2020年高考数学各大题型答题模板

合集下载

高考数学答题万能模板

高考数学答题万能模板

高考数学答题万能模板一、问题分析在高考数学答题过程中,我们常常遇到各种类型的题目,而每个题目又有不同的解题思路和方法。

为了提高答题效率和准确性,我们可以使用以下的万能模板来辅助解答。

二、万能模板1. 解决方案模板当遇到复杂的数学问题时,我们可以使用以下的解决方案模板来有条理地解答问题:- 问题陈述:清晰地陈述题目所给的条件和要求。

问题陈述:清晰地陈述题目所给的条件和要求。

- 思路分析:分析问题的关键点和难点,明确解题思路。

思路分析:分析问题的关键点和难点,明确解题思路。

- 公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。

公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。

- 计算过程:按照步骤进行计算,注意每一步的细节和注意事项。

计算过程:按照步骤进行计算,注意每一步的细节和注意事项。

- 最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。

最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。

2. 图形解析模板当遇到涉及图形的题目时,我们可以使用以下的图形解析模板来进行问题分析和解答:- 给定图形的特点描述。

- 根据特点分析,确定所需解题的步骤和方法。

- 运用几何相关定理和公式,进行计算和推理。

- 最后给出答案及解答的过程。

3. 数据分析模板当遇到涉及数据分析的题目时,我们可以使用以下的数据分析模板来进行问题分析和解答:- 给定数据的描述和要求。

- 理清问题的思路和逻辑,确定解题的步骤。

- 运用统计学知识和相关公式,进行数据分析和计算。

- 最后给出答案及解答的过程。

三、总结高考数学答题万能模板可以提供一个结构化的解题方法和思路,帮助我们更有效地解答各种类型的数学题目。

在使用模板时,我们要根据实际题目的要求和题型,灵活运用模板的内容,以达到解题的目的。

希望这份高考数学答题万能模板能对您有所帮助!。

(完整版)最新2020年高考数学各大题型答题模板

(完整版)最新2020年高考数学各大题型答题模板

2020年高考数学各大题型答题模板数学是高中生学习的最重要科目之一,数学的学习对于学生而言至关重要,数学成绩的好坏直接决定着你的总成绩的排名。

以下是小编搜索整理的关于2020年高考数学各大题型的答题模板,供参考借鉴,希望对大家有所帮助!【选择题十大万能解题方法】1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

【填空题四大速解方法】直接法、特殊化法、数形结合法、等价转化法。

2020年高考数学(理)解答题核心题型与答题模板(专题05)

2020年高考数学(理)解答题核心题型与答题模板(专题05)

2020年高考数学(理)解答题核心题型与答题模板(专题05)专题05 解析几何核心考点一 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系是圆锥曲线中的重要问题,也是高考考查的热点,研究此类一般要用到方程思想,常 见类型为交点个数、切线、弦长、对称等问题.【经典示例】在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2p x (p >0)于点P ,M 关于 点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【答题模板】解决直线与圆锥曲线的位置关系的一般步骤第一步,联立方程,得关于x 或y 的一元二次方程;第二步,写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点);第三步,根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果;第四步,反思回顾,查看有无忽略特殊情况.【满分答案】(1)由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =p tx ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2. (2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2t p(y -t ). 代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.【解题技巧】1.将直线方程与圆锥曲线方程联立,消去一个变量得到关于x (或y )的一元方程:ax 2+bx +c =0(或ay 2+by +c = 0).若a ≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.2.判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根 的判别式来确定,需注意利用判别式的前提是二次项系数不为0.3.依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是 否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.4.设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k 2|x 2-x 1|=1+1k2|y 2-y 1|. 5.有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系 数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.6.处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知 量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且 A ,B 的中点在直线l 上的应用. 【模拟训练】1.已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.核心考点二 圆锥曲线中的定点、定值问题以直线与圆锥曲线为载体,结合其他条件探究直线或曲线过定点,或与动点有关的定值问题,一般常出现在解答题 第二问中,难度多为中等. 【经典示例】已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.【答题模板】证明直线过定点的步骤:第一步,设出直线方程为y kx b =+(或x my n =+);.第二步,证明b ks t =+ (或n ms t =+);.第三步,确定直线过点(),s t − (或(),t s −).【满分答案】(1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,∴a 2=3.∴椭圆的方程为x 23+y 2=1. (2)证明 由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2),设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1),∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1. 同理由PN →=λ2NQ →知λ2=m y 2-1. ∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①[来源学。

2020年高考数学答题模板

2020年高考数学答题模板

高考数学解答题常考公式及答题模板(文理通用)题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

高考数学答题模板

高考数学答题模板

高考数学答题模板
1. 解法一:代数法
解题步骤:
(1)分析题目,根据所给条件设定变量;
(2)建立方程或不等式,表示已知的条件和要求的关系;(3)求解方程或不等式,得到结果;
(4)结合题意判断答案是否合理;
(5)若需求解区间或范围,还需分析边界条件。

2. 解法二:几何法
解题步骤:
(1)绘制清晰准确的图形,标注已知条件和要求的关系;(2)根据已知条件和要求,运用几何定理推导、引理等,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

3. 解法三:综合法
解题步骤:
(1)综合分析题目条件,确定使用代数法或几何法或两者结合进行解答;
(2)根据分析的方法,进行相应的计算和推导;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

4. 解法四:特殊问题解法
解题步骤:
(1)针对特殊问题的特点,寻找相应的解题技巧;
(2)应用特殊问题解法,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

5. 解法五:分类讨论法
解题步骤:
(1)将题目所给条件进行分类讨论;
(2)对不同情况分别进行解答;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

注意:上述为解题模板的基本框架,具体情况下可根据题目的要求和条件进行适当的调整和变化。

2020年高考数学答题模板(最终版)

2020年高考数学答题模板(最终版)

高考数学解答题常考公式及答题模板(文理通用) 嬴本德题型一:解三角形1、正弦定理:R CcB bA a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R cB R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan =8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

2020年高考数学答题步骤模板

2020年高考数学答题步骤模板

6、诱导公式:奇变偶不变,符号看象限
sin( A B) sin C
cos( A B) cos C
利用以上关系和诱导公式可得公式: sin( A C) sin B 和 cos( A C) cos B
sin(B C) sin A
cos(B C) cos A
奇: 的奇数倍 2
高考数学解答题常考公式及答题模板
(文理通用)
题型一:解三角形
1、正弦定理: a b c 2R ( R 是 ABC 外接圆的半径) sin A sin B sin C
a 2R sin A 变式①: b 2R sin B
c 2R sin C
sin
A
a 2R
变式②:
sin
B
b 2R
sin C
Sn
a1 2, a2 a4 8
an a1 (n 1)d
a2 a4 (a1 d ) (a1 3d ) 2a1 4d 8
a1 2d 4 d 1
an a1 (n 1)d n 1
a3 am
a1 3d 4 a1 (m 1)d
m
1
a1, a3 , am
9、基本不等式:① ab a b (a,b R ) 2
② ab a b 2 (a,b R ) 2
③ ab a2 b2 (a, b R) 2
注意:基本不等式一般在求取值范围或最值问题中用到,比如求 ABC 面积的最大值时。
说明:颜色加深的是重点记忆的公式哦!
第 1 页 共 33 页
②若已知
an 1 an
q 和 a1
a ,则用等比数列通项公式 an
a1q n1
(2) an 与 Sn 的关系: an
S1 Sn

高考数学答题卡模板

高考数学答题卡模板

高考数学答题卡模板一、选择题【题型特点】本题型共10小题,每小题4分,共40分。

每小题有4个答案,选出所有正确答案。

【解题技巧】认真审题,挖掘题目中的信息,选择与题目信息表述一致的选项,注意选择题的特殊性,选择题只有一个正确答案。

【题型示例】设变量x,y满足约束条件:x≥0,y≥0,则z=x+y 的最小值为A.-2B.-4C.-5D.-6答案:D二、填空题【题型特点】本题型共6小题,每小题5分,共30分。

解题过程不需要书写解题步骤,只需要写出结果。

【解题技巧】根据题意,列出解析式或化简式子,将问题转化为具体形式,寻找合适的运算方法。

特别注意某些题型的特殊要求和注意事项。

【题型示例】函数$y=x^{2}-4x$在区间D上的最大值为_______.答案:$4$三、解答题【题型特点】本题型共7个小题,共90分。

需要写出过程的题目,要注意解题步骤的完整性和规范性。

注意答题的条理性。

【解题技巧】针对具体问题,结合数学知识点进行思考和分析,逐步解决具体问题。

对于一些较难的问题,可以采用特殊值代入法、数形结合等方法进行解决。

【题型示例】设函数$f(x)=x^{3}-3x^{2}+1$在点$x=x_{0}$处有极大值,求$f(x)$的极值。

答案:【分析】首先根据导数求解极大值点,再求极值即可。

解题过程:因为$f\mspace{2mu}^{\prime}(x)=3x^{2}-6x$,由$f\mspace{2mu}^{\prime}(x)=3x^{2}-6x=0$得$x=0$或$x=2$,又因为函数在$(-\infty,0)$上单调递增,在$(0,2)$上单调递减,在$(2,+\infty)$上单调递增;又因为函数在点$x=x_{0}$处有极大值,所以$f(x_{0})=f(2)=3$,所以极大值点为$x=2$,极小值为$f(2)=3$.极大值$f(2)=3$,极小值$f(2)=3$.所以极值点为$x=2$,极小值为$f(2)=3$,极大值为$f(x)$的极小值为$3$.四、注意事项1.对于选择题和填空题,要注意挖掘题目中的信息,选择与题目信息表述一致的选项;对于解答题,要注意解题步骤的规范性和完整性。

高考数学各题型答题模板

高考数学各题型答题模板

高考数学各题型答题模板高考数学考试时间有限,要把握正确的答题技巧,才能争取在最短的事件内得到高分,下面就是我给大家带来的高考数学各题型答题模板,希望大家宠爱!高考数学各题型答题模板选择填空题1、易错点归纳:九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础学问点记忆,避开因为学问点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集状况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2、答题〔方法〕:选择题十大速解方法:(十大解题技巧你会了没)排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④〔反思〕:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

高考数学答题模板12个

高考数学答题模板12个

高考数学答题模板12个高考数学答题模板12个选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

高考数学解题技巧万能答题模板

高考数学解题技巧万能答题模板

高考数学解题技巧万能答题模板三角变换与三角函数的性质问题答题模板①化简:三角函数式的化简,一般化成y=Asin(&omega;x+φ)+h 的形式,即化为一角、一次、一函数的形式。

②整体代换:将&omega;x+φ看作一个整体,利用y=sinx,y=cosx 的性质确定条件。

③求解:利用&omega;x+φ的范围求条件解得函数y=Asin(&omega;x+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

二、高考数学答题技巧解三角形问题答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

三、高考数学答题技巧数列的通项、求和问题答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

四、高考数学答题技巧利用空间向量求角问题答题模板①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

五、高考数学答题技巧圆锥曲线中的范围问题答题模板①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

2020年高考数学(理)解答题核心题型与答题模板(专题04)

2020年高考数学(理)解答题核心题型与答题模板(专题04)

2020年高考数学(理)解答题核心题型与答题模板(专题04)专题04 立体几何核心考点一平行关系的证明平行关系包括直线与直线平行、直线与平面平行及平面与平面平行,平行关系的证明一般作为解答题的第一问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.【答题模板】证明BE∥平面DMF的步骤第一步,在平面DMF内找出一条直线MO与BE平行;第二步,指出BE⊄平面DMF,MO⊂平面DMF;第三步,由线面平行的判断定理得BE∥平面DMF.【满分答案】证明(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.【解题技巧】1.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).2. 证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.3.平行关系之间的转化在证明线面、面面平行时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向是由题目的具体条件而定的,不可过于“模式化”【模拟训练】1.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值.核心考点二 垂直关系的证明平行关系包括直线与直线垂直、直线与平面垂直及平面与平面垂直,垂直关系的证明一般作为解答题的第一 问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,在四棱锥P ­ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【答题模板】证明PD⊥平面ABE(线面垂直)的步骤:第一步,证明AE⊥PD,AB⊥PD(在平面ABE内找出两条直线与AD垂直);.第二步,指出AB∩AE=A (两直线相交);.第三步,利用线面垂直的判定定理确定PD⊥平面ABE.【满分答案】(1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵AC⊥CD,P A∩AC=A,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)P A=PB=PC,∠ABC=60°,可得AC=P A∵E是PC的中点,∴AE⊥PC由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,∴P A⊥AB.又∵AB⊥AD且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.【解题技巧】1.证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.2. 判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.3. 垂直关系之间的转化在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线在图中不存在,则可通过作辅助线来解决.【模拟训练】2.如图,在直三棱柱ABC­A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,AC1⊥A1B1.1求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.核心考点三利用空间向量证明平行与垂直立体几何中的线面位置关系的证明,也可利用向量,用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.【经典示例】如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.【答题模板】用向量证明平行或垂直的步骤第一步, 恰当建立空间直角坐标系,准确表示各点与相关向量的坐标;.第二步,把平行与垂直问题转化为直线方向向量或平面法向量之间的数量关系;第三步,通过计算得出结论;第四步,还原结论.【满分答案】(1)如图,取AD的中点O,连接OP,OF.∵PA=PD ,∴PO ⊥AD∵侧面PAD ⊥底面ABCD ,平面PAD∩平面ABCD=AD所以PO ⊥平面ABCD又∵OF 分别为AD ,BD 的中点,所以OF ∥AB ,又ABCD 是正方形,所以OF ⊥AD∵,PA PD = ∴PA ⊥AD ,2a OP OA == 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a 2,a,0). 因为E 为PC 的中点,所以E (-a 4,a 2,a 4). 易知平面P AD 的一个法向量为OF →=(0,a 2,0), 因为EF →=(a 4,0,-a 4), 且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0, 所以EF ∥平面P AD .(2)因为P A →=(a 2,0,-a 2),CD →=(0,-a,0), 所以P A →·CD →=(a 2,0,-a 2)·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .[来源学科网]【解题技巧】1.证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面 内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.2.证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.3. 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.【模拟训练】3.如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E 为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.核心考点四利用空间向量求空间角利用空间向量求空间角是全国卷高考必考内容。

高考数学答题模板12个

高考数学答题模板12个

高考数学答题模板12个1500字高考数学答题模板12个1. 解方程模板:首先列出方程:a(x - m)^2 + n = b然后展开方程:ax^2 - 2amx + am^2 + n = b移项并化简:ax^2 - 2amx + am^2 + n - b = 0将方程视为一元二次方程,使用求根公式:x = (2am ±√(4a(b-n) + 4a^2m^2))/ (2a)化简并整理得最终答案。

2. 圆的相关模板:圆的标准方程:(x - a)^2 + (y - b)^2 = r^2其中,圆心为 (a, b),半径为 r。

根据题目给出的条件,代入方程中求解。

3. 三角形的模板:勾股定理:a^2 + b^2 = c^2 (三角形中,a、b 为直角边,c 为斜边)根据给出的条件,利用勾股定理求解。

4. 几何图形的模板:首先画出几何图形,标出已知的条件和需要求解的量。

根据已知条件,利用几何定理、相似性原理等,搭建等式或者比例关系,并解方程求解。

5. 求导模板:根据给出的函数关系,利用求导公式对函数进行求导。

注意计算过程的细节,利用链式法则、乘积法则等进行计算。

最后化简求解得结果。

6. 极限求解模板:对于一般的函数极限求解,可以利用函数极限的性质进行求解。

根据题目的要求,利用夹逼准则、洛必达法则等方法求解极限。

7. 统计问题模板:根据题目的要求计算平均数、方差、标准差等统计量。

注意计算过程的细节,并进行适当的整理和化简。

8. 概率问题模板:根据已知的概率模型和条件,利用概率公式计算概率。

注意计算过程的细节,并进行适当的整理和化简。

9. 计算题模板:根据题目给出的计算式和条件,一步一步进行计算。

注意计算的细节,进行适当的化简和整理。

10. 综合题模板:综合题一般包含多个题目要求,根据每个小题的要求进行分析和求解。

先分析每个小题的要求,并给出解题思路。

然后分别解答每个小题,并按照题目要求进行整理和化简。

高考数学答题模板

高考数学答题模板

加速做数学选择题的七项策略一、特殊法是“小题小作”的重要策略,辩证法认为矛盾的特殊性是矛盾的一般性的突出表现,是矛盾的一般性的集中反映。

特殊法就是利用数学问题中的普遍与特殊的关系来简化解题过程的一种方法,只能用选择题和填空题的解答.一般有特殊函数法,特殊数列法,特殊值法,特殊图形法. (一)特殊数列法1. 如果等比数列{a n }的首项是正数,公比大于1,则数列}log {31n a ⎪⎭⎫ ⎝⎛是( )A.是递增等比数列B.是递减等比数列C.是递增等差数列D.是递减的等差数列. 2.一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .363.已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有 ( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a = (二)特殊函数法4.已知定义域是实数集R 上的函数y=f(x)不恒为0,同时满足f(x+y)=f(x)f(y),且当x>0时,f(x)>1,那么当x<0时,一定有_____. A.f(x)<-1 B. -1<f(x)<0 C . f(x)>1 D. 0<f(x)<15.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-56.定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。

其中正确的不等式序号是( ) A .①②④B .①④C .②④D .①③(三)特殊数值法7.双曲线b 2x 2-a 2y 2=a 2b 2(a>b>0)的渐近线夹角为α,离心率为e ,则2cos α等于( ) A .e B.e 2 C.1eD.21e0,1,a b a b <<+=8.设()则下列不等式中正确的是()2A b ab <<22()2B ab b a b <<+<22()2C ab a b b <+<<22()2D ab a b b <+<49.0||().sin 2sin .cos2cos .tan 2tan .cot 2cot A B C D πααααααααα<<><><若则10.若sin α>tan α>cot α(24παπ<<-),则α∈( )A .(2π-,4π-) B .(4π-,0) C .(0,4π) D .(4π,2π) 2020高考数学答案模板(四)特殊形状法11. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。

2020年高考数学答题模板

2020年高考数学答题模板

高考数学解答题常考公式及答题模板(文理通用)题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABCsin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan =8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

高考数学套用18个规范答题模板-2020版

高考数学套用18个规范答题模板-2020版

模板一求函数值例1【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】▲模板构建已知函数解析式求函数值,常伴随对函数的单调性、奇偶性、周期性和对称性的考查,其解题思路如下:【变式训练】【2018年江苏卷】函数满足,且在区间上,则的值为________.模板二函数的图象例2【2018年理数全国卷II】函数的图像大致为A. AB. BC. CD. D【答案】B【解析】为奇函数,舍去A,舍去D;,所以舍去C;因此选B.▲模板构建有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.结合导数解答此类问题的基本要点如下:【变式训练】【2018年全国卷Ⅲ文】函数的图像大致为模板三 函数的零点问题例3 【2018届北京市十一学校3月零模】已知函数()131,2xf x x ⎛⎫=- ⎪⎝⎭那么在下列区间中含有函数()f x 零点的是( ) A. 10,3⎛⎫ ⎪⎝⎭ B. 11,32⎛⎫ ⎪⎝⎭ C. 12,23⎛⎫ ⎪⎝⎭ D. 2,13⎛⎫⎪⎝⎭【答案】B▲模板构建 利用零点存在性定理可以根据函数y=f(x)在某个区间端点处函数值的符号来确定零点所在区间.这种方法适用于不需要确定零点的具体值,只需确定其大致范围的问题.基本的解题要点为:【变式训练】【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 模板四 三角函数的性质例4【2018届福建省漳州市5月测试】已知函数(,),满足,且对任意,都有.当取最小值时,函数的单调递减区间为( )A. ,ZB. ,Z C. ,Z D.,Z【答案】A 【解析】那么,函数,当时,取得最小值,,,即函数,令,得,所以,函数的单调递减区间为: ,,故选A.▲模板构建 在利用三角函数的性质求最值或值域时,要注意:(1)先确定函数的定义域;(2)将已知函数化简为y=Asin(ωx+φ)+k 的形式时,尽量化成A>0,ω>0的情况;(3)将ωx+φ视为一个整体.解题思路为:【变式训练】【2018辽宁省凌源市模拟】已知函数()2cos 3sin sin 2f x x x x π⎛⎫=-+⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值与最大值之和为__________. 模板五 三角函数的图象变换例5.将函数()2sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩小为原来的12,再向右平移φ(φ>0)个单位后得到的图象关于直线2x π=对称,则φ的最小值是( )A. 4πB. 3πC. 34πD. 38π【答案】D▲模板构建 三角函数图象变换的主要类型:在x 轴方向上的左、右平移变换,在y 轴方向上的上、下平移变换,在x 轴或y 轴方向上的伸缩变换.其基本步骤如下:【变式训练】【2018湖南省长郡中学模拟】为了得到函数2sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需把函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象( )A. 向左平移2π个单位长度 B. 向右平移2π个单位长度C. 向左平移4π个单位长度D. 向右平移4π个单位长度模板六 解三角形例6【2018年理数全国卷II 】在中,,,,则A.B.C.D.【答案】A▲模板构建 利用正弦定理、余弦定理都可以进行三角形的边、角之间的互化,当已知三角形的两边及一边的对角,或已知两角及一角的对边时,可以利用正弦定理求解三角形中的有关量;如果已知三边或两边及其夹角,则可利用余弦定理进行求解.其基本思路如下:【变式训练】【2018河南省南阳市第一中学模拟】在ABC ∆中,内角,,A B C 所对的边分别为(),,,sin cos cos 3cos a b c B a B b A c B +=.(1)求B ;(2)若3,b ABC =∆的面积为3ABC ∆的周长. 模板七 利用函数性质解不等式例7已知定义在R 上的偶函数()f x 在[)0,+∞上递减且()10f =,则不等式()414log log 0f x f x ⎛⎫+≥ ⎪⎝⎭的解集为__________. 【答案】1,44⎡⎤⎢⎥⎣⎦▲模板构建 函数性质法主要适用于解决抽象函数对应的不等式问题.其解题要点如下:【变式训练】【2018届广东省模拟(二)】已知函数,当时,关于的不等式的解集为__________.模板八 利用基本不等式求最值 例8.【2018广西钦州质量检测】已知(,为正实数),则的最小值为__________. 【答案】【解析】∵a ,b ∈R+,a+4b=1 ∴=≥,当且仅当,即a=2b 时上述等号成立,故答案为:9▲模板构建 拼凑法就是将函数解析式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求最值.应用此法求最值的基本思路如下:【变式训练】已知,x y +∈R ,且满足22x y xy +=,那么34x y +的最小值为____.模板九 不等式恒成立问题例9【2018年天津卷文】已知a∈R,函数若对任意x∈[–3,+),f(x)≤恒成立,则a 的取值范围是__________. 【答案】[,2] 【解析】▲模板构建 分离参数法是求解不等式恒成立问题的常用方法,其解题要点如下:【变式训练】【2018河南省中原名校联考】已知函数()()1ln ,0mf x x m x m x=-+->,当[]1,x e ∈时, ()0f x >恒成立,则实数m 的取值范围为( )A. 10,2⎛⎫ ⎪⎝⎭B. ()1,+∞C. ()0,1D. 1,2⎛⎫+∞ ⎪⎝⎭模板十 简单的线性规划问题 例10【2018年理北京卷】若x ,y 满足,则2y−x 的最小值是_________.【答案】3 【解析】 不等式可转化为,即, 满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.▲模板构建线性规划问题是指在线性约束条件下求解线性目标函数的最值问题,解决此类问题最基本的方法是数形结合法.其基本的解题步骤如下:【变式训练】【河南省2018年高考一模】设不等式组表示的平面区域为D,若圆C:不经过区域D上的点,则r的取值范围为A. B.C. D.模板十一数列的通项与求和例11【2018年专家猜题卷】数列的前项和为,已知,. (Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前项和.【答案】(1)见解析;(2).【解析】(1)证明:∵,∴,∴,又,∴,∴数列是以1为首项,2为公比的等比数列.(2)由(1)知,,∴,∴,①. ②①-②得,∴.▲模板构建数列的通项与求和问题的解题步骤如下:【变式训练】【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.模板十二 空间中的平行与垂直 例12【2018年江苏卷】在平行六面体中,.求证:(1); (2).【答案】见解析 【解析】证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB 平面A 1B 1C ,A 1B 1平面A 1B 1C , 所以AB ∥平面A 1B 1C .▲模板构建 证明空间中的平行与垂直的步骤如下:【变式训练】【2018南京市、盐城市一模】如图所示,在直三棱柱111ABC A B C -中, CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证: BN ∥平面1A MC ; (2)若11A M AB ⊥,求证: 11AB A C ⊥.模板十三 求空间角例13【2018吉林省实验中学模拟】如图, AB 为圆O 的直径,点E , F 在圆O 上, //AB EF ,矩形ABCD 和圆O 所在的平面互相垂直,已知2AB =, 1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ;(Ⅱ)当AD 的长为何值时,二面角D FE B --的大小为60︒.(Ⅱ)设EF 中点为G ,以O 为坐标原点, OA OG AD 、、方向分别为x 轴、y 轴、z 轴方向建立空间直角坐标系(如图).设(0)AD t t =>,则点D 的坐标为()1,0,t ,则()1,0,C t -,又()()131,0,0,1,0,0,,,022A B F ⎛⎫- ⎪ ⎪⎝⎭,∴,因此,当AD 的长为64时,平面DFC 与平面FCB 所成的锐二面角的大小为60°. ▲模板构建 空间角的求解可以用向量法.向量法是通过建立空间直角坐标系把空间图形的几何特征代数化,避免寻找角和垂线段等诸多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化,具体步骤如下:【变式训练】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==, 1160A AB A AD ∠=∠=︒.(1)求证: 1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为714. 模板十四 直线与圆的位置关系例14【2018四川省绵阳市南山中学模拟】若圆2244100x y x y ++--=上至少有三个不同的点到直线:0l ax by +=的距离为22,则直线l 的斜率的取值范围是( ) A. 23,23⎡⎤-+⎣⎦ B. 23,32⎡⎤---⎣⎦C. 23,23⎡⎤--+⎣⎦D. 23,23⎡⎤---⎣⎦【答案】B【解析】圆2244100x y x y ++--=可化为()()222218x y ++-= 则圆心为(-2,2),半径为32,1+240b b a a ⎛⎫⎛⎫-⨯≤ ⎪ ⎪⎝⎭⎝⎭由直线l 的斜率k=-a b 则上式可化为k 2+4k+1≤0解得2323k --≤≤-+故选B▲模板构建 几何法是通过比较圆心到直线的距离与圆的半径的大小来确定直线和圆的位置关系的方法,其基本步骤如下:【变式训练】【2018北京市丰台区模拟】已知直线210x y --=和圆()2211x y -+=交于,A B 两点,则AB =__________.模板十五 圆锥曲线中的最值与范围问题例15【2018辽宁省凌源模拟】知椭圆()2222:10x y C a b a b +=>>的离心率为32,且过点33,2⎛⎫- ⎪ ⎪⎝⎭.过椭圆C 右焦点且不与x 轴重合的直线l 与椭圆C 交于()()1122,,,P x y Q x y 两点,且120y y +≠. (1)求椭圆C 的方程;(2)若点1Q 与点Q 关于x 轴对称,且直线1Q P 与x 轴交于点R ,求RPQ ∆面积的最大值.【解析】(I )依题意, 22222393{1, 4,c a a ba b c =+==+解得3,3,3a b c ===,故椭圆C 的方程为221123x y +=; (2)依题意,椭圆右焦点F 坐标为()3,0,设直线():30l x my m =+≠,直线l 与椭圆C 方程联立223,{ 1,123x my x y =++= 化简并整理得()224630m y my ++-=, ∴12122263,44m y y y y m m +=-=-++, 由题设知直线1Q P 的方程为()121112y y y y x x x x +-=--,令0y =得()()()11212211221112121233y x x my y my y x y x y x x y y y y y y -++++=-==+++ 22643464m m m m -+=+=-+,∴点(当且仅当22911m m +=+即2m =±时等号成立) ∴RPQ ∆的面积存在最大值,最大值为1.▲模板构建 与圆锥曲线有关的最值问题的变化因素多,解题时需要在变化的过程中掌握运动规律,抓住主变元,目标函数法是避免此类问题出错的法宝,应注意目标函数式中自变量的限制条件(如直线与椭圆相交,Δ>0等).解题步骤如下:【变式训练】【2018·合肥市质检】已知点F 为椭圆E : 22221x y a b+= (a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线142x y+=与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程; (2)设直线142x y+=与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|P A |·|PB |,求实数λ的取值范围.模板十六 圆锥曲线中的探索性问题例16【2018届河南省师范大学附属中学高三8月开学】已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由. 【答案】(1)(2)【解析】(1)由△OMF 是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l 交椭圆于P,Q 两点,且使F 为△PQM 的垂心 设P (,),Q (,) 因为M (0,1),F (1,0),故,故直线l 的斜率于是设直线l 的方程为由得由题意知△>0,即<3,且 由题意应有,又故解得或经检验,当时,△PQM 不存在,故舍去;当时,所求直线满足题意综上,存在直线l ,且直线l 的方程为▲模板构建 圆锥曲线中的探索性问题在高考中多以解答题的形式呈现,常用假设存在法求解,其解题要点如下:【变式训练】【2018届广西柳州市高三上学期摸底】已知过抛物线()2:20C y px p =>的焦点F ,斜率为2的直线交抛物线于()()()112212,,,A x y B x y x x <两点,且6AB =.(1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且MD ME ⊥,判断直线DE 是否过定点?并说明理由. 模板十七 离散型随机变量例17【2018辽宁省凌源市模拟】共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;(2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为X ,求X 的分布列与数学期望.▲模板构建公式法就是直接利用古典概型、互斥事件、对立事件、相互独立事件以及独立重复试验、条件概率等的求解方法或计算公式求解离散型随机变量的概率的方法.其基本步骤如下:【变式训练】某城市随机抽取一年(365天)内100天的空气质量指数API(Air Pollution Index)的监测数据,结果统计如下:API[0,50](50,100](100,150](150,200](200,250](250,300]大于300中度重空气质量优良轻微污染轻度污染中度污染重度污染污染天数101520307612列联表,并判断(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面22能否有95%的把握认为该市本年空气重度污染与供暖有关?非重度污染 重度污染 合计 供暖季 非供暖季 合计10020P(K )k ≥ 0.250.15 0.10 0.05 0.025 0.010 0.005 0.0010k1.3232.072 2.7063.841 5.024 6.635 7.879 10.828附: ()()()()()22K n ad bc a b c d a c b d -=++++(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当API 在区间[]0,100时企业正常生产;当API 在区间(]100,200时对企业限产30%(即关闭30%的产能),当API 在区间(]200,300时对企业限产50%,当API 在300以上时对企业限产80%,企业甲是被管控的企业之一,若企业甲正常生产一天可得利润2万元,若以频率当概率,不考虑其他因素:①在这一年中随意抽取5天,求5天中企业被限产达到或超过50%的恰为2天的概率; ②求企业甲这一年因限产减少的利润的期望值.模板十八 线性回归方程例18【2018年理数全国卷II 】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.▲模板构建线性回归方程常用来预估某变量的值,因此选择恰当的拟合函数是解题的关键,一般解题要点如下:(1)作图.依据样本数据画出散点图,确定两个变量具有线性相关关系.(2)计算.计算出,,,xiyi的值;计算回归系数,.(3)求方程.写出线性回归直线方程y=x+.【变式训练】【2018湖南省长沙市第一中学模拟】2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区.消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点. (1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:调查人数(x) 10 20 30 40 50 60 70 80愿意整体搬迁人数(y)8 17 25 31 39 47 55 66请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归方程y bx a=+(b保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记X为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求X的分布列及数学期望.参考公式及数据:882122111,ˆˆ,16310,20400·ni iii i ini iiix y n x yb a y b x x y xx n x====-⋅⋅==-⋅==-∑∑∑∑.答案部分模板一求函数值【变式训练】【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此模板二函数的图象【变式训练】【答案】D【解析】当时,,排除A,B.,当时,,排除C故正确答案选D.模板三函数的零点问题【变式训练】【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,模板四三角函数的性质【变式训练】【答案】1 2模板五三角函数的图象变换【变式训练】【答案】C【解析】故选C模板六解三角形【变式训练】【解析】(1)由题意及正弦定理得()+=,B A B B AC B sin sin cos sin cos3sin cos()∴+==,B A B BC C B sin sin sin sin3sin cos ()∈,0,Cπ∴>,Csin0∴=,B Bsin3cosB=∴tan3∴2220a c +=,∴()222236a c a c ac +=++=,6a c ∴+=,又23b =,ABC ∴∆的周长为623+.模板七 利用函数性质解不等式 【变式训练】【答案】【解析】 当时,是上的增函数,且,所以可以转化为,结合函数的单调性,可以将不等式转化为,解得,从而得答案为.模板八 利用基本不等式求最值 【变式训练】【答案】526+ 【解析】由22x y xy +=,得1112x y+=. ∴()1134342x y x y x y ⎛⎫+=++ ⎪⎝⎭=4355262y x x y ++≥+.当且仅当432y xx y =且22x y xy +=时等号成立.∴34x y +的最小值为526+模板九 不等式恒成立问题 【变式训练】【答案】C【解析】记函数()f x 在[]1,e 上的最小值为()g m : ()()1ln mf x x m x x=-+-的定义域为()0,+∞. ()211m mf x x x++'=-. 令()0f x '=,得m x =或1x =.①0m 1<≤时,对任意的1x e <<,()0f x '>, ()f x 在[]1,e 上单调递增, ()f x 的最小值为()11m f =-②当1m e <<时,()f x 的最小值为()()m m 1m 1lnm f =--+;故实数m 的取值范围为()0,1. 故选C.模板十 简单的线性规划问题 【变式训练】【答案】A 【解析】作出不等式组表示的平面区域, 得到如图的及其内部,其中,,圆:表示以为圆心,半径为的圆,由图可得,当半径满足或时,圆不经过区域上的点,,当或时,圆不经过区域上的点,故选模板十一 数列的通项与求和 【变式训练】【答案】(Ⅰ),;(Ⅱ)(i ).(ii )证明见解析.【解析】(I )设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d ,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II )(i )由(I ),有,故.(ii )因为,所以.模板十二 空间中的平行与垂直 【变式训练】【答案】见解析【解析】证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =, 又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .则由侧面11ABB A ⊥底面ABC ,侧面11ABB A ⋂底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A .又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. 又11AB A M ⊥, 1,A M MC ⊂平面1A MC ,且1A M MC M ⋂=,所以1AB ⊥平面1A MC .又1AC ⊂平面1A MC ,所以11AB A C ⊥. 模板十三 求空间角【变式训练】【解析】(1)连接1A B , 1A D , AC , 因为1AB AA AD ==, 1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO AC O ⋂=,所以BD ⊥平面1A AC .所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点, OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则()1,0,0A , ()0,1,0B , ()0,1,0D -, ()10,0,1A , ()1,0,0C -, ()0,2,0DB =, ()111,0,1BB AA ==-, ()111,1,0D C DC ==-,由()111,0,1DD AA ==-,易求得()11,1,1D --. 设111D E DC λ=([]0,1λ∈), 则()()1,1,11,1,0E E E x y z λ++-=-,即()1,1,1E λλ---, 所以()1,,1DE λλ=--.模板十四 直线与圆的位置关系【变式训练】【答案】2模板十五 圆锥曲线中的最值与范围问题【变式训练】【解析】 (1)由题意,得a =2c ,b =3c ,则椭圆E 为2222143x y c c+=.∵直线142x y+=与y 轴交于P (0,2), ∴|PM |2=54,当直线l 与x 轴垂直时,|P A |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|P A |·|PB |⇒λ=45, 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由222{ 34120y kx x y =++-=⇒(3+4k 2)x 2+16kx +4=0, 依题意得,x 1x 2=2434k+,且Δ=48(4k 2-1)>0,∴|P A |·|PB |=(1+k 2)x 1x 2=(1+k 2)·2434k +=1+2134k +=54λ, ∴λ=45 (1+2134k +), ∵k 2>14,∴45<λ<1.综上所述,λ的取值范围是[45,1). 模板十六 圆锥曲线中的探索性问题【变式训练】【答案】(1)24y x =(2)()8,4-【解析】(1)拋物线的焦点,02p F ⎛⎫⎪⎝⎭ ,∴直线AB 的方程为: 2p y x ⎫=-⎪⎭.联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4p x x p x x +==.∴6AB ===解得2p =.∴抛物线C 的方程为: 24y x =.(2)由(1)可得点()4,4M ,可得直线DE 的斜率不为0, 设直线DE 的方程为: x my t =+, 联立2{4x my ty x=+=,得2440y my t --=, 则216160m t ∆=+>①.设()()1122,,,D x y E x y ,则12124,4y y m y y t +==-. ∵()()11224,44,4MD ME x y x y ⋅=--⋅--()()12121212416416x x x x y y y y =-+++-++()2222121212124164164444y y y y y y y y ⎛⎫=⋅-+++-++ ⎪⎝⎭ ()()()2212121212343216y y y y y y y y =-++-++22161232160t m t m =--+-=即2212321616t t m m -+=+,得: ()()226421t m -=+, ∴()6221t m -=±+,即48t m =+或44t m =-+, 代人①式检验均满足0∆>,∴直线DE 的方程为: ()4848x my m m y =++=++或()44x m y =-+. ∴直线过定点()8,4-(定点()4,4不满足题意,故舍去). 模板十七 离散型随机变量 【变式训练】【解析】(Ⅰ)根据以上数据得到如下列联表: 非重度污染 重度污染 合计 供暖季 23 7 30 非供暖季 65 5 70 合计 8812100()22100657235 5.213 3.84188127030K ⨯⨯-⨯=≈>⨯⨯⨯,②企业甲这一年的利润的期望值为25750365(2210010100⨯⨯+⨯⨯ 11311222)502.9721005100+⨯⨯+⨯⨯=万元,故企业甲这一年因限产减少的利润的期望值是3652502.97227.03⨯-=万元. 模板十八 线性回归方程 【变式训练】【解析】(1)由已知有 1221163108453645,36,0.820400845ˆ54ni i i n i i x y n x y x y b x n x==-⋅⋅-⨯⨯====≈-⨯⨯-⋅∑∑, 360.80450a =-⨯=,故变量 y 关于变量 x 的线性回归方程为0.8y x =,所以当 2500x =时,25000.802000y =⨯=.(2)由题意可知X 的可能取值有1,2,3,4.()()132253534488131,2147C C C C P X P X C C ⋅⋅======,()()2145354488313,4714C C C P X P X C C ⋅======. 所以 X 的分布列为()1331512341477142E X =⨯+⨯+⨯+⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学各大题型答题模板
数学是高中生学习的最重要科目之一,数学的学习对于学生而言至关重要,数学
成绩的好坏直接决定着你的总成绩的排名。

以下是小编搜索整理的关于2020年高考
数学各大题型的答题模板,供参考借鉴,希望对大家有所帮助!
【选择题十大万能解题方法】
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特
殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪
存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何
上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解
决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误
的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者
有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直
观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚
至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得
出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条
件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断
的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运
算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的
方法。

【填空题四大速解方法】
直接法、特殊化法、数形结合法、等价转化法。

【解答题答题模板】
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。

2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、
一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的
方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全
部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

专题五、圆锥曲线中的范围问题
点击查看:高中数学知识点总结及复习资料
1、解题路线图
①设方程。

②解系数。

③得结论。

2、构建答题模板
①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板
①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。

定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板
①求导数:求f(x)的导数f′(x)。

(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

2020年高考数学各大题型答题模板相关文章:
1.2020高考数学的12个答题模板!
2.2020届高三数学解答题8个答题模板
3.2020年高考数学应试技巧
4.2020高三数学知识点总结与答题套路
5.2020年高考数学备考策略有哪些
6.2020高考数学的12种解题思路!
7.2020高考数学答题技巧
8.2020高考数学压轴题常用解题形式和解题策略分享
9.2020高考数学176个知识点题型归纳,高考数学如何达到及格
10.2020高考数学快速解题方法。

相关文档
最新文档