轴,y 轴分别相交于C,D两点.线段CD的中点为P,以P为圆心,以CD 为直径在CD 上方作半圆,半圆面积为S.当直线n 与直线l 重合时,运动结束.(1)求A ,B 两点的坐标.(2)求S 与t 的函数关系式及自变量t 的取值范围.(3)直线n 在运动过程中,①当t 为何值时,半圆与直线l 相切?1②是否存在这样的T值,使得半圆面积S=S梯形ABCD ?若存在,求出t 值;若不存2在,说明理由。
思路】(2)用勾股定理求出CD 的长(用t表示),即可求出S与t的函数关系式;(3)半圆面积1S=S 梯形ABCD ,可表示为关于2t 的方程,是否存在t 值,即方程是否有解.【失分点】将是否存在 t 值转化为方程是否有解的问题,是本题的难点和失分点.【反思】这是一道典型的“线段运动型”的动态几何问题,线段的运动往往带动的是 一个图形大小的变化(如三角形、平行四边形等) ,问题常以求图形面积的最值,或者探 究运动过程中是否存某一特殊位置的形式出现.解决此类问题时,一是要选择适当的求图 形面积的方法.若是规则图形,可以直接选择面积公式计算;若是不规则图形,一般情况 下选择割补法,通过“割补”将不规则图形转化为规则图形解决,二是要根据线段的运动 变化过程,探究其他图形的运动变化规律.有效的方法就是画出线段变化过程中的几个不 同位置的图形,确定线段运动变化的不同阶段,从而判断随之而动的其他图形的一般位置 和特殊位置,【牛刀小试】 4.(2010 湖南衡阳)已知:如图 10,等边三角形 ABC 的边长为 4 cm , 长为 1 cm 的线段 MN 在△ABC 的边 AB 上沿 AB 方向以 1 cm/s 的速度向 B 点运动(运动 开始时,点 M 与点 A 重合.点 N 到达点 B 时运动终止) ,过点 M ,N 分别作 AB 边的垂 线,与△ ABC 的其他边交于 P ,Q 两点,线段 MN 运动的时间为 t s .(1) 线段 MN 在运动的过程中, t 为何值时, 四边形 MNQP 恰为矩形?并求出该矩形的 面积. (2)线段 MN 在运动的过程中,四边形 MNQP 的面积为 S ,运动的时间为 t ,求四边形 MNQP 的面积 S 随运动时间 t 变化的函数关系式,并写出自变量 t 的取值范围.三、图形运动类OC的长.【题 3](2011 连云港)已知∠ AOB 沿边 OA从右向左平行移动,与边 OA 相AOB =60°,半径为 3 cm 的⊙P OA 相切的切点记为点 C . (1)⊙P 移动到与边 OB 相切时(如图 11),切点为 D ,求劣弧CD 的长;(2)⊙P 移动到与边 OB 相交于点 E ,F ,若 EF =4 2cm ,求【思路】(1)要求弧长,就要求弧长所对的圆心角,故作辅助线内角和是360°,可求圆心角,从而求出弧长.(2)应考虑CP 延长线与OB 的交点N 的位置,分情况ON>OF ,股定理和特殊角的三角函数求解,【解答】(1)连接PC,PD.(如图12)PC,PD,用四边形的OE<ON<OF ,利用勾ON>OF ,OE<ON<OF .【失分点】CP 延长线与OB 交点N 的位置,分两种情况:【反思】涉及的主要知识点有:多边形的内角和,弧长公式,勾股定理,特殊角三角函数.【题形,如图∠E=45° ABC 的斜边AC 重合在一起,并将△ DEF 沿AC 方向移动,在移动过程中,D,E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1) 在△ DEF 沿AC 方向移动的过程中,刘卫同学发现:4】( 2010 江苏苏州)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角15①,②.图①中,∠ B=90°,∠ A =30°.BC=6 cm;图②中,∠ D =90°,,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE 与△F,C 两点间的距离逐渐_________ .(填“不变” 、“变大”或“变小” )(2)刘卫同学经过进一步地研究,编制了如下问题.问题①:当△ DEF移动至什么位置,即AD 的长为多少时,F,C的连线与AB 平行?问题②:当△ DEF 移动至什么位置,即AD 的长为多少时,以线段AD ,FC,BC 的长度为三边长的三角形是直角三角形?问题③:在△ DEF的移动过程中,是否存在某个位置,使得∠ FCD=15°?如果存在,求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.【思路】可假设F,C 的连线与AB 平行,再求出须满足的条件.“以线段AD 、FC、BC 的长度为三边长的三角形是直角三角形”未明确直角三角形的斜边,须分类讨论.“是否存在某个位置,使得∠ FCD=15°”可转化为“方程是否有解”的问题.【解答】(1) 变小.(2)问题①:∴不存在这样的位置,使得∠ FCD =15°.【失分点】“以线段 AD 、FC 、BC 的长度为三边长的三角形是直角三角形”须分类讨 论. 【反思】本题考查了方程、全等、相似等知识,考查了方程思想、分类思想等.【牛刀小试】 5.(2011 无锡)如图 18,等腰梯形 MNPQ 的上底长为 2,腰长为 3,一 个底角为60°.正方形 ABCD 的边长为 1,它的一边 AD 在 MN 上,且顶点 A 与 M 重合, 现将正方形 ABCD 在梯形的外面沿边 MN 、 NP 、PQ 进行翻滚,翻滚到有一个顶点与 Q 重 合即停止滚动.(1)请在所给的图中,用尺规画出点(2)求正方形在整个翻滚过程中点 所围成图形的面积 S .A 在正方形整个翻滚过程中所经过的路线图;A 所经过的路线与梯形 MNPQ 的三边 MN 、NP 、PQ(2)S = 3(7- 2t),此时 2≤t ≤3.5. (2) 7π+ 2.(1) 点 A 在正方形整个翻滚过程中所经过的路线图如图 5:解题策略虽然动态几何问题运动类型多样,题目变化复杂,涉及知识广泛,但是在解题方法和 技巧上也有共性可循,建议要能够结合不同的问题,提炼共同的解题方法和技巧,学会归 纳总结.比如解决动态几何问题总的来说有三个步骤:1.设出初始变量元素; 2.用初始变量表示图形中其他的变量; 3.运用几何知识建立方程或函数模型来解决问题.注意把握运动规律,寻求运动中的特殊位置,在“动”中求“静” ,在“静”中探求 “动”的一般规律,通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种 性质.参考答案1. 5(1)1 (2)t =1或 3 (3)为定值.32.(1)18 . (2)四边形 MEFN 的面积的最大值是 75(3)四边形 MEFN 能为正方形3. 21(1)(6 ,4);(t , 2 t ). (2)S =-1(t -3)2+3(0<t<6).当 t = 3时, S 有最大值. 332 2 13(3)存在 在 y 轴上存在点 T 1(0, 2 2 13),T 2(0,2 13 -2)34.3(1)t =.矩形面积为 32 3 cm 2。