§3—5排水管道系统的水力计算

合集下载

(整理)第三章给水排水管道系统水力计算基础

(整理)第三章给水排水管道系统水力计算基础

第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。

判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。

对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。

二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。

水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。

从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。

四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。

从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。

对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。

均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。

给水排水管道系统设计与计算

给水排水管道系统设计与计算
(1) 设计充满度 污水管道规定非满流的原因:
① 污水流量时刻在变化,很难精确计算,而且雨水或地 下水可能渗入污水管道,因此有必要保留一部分空间;
② 污水管道内沉积的污泥由于厌氧作用会产生一些有害 气体如甲烷、硫化氢等;另外,污水中含有汽油、石 油等易燃液体时,容易产生爆炸性气体,所以要留有 一定空间通风;
2、给水系统各组成部分的设计流量
明确几个概念: (1) 最高日用水量
在设计年限内,用水最多一天的水量称为最高日用水量。
(2) 最高时用水量 一天内用水最多的一小时的水量称为最高时用水量。 (3) 平均时用水量 一天内平均一小时用水量称为平均时用水量。
2、给水系统各组成部分的设计流量
取 水 构 筑 物 一 级 泵 站 清 水 池 二 级 泵 站
2、污水管道系统的设计流量
(3) 设计管段的流量确定
每一设计管段的污水设计流量包括三种流量:
本段流量——从本段沿线街坊流来的污水量。
① 通常假定本段流量是在起点检查井集中进入设计 管段的。
② 本段流量等于本段服务面积上的全部污水量。
2、污水管道系统的设计流量
转输流量——从上游管段和旁侧管段流来的污水 量。 集中流量——从工业企业或其他大型公共设施溜 来的污水量。
绿地 居住区
4
756 居住区
5
756 居住区
6
820 756 1 工厂
820 756 2 绿地
820
3
(1)干管的比流量
L 0.5 756 3 756 820 3 4350m
qs
284.7 189.2 0.0219L / sm 4350
(2)1-2和1-4管段的沿线流量

给水排水管道系统水力计算

给水排水管道系统水力计算

e ( mm )
平均 0.003 0.03 0.06 0.15 0.3 0.6 3 15 150
( 4 )巴甫洛夫斯基公式 巴甫洛夫斯基公式适用于明渠流和非满流管道的计算,公式为:
C
R
y
nb 0.10
3-3 。
( 3-11 )
式中: y
2.5 nb
0.13 0.75 R
nb
nb — 巴甫洛夫斯基公式粗糙系数,见表
2
A 和水力半径 R 的值 (表中 d 以 m 计) 充满度 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 过水断面积 A ( m 2) 0.4426 d 0.4920 d 0.5404 d 0.5872 d 0.6319 d 0.6736 d 0.7115 d 0.7445 d 0.7707 d 0.7845 d
图 3-1 无压圆管均匀流的过水 断面
3-1 所示。设其 , 称为充满度,
h d
sin
2
4
所对应的圆心角 素之间的关系为:
称为充满角。由几何关系可得各水力要
过水断面面积:
A
湿周:
d
2
8
sin
( 3-16 )
d 2
水力半径:
( 3-17 )
R
所以
d 4
1
sin
( 3-18 )
2
v
2
1 d n 4 sin
将( 3-11 )式代入( 3-2 )式得:
hf
nb v R
2
2
2y 1
l
( 3-12 )
常用管渠材料粗糙系数
nb 值
管渠材料

雨水排水系统的水力计算

雨水排水系统的水力计算

前进
返回本章总目录
6.3 雨水排水系统的水力计算
返回本书总目录
5.径流系数
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
1.雨水斗泄流量
重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗
的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢
流堰公式计算:
6.3 雨水排水系统的水力计算
6.3.3 设计计算步骤
返回本书总目录
2.天沟外排水 天沟布置 即确定天沟的分水线及每条天沟的汇水面积;按照屋面的
构造一般应在伸缩缝或沉降缝作为天沟分水线,单坡的排泄长 度不宜大于 50m。天沟较长时,坡度不能太大,但最小坡度不 得小于0.003。
确定天沟断面 天沟形状:矩形、梯形、半圆形、三角形等。 天沟尺寸:根据排水量、天沟汇水面积计算,根据每一条天沟
管径 I
0.02 0.03 0.04 0.05 0.06 0.07
75mm
3.07 3.77 4.35 4.86 5.33 5.75
100mm 150mm 200mm 250mm
6.63 8.12 9.38 10.49 11.49 12.41
19.55 23.94 27.65 30.91 33.86 36.57
211(110.85lgP) q
(t8)0.70
后退
前进
返回本章总目录
返回本书总目录
6.3 雨水排水系统的水力计算
6.3.1 屋面雨水设计流量计算
屋面雨水排水管道的设计降雨历时可按5min计算, 居住小区的雨水管道设计降雨历时应按下式计算:
t t1M2t

建筑给排水 第3章 建筑内部给水系统水力计算

建筑给排水 第3章 建筑内部给水系统水力计算

总目录
本章总目录
概率法:
影响建筑给水流量的主要参数,即任一幢 建筑给水系统中的卫生器具总数量n和 放水使用概率p,在一定条件下有多少 卫生器具同时使用,应遵循概率随机事 件数量规律性。
3.2
给水所需的水量 3.2.2 给水设计秒流量
总目录
本章总目录
1、工业企业生活间、公共浴室、洗衣房、公共食堂、 影剧院、体育馆等建筑设计秒流量计算公式
均值(L/h);
—— 小时变化系数,最大日中最大小时用水量与 该日平均小时用水量之比。
3.2
3.2.1 给水系统所需水量
给水所需的水量
总目录 总目录
本章总目录 本章总目录
生产用水量确定:可按消耗在单位产品上的水 量或单位时间内消耗在生产设备上的水量计算 确定。
建筑内消防水量:消防用水量大而集中,与建筑 物的使用性质、规模、耐火等级和火灾危险程 度等密切相关,为保证灭火效果,应按需要同 时开启的消防用水灭火设备用水量之和计算。 其计算方法详见第五章。
3.2
给水所需的水量 3.2.2 给水设计秒流量
总目录
本章总目录
3 集体宿舍、旅馆、宾馆、医院、疗养院、幼儿园、 养老院、办公楼、商场、客运站、会展中心、中小学 教学楼、公共厕所等建筑的生活给水设计秒流量计算 公式:
q g 0 .2 N g
—— 计算管段中的设计秒流量(L/s); —— 计算管段上的卫生器具当量总数; —— 根据建筑物用途而定的系数,按表2-7 选用。
总目录
3.2
建筑内部给水管网水力计算
本章总目录
给水管道单位长度水头损失应按下式计算:
i 105Ch
kPa/m; —— 管段计算内径,(m); —— 给水管段设计流量,(m3/s); —— 海澄—威廉系数。

给水排水管道系统水力计算

给水排水管道系统水力计算

第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。

判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。

对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。

二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。

水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。

从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。

四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。

从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。

对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。

均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。

第三章_给水排水管道系统水力计算基础

第三章_给水排水管道系统水力计算基础

C e C=- .71lg 17 + 14.8R 3.53Re 2.51 e 或 = −2lg + λ 3.7D Re λ 1
11
4vR vD 式中 Re-雷诺数, = = ,其中ν是与水温有关的 Re
ν
ν
水动力粘度 系数 m2 / s; , e-管壁当量粗糙度,m,由实验确定。 但此式需迭 代计算,不便于应用,可以简化为 直接计算的形式 : 4.462 e C=- .71lg 17 + 0.875 14.8R Re 1 4.462 e 或 =- lg 2 + 0.875 λ 3.7D Re
0.013~0.014 ~
0.025~0.030 ~
21
2 2 1 1 1 1 v= R 3I 2 = R 3 (D h/D 2 , )I nM nM 2 1 2 1 1 1 AR 3 I 2 = A(D h/D R 3 (D h/D 2 q= , ) , )I nM nM
――非满流管渠水力计算基本公式 ――非满流管渠水力计算基本公式 v、q、D、h/D、I五个变量,已知三个,求另两 h/D、 五个变量,已知三个, 个。
15
3.2.3 局部水头损失计算
v hm = ξ 2g
式中 hm——局部水头损失,m; hm——局部水头损失 局部水头损失, ξ——局部阻力系数。 ——局部阻力系数 局部阻力系数。
2
给水排水管网中局部水头损失一般不超过沿 程水头损失的5% 常忽略局部水头损失的影响, 程水头损失的5%,常忽略局部水头损失的影响, 5%, 不会造成大的计算误差。 不会造成大的计算误差。
1 v = •R •I n
2 3
1 2
D h

排水管道纯公式水力计算

排水管道纯公式水力计算

排水管道纯公式水力计算排水管道水力计算是指根据管道的水力特性和流体力学原理,计算管道内流体的速度、压力、流量等参数,以确定管道的水力性能。

下面将介绍一些常见的排水管道水力计算公式,并对其进行说明。

1.流量公式:流量是指单位时间内通过管道截面的液体体积。

流量公式可以用来计算流量,其表示为:Q=A*v式中,Q表示流量,单位为体积/时间;A表示管道截面积,单位为面积;v表示流速,单位为长度/时间。

该公式根据负责流量为截面面积与流速的乘积。

2.流速公式:流速是指单位时间内通过管道其中一点的液体线速度。

流速公式可以用来计算流速,其表示为:v=Q/A式中,v表示流速;Q表示流量;A表示管道截面积。

3.斯怀默公式:斯怀默公式用来计算管道中的流速,其表示为:v=C*R^(2/3)*S^(1/2)式中,v表示流速,单位为长度/时间;C为经验系数(一般根据实际情况取值);R表示液体在管道内运动的惯性系数;S表示液体在管道内运动的能量消耗系数。

4.伯努利方程:伯努利方程是描述流体在管道中运动的一种基本物理原理。

对于水力平衡的平稳流动有:z+(P/γ)+(v^2/2g)=常数式中,z表示位置高度;P表示压力;γ表示液体的比重;v表示流速;g表示重力加速度。

该方程表达了位置高度、压力和速度之间的关系。

5.里德伯格公式:里德伯格公式用来计算管道中的摩阻损失,其表示为:Hf=f*(L/D)*(v^2/2g)式中,Hf表示摩阻损失;f表示摩阻系数;L表示管道长度;D表示管道直径;v表示流速;g表示重力加速度。

以上是一些常见的排水管道水力计算公式,用于计算排水管道的流量、流速、摩阻损失等参数。

在实际应用中,还可以根据具体情况选择适用的公式进行计算。

需要注意的是,公式的使用需要考虑实际情况,并结合实际数据进行合理调整,以保证计算结果的准确性。

排水管网的水力计算

排水管网的水力计算

第5章建筑内部排水系统5.2排水管网的水力计算1. 设计规定为保证管道系统有良好的水力条件,稳定管内气压,防止水封破坏,保证良好的室内环境卫生,在设计计算横支管和横干管时,须满足下列规定:⑴最大设计充满度建筑内部排水横管按非满流设计,以便使污废水释放出的气体能自由流动排入大气,调节排水管道系统内的压力,接纳意外的高峰流量。

建筑内部排水横管的最大设计充满度见表5-3。

排水横管最大设计充满度表5-3⑵管道坡度污水中含有固体杂质,如果管道坡度过小,污水的流速慢,固体杂物会在管内沉淀淤积,减小过水断面积,造成排水不畅或堵塞管道,为此对管道坡度作了规定。

建筑内部生活排水管道的坡度有通用坡度和最小坡度两种,见表5-4。

通用坡度是指正常条件下应予保证的坡度;最小坡度为必须保证的坡度。

一般情况下应采用通用坡度,当横管过长或建筑空间受限制时,可采用最小坡度。

标准的塑料排水管件(三通、弯头)的夹角为91.5°,所以,塑料排水横管的通用坡度均为0.026。

生活污水排水横管的通用坡度和最小坡度表5-4工业废水的水质与生活污水不同,其排水横管的通用坡度和最小坡度见表5-5。

工业废水排水管道通用坡度和最小坡度表5-5⑶最小管径为了排水通畅,防止管道堵塞,保障室内环境卫生,规定了建筑内部排水管的最小管径为50mm。

医院、厨房、浴室以及大便器排放的污水水质特殊,其最小管径应大于50mm。

医院洗涤盆和污水盆内往往有一些棉花球、纱布、玻璃渣和竹签等杂物落人,为防止管道堵塞,管径不小于75mm。

厨房排放的污水中含有大量的油脂和泥沙,容易在管道内壁附着聚集,减小管道的过水面积。

为防止管道堵塞,多层住宅厨房间的排水立管管径最小为75mm,公共食堂厨房排水管实际选用的管径应比计算管径大一号,且干管管径不小于100mm,支管管径不小于75mm。

浴室泄水管的管径宜为100mm。

大便器是唯一在排水口没有十字栏栅的卫生器具,瞬时排水量大,污水中的固体杂质多,所以,凡连接大便器的支管,即使仅有1个大便器,其最小管径也为100mm。

排水管道水力计算

排水管道水力计算

4.4 排水管道水力计算
4.4.9建筑物内生活排水铸铁管道的最小坡度和最小设计充满度,宜按表4.4.9确定。

按表4.4.10调整。

径不得小于所连接的横支管管径。

4.4.11-1确定。

距离计算。

2如排水立管工作高度在表中是列出的两个高度值之间时,可用内插法求得排水立管的最大排水能力数值。

3排水立管管径为100mm的塑料管外径为110mm,排水管管径为150mm的塑料管外径为160mm。

4.4.12 大便器排水管最小管径不得小于100mm。

4.4.13 建筑物内排出管最小管径不得小于50mm。

4.4.14多层住宅厨房间的立管管径不宜小于75mm。

4.4.15 下列场所设置排水横管时,管径的确定应符合下列要求:
1 建筑底层排水管道与其楼层管道分开单独排出时,其排水横支管管径可按表
4.4.11-4中立管工作高度≤2m的数值确定。

2 公共食堂厨房内的污水采用管道排除时,其管径比计算管径大一级,但干管管径不得小于100mm,支管管径不得小于75mm。

3 医院污物洗涤盆(池)和污水盆(池)的排水管管径,不得小于75mm。

4 小便槽或连接3个及3个以上的小便器,其污水支管管径,不宜小于75mm。

5 浴池的泄水管管径宜采用100mm。

给水排水管道系统第五章给水管网水力分析

给水排水管道系统第五章给水管网水力分析
量合理分配的重要准则之一。管网流量分配应作到经济 性和可靠性并重。
第十四页,共六十一页。
5.3 环状管网的流量初分配
三,流量分配的步骤: 1,定出管网的控制点;
2,从配水源到控制点之间选定主要的平行供水线路。
3,分配主要干管的流量,平行的管线中应尽可能的分配相似的 流量,分配时应满足节点连续性方程。
4,环流量(校正流量)直接按下式求解:
5,将环流量施加到环内的所有管段,得到新的管道流量,作为新的初值,转第 2步重新计算,管段流量流量迭代公式为:
6,计算压管压降、流速、用顺推法求各节点水头,最后计算节点自由水压,结束计 算。
第四十一页,共六十一页。
哈代-克罗斯法
二,例题: 和前一个例题相同,要求用哈代克罗斯法求解
第二十七页,共六十一页。
四种初分配流量方法的比较
均匀法
预先确定 流向

考虑管长 否
节点累计法


最短树法


最小平方和法


截面法


求解节点 方程 是


是 是
其他操作


求最短树,预赋 支管流量 无 无
第二十八页,共六十一页。
5.4 单定压节点树状管网水力分析
定压节点:已经知道节点水头而不知道节点流 量的节点称为定压节点。 定压节点水力分析的步骤: 1,用流量连续性方程计算管段流量,并计算 出管段压降。 2,根据管段能量方程和管段压降方程,从定 压节点出发推求各节点水头
因为节点流量方程是线性相关的,所以其独立的方程个 数为J-1个。所以可列出独立方程J+L-1,即P个。通过联 立求解这两个方程组即可求得管段流量。但管网节点的

排水横管水力计算公式

排水横管水力计算公式

排水横管水力计算公式
排水横管水力计算公式是工程中常用的公式之一,它用于计算排水横管中的水力特性。

为了保证排水系统的正常运行,我们需要准确计算横管的流量、速度和压力损失等参数。

下面是排水横管水力计算的公式和步骤。

我们需要计算横管的流量。

流量是指单位时间内通过横管的水量,通常用立方米/秒来表示。

计算流量的公式如下:
Q = A × V
其中,Q表示流量,A表示横管的横截面积,V表示水流的平均速度。

通过测量横管的尺寸,我们可以计算出横截面积。

我们需要计算横管的速度。

速度是指水流通过横管的平均速度,通常用米/秒来表示。

计算速度的公式如下:
V = Q / A
其中,V表示速度,Q表示流量,A表示横管的横截面积。

通过计算流量和横截面积,我们可以得到水流的平均速度。

我们需要计算横管的压力损失。

压力损失是指水流通过横管时由于摩擦力和阻力而损失的压力。

计算压力损失的公式如下:
ΔP = f × (L / D) × (V^2 / 2g)
其中,ΔP表示压力损失,f表示摩擦系数,L表示横管的长度,D 表示横管的直径,V表示水流的速度,g表示重力加速度。

通过上述公式和步骤,我们可以准确计算出排水横管中的流量、速度和压力损失等水力特性。

这些参数对于工程设计和运维都非常重要,能够保证排水系统的正常运行和性能优化。

因此,在进行排水横管水力计算时,我们需要严谨认真,确保计算结果的准确性和可靠性。

建筑给排水管道布置及水力计算

建筑给排水管道布置及水力计算
3.5.5给水管道与其他管道同沟时 给水管应在排水管上面,热水管下面。 各管道之间净距不宜小于0.3m。 冷水管在热水管下方、右侧。 给水管不得与易燃、可燃、有害液、气体管道同沟。
3.5.9管道不得穿越设备基础,应避开可能重物压坏处。 3.5.10给水管道不得穿过大小便槽,立管离大小便槽端部 不得小于0.5m。 3.5.12、13塑料给水管宜暗设,明装离灶台边缘不得小于 0.4m,离燃气热水器边缘不宜小于0.2m,不得与水加热 器和热水炉直接连接,应有不小于0.4m的金属管段过渡。
消防用水不被它用的措施
泵房
(1)泵房建筑应为一、二级耐火等级; (2)泵房净高:采用固定吊钩或移动支架时,不小于 3.0m;
采用固定吊车时,应保证吊起物底部与吊运的越 过物体顶部之间有0.5m以上的净距; (3)泵房采暖温度一般为16℃,无人值班时采用5℃, 每小时换气次3~4次; (4)地面应有排水措施,地面坡向排水沟,排水沟坡 向集水坑; (5)泵房大门应比最大的水泵机件宽0.5m; (6)泵房不得设在有防震和安静要求的房间上下和相 邻;水泵基础应设隔振装置,吸水管和出水管上应设隔 振减噪音装置,管道支架、管道穿墙及穿楼板处应采取 防固体传声措施,必要时可在泵房建筑上采取隔声吸音 措施。
(3)管网水力计算的步骤
(1)定最不利点 (2)由最不利点起,划分计算管段,以流量变化点为 节点标号 (3)选择设计秒流量公式,计算设计流量 (3)查水力计算表,求管径和水力坡降 (4)计算沿程水头损失及局部水头损失 (5) 计算最不利点至城市配水管的标高差,即H1 (6)计算室内给水管所需压力H (7)比较H0和 H,调整管径或设加压设备
1.2 系统供水压力及供水方式
1.2.1 给水系统的供水压力 H 给水额定流量: 卫生器具配水出口在单位时间 内流出的规定的水量。 流出水头(最低工作压力): 为保证给水配件 的给水额定流量值,在其阀前所需的静水压。 给水当量:0.2L/s(一个洗涤盆的额定流量)

第三章给水排水管道系统水力计算础

第三章给水排水管道系统水力计算础

第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。

判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。

对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。

二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。

水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。

从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。

四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。

从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。

对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。

均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。

建筑小区雨水排水管道水力计算

建筑小区雨水排水管道水力计算
算。 t2=L/60υ (min) (1-3-9)
L——设计管段上游各管段管长,m
υ——设计管段上游各管段的设计流速,m/s 当建筑小区的各种地面参数资料不不足时,径流系数可根据小区内建筑密度
按小区综合径流系数选取。小区综合径流系数见表1-3-4。

模块一 建筑小区生活污水排水系统设计
5)汇水面积F的求定
ψa=∑fi·ψi/∑fi
(1-3-6)
ψa——小区平均地面径流系数 fi——小区内各种地面面积,hm2
ψi——各种地面径流系数
各种地面径流系数见表1-3-3。
模块一 建筑小区生活污水排水系统设计
4)降雨历时t
降雨历时是很重要的设计参数,选择不当会使设计流量过大或过小。
t=t1+mt2 (1-3-7)
流速控制下的最小坡度要求。详见表1-3-5。 2)雨水管段的设计流量如果小于表1-3-5规定的最小管径在最小设计坡度时
的通过流量,则该管段称为非计算管段。非计算管段应采用最小管径并按最
小坡度进行设计。小区雨水管道最小管径、最小设计坡度见表1-3-6。 3)雨水管道水力计算的其他规定可参照污水管道的规定执行
4)雨水管道应按满流设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
R——水力半径,m,满流R=D/4
(3)计算方法
水力计算时,雨水管渠一般采用满流重力流设计计算,与污水管道计算方法 相同,采用流量和流速公式直接求解困难,需要试算和迭代。计算时一般采
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3—5排水管道系统的水力计算
一、 排水定额:
两种:每人每日消耗水量
卫生器具为标准
排水当量:为便于计算,以污水盆的排水流量0.33升/秒作为当量,将其他卫生器具与其比值 1个排水当量=1.65给水当量
二、 排水设计流量:
1、 最大时排水量:
P h d
P KQ Q T Q Q ==
用途:确定局部处理构筑物与污水提升泵使用
2、 设计秒流量:
(1) 当量计算法:
max 12.0q N q P u +=α
适用:住宅、集体宿舍、旅馆、医院、幼儿园、办公楼、学校
注意点:∑>i u q q ,取∑i q
(2) 百分数计算法:
b n q q p u 0∑=
适用:工业企业,公共浴室、洗衣房、公共食堂、实
验室、影剧院、体育馆等公共建筑
注意点:一个大便器的排水流量<u q 取一个大便趋的排水流量
三、 排水管道系统的水力计算
1、 排水横管水力计算:
(1)横管水流特点:水流运动:非稳定流、非均匀流
卫生器具排放时:历时短、瞬间流量大、高流速 特点:冲击流——水跌——跌后段——逐渐衰减段 可以冲刷管段内沉积物及时带走。

(2)冲击流引起压力变化——抽吸与回压
① 回压:B 点:突然放水时,水流呈八字向两方向流动,即g v 22增加(两侧空气压缩)
A 、 C 存水弯水位上升,严重时造成地漏反冒
② 抽吸:向立管输送中,水流因惯性抽吸真空,抽吸存水弯下降
③ 措施:a 、10层以上采用底层横管单独排出
b 、底层横管放大一号或接表3——11保证立管距离
c 、单个卫生器具直接连接横管时,距立管≮3.0m
(3)水力计算设计规定
1) 充满度 2)管道坡度 3)自清流速 4)最小管径
4、水力计算基本方法:
wv
q I R n
v u ==21321 按以上公式编制水力计算表,查表3—22 、3—23
5、排水立管水力计算
(1) 立管水流特点:
状况:水流下落,管内有空气,水、形成不稳定流动 3个影响:连接各层横支管,受横支管水流大小影响
下部与横干管、排出管相连接,受立管拐弯影响
下部与横干管、排出管相连接,满流与非满流影响
(2)水流状态:
1)断面
水流没充满管道水=Q 一阶段:水流沿管壁螺旋运动,形成附壁螺旋流
原因:水流夹气受管鄙粗糙摩檫力作用
结果:①不影响立管气压变化。

②螺旋运动加速下降过程,形成螺旋流。

2) Q 增大,螺旋流运动停止——沿管壁作水片状(水膜) 二阶段;
原因:管壁吸附力>水的表面力
结果:管内:气压稍有波动,不能破坏横管中的水封 3)增厚
管壁水膜再增大=Q 水流变为隔膜运动 隔膜运动两个特点:短时产生不稳定水塞,充满度1/4~1/3 水膜加速运动
原因:加速运动→
管壁摩檫力水膜重力平衡,临界值时Q 不变,V 不变,
t v :终限流速 终限流速——横支关入口长度=终限长度
结果:管内气压未达到破坏水封高度时,已达临界状态 三阶段:
3) Q 再增大充满度>1/3形成水塞——水封破坏 因此:立管充满度一般取1/4~1/3
(2) 水流状况 分析:
(3) 排水立管通水能力
终限流速时的流量——临界流量
临界流量t t v W Q = []52)(4)()2(4
22d Q v e d e e d d w e t t t t =-=--=ππ 综合得:3252)]
([47.1d e d e Q t t -=
利用上式,制成表
(4) 排水立管管径确定方法
根据最大同水能力确定,流量最大限度地充满立管断面1/4~1/3
管材:排水铸铁管,排水硬拘氯乙烯管
接:普通伸顶同气管
专用通气立管
特制配件伸顶通气管。

相关文档
最新文档