双曲线知识点及题型总结[生产目录]

合集下载

(完整word版)双曲线知识点总结

(完整word版)双曲线知识点总结

双曲线知识点知识点一:双曲线的定义:在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。

标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点轴长 实轴长=,虚轴长=离心率 渐近线方程1.通径:过焦点且垂直于实轴的弦,其长ab 222.等轴双曲线 : 当双曲线的实轴长与虚轴长相等即2a=2b 时,我们称这样的双曲线为等轴双曲线。

其离心率,两条渐近线互相垂直为,等轴双曲线可设为3.与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y 轴上)4.焦点三角形的面积2cot221θb S F PF =∆,其中21PF F ∠=θ5.双曲线的焦点到渐近线的距离为b.6.在不能确定焦点位置的情况下可设双曲线方程为:)0(122<=+mn ny mx 7.椭圆双曲线根据|MF 1|+|MF 2|=2a根据|MF 1|-|MF 2|=±2aa >c >0, a 2-c 2=b 2(b >0)0<a <c , c 2-a 2=b 2(b >0),(a >b >0),(a >0,b >0,a 不一定大于b )。

双曲线常见题型与典型方法归纳(修改版 附详解答案)

双曲线常见题型与典型方法归纳(修改版 附详解答案)

双曲线常见题型与典型方法归纳考点一 双曲线标准方程及性质1.双曲线的定义第一定义:平面内与两个定点21,F F 距离的差的绝对值等于|)|2(221F F a a <的点的轨迹。

(1)距离之差的绝对值.(2)当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是同一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在. 【典例】到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数)1(>e 的动点的轨迹。

2双曲线的标准方程及几何性质标准方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图形性 质焦点 F 1(-)0,c ,F 2()0,c F 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c 222c b a =+范围 R y a x ∈≥,|| R x a y ∈≥,||对称 关于x 轴,y 轴和原点对称顶点 (-a ,0)。

(a ,0) (0,-a )(0,a )轴 实轴长2a ,虚轴长2b离心率)1(>=e ace (离心率越大,开口越大) 准线ca x 2±=ca y 2±=通径22b d a=22b d a=渐近线x ab y ±= x bay ±=注意:等轴双曲线(1)定义:实轴长与虚轴长相等的双曲线 (2)方程:222x y a -=或222y x a -= (3)离心率e =渐近线y x =±(4)方法:若已知等轴双曲线经过一定点,则方程可设为22(0)x y λλ-=≠ 【典例】 已知等轴双曲线经过点1)-,求此双曲线方程 3双曲线中常用结论(1)两准线间的距离: 22a c (2)焦点到渐近线的距离为b (3)通径的长是ab 22考点二 双曲线标准方程一 求双曲线标准方程的方法(1)定义法,根据题目的条件,若满足定义,求出相应a b c 、、即可求得方程; (2)待定系数法,其步骤是①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程; ③定值:根据题目条件确定相关的系数。

双曲线的基本知识点(大全)

双曲线的基本知识点(大全)

双曲线的基本知识点(大全)双曲线的基本知识点(大全)双曲线,这在高中数学中是一大考点,那么双曲线知识点又有什么重点呢?下面小编给大家整理了关于双曲线的基本知识点的内容,欢迎阅读,内容仅供参考!双曲线的基本知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的'直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。

但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

[理科]双曲线知识点总结与重点题型整理

[理科]双曲线知识点总结与重点题型整理

【圆锥曲线板块】双曲线知识点总结与重点题型班级_______________知识点一:双曲线的定义在平面,到两个定点、的距离之差的绝对值等于常数〔大于0且〕的动点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边〞来理解;2. 假如去掉定义中的“绝对值〞,常数满足约束条件:〔〕,如此动点轨迹仅表示双曲线中靠焦点的一支;假如〔〕,如此动点轨迹仅表示双曲线中靠焦点的一支;知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线〔a>0,b >0〕的简单几何性质〔1〕对称性:对于双曲线标准方程〔a>0,b>0〕,把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线〔a>0,b>0〕是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

〔2〕围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a或x≥a。

〔3〕顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线〔a>0,b>0〕与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1〔―a,0〕,A2〔a,0〕,顶点是双曲线两支上的点中距离最近的点。

③两个顶点间的线段A1A2叫作双曲线的实轴;设B1〔0,―b〕,B2〔0,b〕为y轴上的两个点,如此线段B1B2叫做双曲线的虚轴。

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析双曲线是解析几何中重要的曲线之一,它有着许多特殊的性质和应用。

本文将对双曲线的知识点进行归纳,并结合例题进行分析,帮助读者更好地理解和应用双曲线的相关概念。

一、基本概念双曲线是平面上满足特定几何性质的曲线,由平面上到两个给定的点的距离之差等于一个常数构成。

常见的双曲线方程有两种形式:椭圆型和双曲型。

椭圆型的方程形如:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$,而双曲型的方程形如:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$。

其中,a和b分别是椭圆的长轴和短轴的长度。

二、性质与特点1. 焦点和准线:双曲线的焦点是曲线上到两个定点的距离之和等于常数的点,而准线是指到两个定点的距离之差等于常数的直线。

在椭圆型的双曲线中,焦点和准线位于曲线的长轴上,而在双曲型双曲线中,焦点和准线位于曲线的短轴上。

2. 渐近线:双曲线的两条渐近线是曲线的一种特殊性质。

渐近线与曲线的距离趋于无穷远,但始终不与曲线相交。

在双曲型的双曲线中,渐近线的斜率等于正负短轴与长轴之比。

而在椭圆型的双曲线中,渐近线的斜率等于正负长轴与短轴之比。

3. 对称性:双曲线具有关于x轴、y轴和原点的对称性。

即在曲线上一点(x, y)处,如果(x, -y)也在曲线上,那么曲线关于x轴对称;如果(-x, y)也在曲线上,那么曲线关于y轴对称;如果(-x, -y)也在曲线上,那么曲线关于原点对称。

三、例题分析下面通过几个例题来加深对双曲线的理解:例题1:已知双曲线的焦点为(2, 0),离心率为2,求该双曲线的方程。

解析:根据离心率的定义可知,双曲线的离心率e满足$$e=\frac{\sqrt{a^2+b^2}}{a}$$,其中a和b分别为双曲线椭圆型方程中长轴和短轴的长度。

因此,代入题目中的离心率2,可以得到2=\frac{\sqrt{a^2+b^2}}{a}。

解方程可得a=\sqrt{5},再根据焦点所在的位置可知,椭圆型方程的焦点是位于横轴上的。

双曲线知识点及例题

双曲线知识点及例题

双曲线知识点及例题一、双曲线的定义平面内到两个定点\(F_1\)、\(F_2\)的距离之差的绝对值等于常数\(2a\)(\(0 <2a <|F_1F_2|\))的点的轨迹叫做双曲线。

这两个定点\(F_1\)、\(F_2\)叫做双曲线的焦点,两焦点之间的距离\(|F_1F_2|\)叫做焦距,记为\(2c\)。

二、双曲线的标准方程焦点在\(x\)轴上的双曲线标准方程为:\(\frac{x^2}{a^2}\frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2 = a^2 + b^2\)。

焦点在\(y\)轴上的双曲线标准方程为:\(\frac{y^2}{a^2}\frac{x^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2 = a^2 + b^2\)。

三、双曲线的几何性质1、范围焦点在\(x\)轴上的双曲线,\(x\)的取值范围是\(x \leq a\)或\(x \geq a\);\(y\)的取值范围是\(R\)。

焦点在\(y\)轴上的双曲线,\(y\)的取值范围是\(y \leq a\)或\(y \geq a\);\(x\)的取值范围是\(R\)。

2、对称性双曲线关于\(x\)轴、\(y\)轴和原点都对称。

3、顶点焦点在\(x\)轴上的双曲线的顶点坐标为\((\pm a, 0)\);焦点在\(y\)轴上的双曲线的顶点坐标为\((0, \pm a)\)。

4、渐近线焦点在\(x\)轴上的双曲线的渐近线方程为\(y =\pm \frac{b}{a}x\);焦点在\(y\)轴上的双曲线的渐近线方程为\(y =\pm \frac{a}{b}x\)。

5、离心率双曲线的离心率\(e =\frac{c}{a}\)(\(e > 1\)),它反映了双曲线的开口大小。

四、例题解析例 1:已知双曲线的方程为\(\frac{x^2}{9} \frac{y^2}{16} =1\),求其顶点坐标、焦点坐标、渐近线方程和离心率。

高二数学双曲线知识点及例题

高二数学双曲线知识点及例题

高二数学双曲线知识点及例题一 知识点1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。

3. 双曲线的标准方程: (1)焦点在x 轴上的:x a y ba b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b 2线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ; 线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。

<>=>41离心率:e cae ()e 越大,双曲线的开口就越开阔。

<>±5渐近线:y bax =<>=±62准线方程:x a c5.若双曲线的渐近线方程为:x ab y ±= 则以这两条直线为公共渐近线的双曲线系方程可以写成: )0(2222≠=-λλby a x【典型例题】 例1. 选择题。

121122.若方程表示双曲线,则的取值范围是()x m y m m +-+=A mB m m ..-<<-<->-2121或C m mD m R ..≠-≠-∈21且2022.ab ax by c <+=时,方程表示双曲线的是()A. 必要但不充分条件B. 充分但不必要条件C. 充分必要条件D. 既不充分也不必要条件322.sin sin cos 设是第二象限角,方程表示的曲线是()ααααx y -=A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线416913221212.双曲线上有一点,、是双曲线的焦点,且,x y P F F F PF -=∠=π 则△F 1PF 2的面积为( ) A B C D (9)633393例2. ()已知:双曲线经过两点,,,,求双曲线的标准方程P P 12342945-⎛⎝ ⎫⎭⎪例3. 已知B (-5,0),C (5,0)是△ABC 的两个顶点,且sin sin sin B C A -=35,求顶点A 的轨迹方程。

双曲线知识点及例题

双曲线知识点及例题

双曲线知识点一:双曲线的定义:在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。

,,, ,实轴长=,虚轴长=1.通径:过焦点且垂直于实轴的弦,其长ab 222.等轴双曲线 :当双曲线的实轴长与虚轴长相等即2a=2b 时,我们称这样的双曲线为等轴双曲线。

其离心率,两条渐近线互相垂直为,等轴双曲线可设为3.与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y 轴上)4.焦点三角形的面积2cot221θb S F PF =∆,其中21PF F ∠=θ5.双曲线的焦点到渐近线的距离为b.6.在不能确定焦点位置的情况下可设双曲线方程为:)0(122<=+mn ny mx , ,(a >b >0)(a >0,b >0,a 不一定大于b )典型例题1、已知双曲线:()的离心率为,则的渐近线方程为( )A .B .C .D .试题分析:由题意可知 ,因为渐近线方程为所以渐近线的方程为2、 已知分别是双曲线的左右焦点,过做垂直于轴的直线交双曲线于两点,若为钝角三角形,则双曲线的离心率的范围是A .B .C .D .试题分析:由题意为钝角三角形,则,所以,又,,所以,所以,所以.考点:双曲线离心率.3、已知双曲线(a>0,b>0)的一条渐近线为,则它的离心率为()A.B.C.D.试题分析:由已知得,又在双曲线中有,所以得到;故选A.4、若双曲线的两准线间的距离是焦距的,则双曲线的离心率为_________.试题分析:双曲线的两准线的距离为:,两焦点间的距离为:,根据题意可由:化简为:解得:,所以答案为:.5、双曲线的离心率.试题分析:双曲线即为,其中6、如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为()A.4B.C.D.试题分析:因为为等边三角形,不妨设,为双曲线上一点,,为双曲线上一点,则,,由,则,在中应用余弦定理得:,得,则7、设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为()A.B.C.D.试题分析:的一条渐近线方程与抛物线只有一个公共点,把代入中,得,由,,则8、过双曲线的右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为()A.18B.C.D.试题分析:可化为;由双曲线的定义,得的周长为.9、双曲线的顶点到其渐近线的距离等于_________.试题分析:双曲线的顶点为,渐近线方程为,即;则顶点到其渐近线的距离为.10、双曲线的离心率,则的取值范围是()A.B.C.D.试题分析:由题意知,又,∴,∴. 11、双曲线的实轴长是()A.2B.2C.4D.4试题分析:双曲线方程可变形为,所以.12、双曲线:的渐近线方程是()A.B.C.D.试题分析:由双曲线的渐近线方程的公式可知的渐近线方程是.13、斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,则双曲线的离心率的取值范围是()A.B.C.D.试题分析:如图,要使斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,必须且只需即可,从而有所以有离心率,故选D.14、过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为()A.B.C.D.试题分析:双曲线的焦点在y轴上,通过双曲线的图象与性质可知当直线与双曲线有两交点时直线的斜率k>1或k<-1,因此答案选B。

完整双曲线知识点总结及练习题推荐文档

完整双曲线知识点总结及练习题推荐文档

、双曲线的定义1、第一定义:到两个定点F i与F2的距离之差的绝对值等于定长(V|F I F2|)的点的轨迹(PFJ PF2|| 2a F1F2(a为常数))。

这两个定点叫双曲线的焦点。

要注意两点:(1)距离之差的绝对值。

(2)2a v|F i F2|。

当|MF i|—|MF2|=2a时,曲线仅表示焦点F2所对应的一支;当|MF i|—|MF2|=—2a时,曲线仅表示焦点F i所对应的一支;当2a=|F i F21时,轨迹是一直线上以F i、F2为端点向外的两条射线;用第二定义证明比较简单或两边之差小于第三边当2a > |F i F2|时,动点轨迹不存在。

a22、第二定义:动点到一定点F的距离与它到一条定直线I (准线)的距离之比是常数e(e>i)时,这个动c点的轨迹是双曲线。

这定点叫做双曲线的焦点,定直线I叫做双曲线的准线。

b。

判定焦点在哪条坐标轴上,不像椭圆似的比较X2、y2的分母的大小,而是X2、y2的系数的二、双曲线的标准方程b2c2 a2X焦点在x轴上:务a2 yb2(a> 0,2焦点在y轴上:%a(a> 0, b> 0)(i)如果x2项的系数是正数,则焦点在X轴上;如果y2项的系数是正数,则焦点在y轴上。

a不一定大于2 1共焦点的双曲线系方程是 二 -a 2 k2 2 (2)与双曲线冷爲 a b2b^k1(3 )双曲线方程也可设为:2仝 1(mn 0) nx a sec x a cos椭圆为y b tan y b sin[提醒]解决直线与椭圆的位置关系问题时常利用数形结合法、根与系数的关系、整体代入、设而不求的 思想方法。

3、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 六、焦半径公式2 2双曲线 笃 每 1 (a >0, b >0)上有一动点 M (x 0, y 0)a b左焦半径:r= | ex+a | 右焦半径:r= | ex-a |当M (x o ,y 。

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结知识点精讲一、双曲线的定义平面内与两个定点21,F F 的距离的差的绝对值.....等于常数(大于零且小于21F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为{})20(22121F F a a MF MF M<<=-.注(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支.(2)当212F F a =时,点的轨迹是以1F 和2F 为端点的两条射线;当02=a 时,点的轨迹是线段21F F 的垂直平分线.(3)212F F a >时,点的轨迹不存在. 在应用定义和标准方程解题时注意以下两点:①条件“a F F 221>”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222c b a =+的应用.二、双曲线的方程、图形及性质双曲线的方程、图形及性质如表10-2所示.题型归纳及思路提示题型1 双曲线的定义与标准方程 思路提示求双曲线的方程问题,一般有如下两种解决途径:(1)在已知方程类型的前提下,根据题目中的条件求出方程中的参数a ,b ,c ,即利用待定系数法求方程.(2)根据动点轨迹满足的条件,来确定动点的轨迹为双曲线,然后求解方程中的参数,即利用定义法求方程.例10.11 设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A. 1342222=-y xB. 15132222=-y xC. 1432222=-y xD. 112132222=-y x解析 设1C 的方程为)0(12222>>=+b a by a x ,则⎪⎩⎪⎨⎧==135262a c a ,得⎩⎨⎧==513c a .椭圆1C 的焦点为)0,5(1-F ,)0,5(2F ,因为218F F <,且由双曲线的定义知曲线2C 是以21,F F 为焦点,实轴长为8的双曲线,故2C 的标准方程为1342222=-y x ,故选A.变式 1 设命题甲:平面内有两个定点21,F F 和一动点M ,使得21MF MF -为定值,命题乙:点M 的轨迹为双曲线,则命题甲是命题乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式 2 已知)0,2(-M 和)0,2(N 是平面上的两个点,动点P 满足2=-PN PM ,求点的P 轨迹方程.变式 3已知)0,2(-M ,)0,2(N ,动点P 满足22=-PN PM ,记动点的P 轨迹为W ,求W 的方程. 例10.12 求满足下列条件的双曲线的标准方程: (1)经过点)2,5(-,焦点为)0,6(;(2)实半轴长为32且与双曲线141622=-y x 有公共焦点; (3)经过点)72,3(P ,)7,26(-. 分析 利用待定系数法求方程.设双曲线方程为“)0,0(12222>>=-b a b y a x ”,或“x bay =”,求双曲线方程,即求参数a ,b ,为此需要找出并解关于a ,b 的两个方程. 解析 (1)解法一:因为焦点坐标为)0,6(,焦点在x 轴上,故可设双曲线方程为x b a y -=,又双曲线过点)2,5(-,所以142522=-ba ,又因为6=c ,所以622=+b a ,解得52=a ,12=b ,故所求双曲线方程为1522=-y x . 解法二:由双曲线的定义a MF MF 221=-,()()=+--=+---++-=610356103526526522222a52530530=---.得5=a ,6=c 故1=b ,双曲线方程为1522=-y x .(2)解法一:由双曲线方程141622=-y x ,得其焦点坐标为)0,52(1-F ,)0,52(2F ,由题意,可设所求双曲线方程为x bay -=,由已知32=a ,52=c ,得8222=-=a c b ,故所求双曲线方程为181222=-y x . 解法二:依题意,设双曲线的方程为)164(141622<<-=+--k ky k x , 由()k -=16322.得4=k ,故所求曲线的方程为181222=-y x . (3)因为所求双曲线方程为标准方程,但不知焦点在哪个轴上,故可设双曲线方程为)0(122<=+mn ny mx ,因为所求双曲线经过点)72,3(P ,)7,26(-,所以⎩⎨⎧=+=+149721289n m n m ,解得⎪⎩⎪⎨⎧=-=251751n m ,故所求双曲线方程为1752522=-x y . 评注 求双曲线的标准方程一般用待定系数法,若焦点坐标确定,一般仅有一解;若焦点坐标不能确定是在x 轴上还是在y 轴上,可能有两个解,而分类求解较为繁杂,此时可设双曲线的统一方程)0(122<=+mn ny mx ,求出即可n m ,,这样可以简化运算.变式 1 根据下列条件,求双曲线的标准方程:(1)与双曲线116922=-y x 有共同的渐近线,且过点)33,3(-; (2)与双曲线141622=-y x 有公共焦点;且过点)2,23(.变式 2 若动圆M 与圆()93:221=++y x C 外切,且与圆()13:222=+-y x C 内切,求动圆M 的圆心M 的轨迹方程.例10.13 已知双曲线的离心率为2,焦点分别为)0,4(-,)0,4(,则双曲线方程为( )A. 112422=-y x B. 141222=-y x C. 161022=-y x D.110622=-y x 解析 由焦点为)0,4(-,)0,4(,可知焦点在x 轴上,故设方程为)0,0(12222>>=-b a by a x ,且2==ace ,故2=a .所以42=a ,162=c ,12222=-=a c b ,故所求双曲线的方程为112422=-y x .故选A. 变式 1 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线方程为x y 3=,一个焦点在抛物线x y 242=的准线上,则双曲线的方程为( )A. 11083622=-y x B.127922=-y x C.13610822=-y x D.192722=-y x 变式 2 已知双曲线1:2222=-by a x C 的焦距为10,点)1,2(P 在C 的渐近线上,则C 的方程为( )A. 152022=-y x B.120522=-y x C.1208022=-y x D.1802022=-y x 变式 3 已知点)4,3(-P 是双曲线)0,0(12222>>=-b a by a x 渐近线上的一点,E ,F 是左、右两个焦点,若0=⋅FP EP ,则双曲线的方程为( )A. 14322=-y x B. 13422=-y x C.116922=-y x D. 191622=-y x 题型2 双曲线的渐近线思路提示掌握双曲线方程与其渐近线方程的互求;由双曲线方程容易求得渐近线方程;反之,由渐近线方程可得出a ,b 的关系式,为求双曲线方程提供了一个条件.另外,焦点到渐近线的距离为虚半轴长b .例10.14 双曲线14222-=-y x 的渐近线方程为( ) A. x y 2±=B. x y 2±=C. x y 22±= D. x y 21±= 分析 对不标准的圆锥曲线方程应首先化为标准方程,再去研究其图形或性质,不然极易出现错误.解析 双曲线的标准方程为12422=-x y ,焦点在y 轴上,且42=a ,22=b ,故渐近线方程为x b ay ±=,故所求渐近线方程为x y 22±=,即x y 2±=.故选A. 评注 应熟记,若双曲线的标准方程为12222=-b y a x ,则焦点落在x 轴上,渐近线方程为x a by ±=;若双曲线的标准方程为12222=-b x a y ,则焦点落在y 轴上,渐近线方程为x b ay ±=.本题也可以直接写出渐近线方程为04222=-y x ,化简得x y 2±=. 变式 1已知双曲线)0(1222>=-b by x 的一条渐近线的方程为x y 2=,则b _________变式 2 设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A.4B.3C.2D.1变式 3 已知双曲线)0(12222>=-b b y x 的左、右焦点分别为21,F F ,其中一条渐近线方程为x y =,点),3(0y P 在该双曲线上,则21PF PF ⋅等于( )A.-12B.-2C.0D.4例10.15 双曲线191622=-y x 的一个焦点到其渐近线的距离是_________. 解析 由题设可知其中一条渐近线方程为043=+y x ,则焦点)0,5(到该渐近线的距离3435322=+⨯=d .评注 双曲线12222=-by a x 的一个焦点到其渐近线的距离(焦渐距)为b .变式 1双曲线13622=-y x 的渐近线与圆())0(3222>=+-r r y x 相切,则=r ( ) A. 3B. 2C.3D.6变式 2 已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线均和圆056:22=+-+x y x C 相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A. 14522=-y x B. 15422=-y x C. 16322=-y x D. 13622=-y x 例10.16 过双曲线)0,0(12222>>=-b a by a x 的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若AB 21=BC ,作为双曲线的渐近线方程为_______. 解析 解法一:对于)0,(a A ,则直线方程为0=-+a y x ,将该直线分别与两渐近线联立,解得⎪⎪⎭⎫ ⎝⎛++b a ab b a a B ,2,⎪⎪⎭⎫⎝⎛---b a ab b a a C ,2,则有=BC ⎪⎪⎭⎫ ⎝⎛---2222222,2b a b a b a b a ,⎪⎭⎫ ⎝⎛++-=b a ab b a abAB ,,因为AB 21=BC ,则222b a b a b a ab -=+-,得a b 2=,故224a b =,得双曲线方程为142222=-ay a x ,则双曲线的渐近线方程为02=±y x . 解法二:如图10-5所示,过C 点作BO CD //交x 轴于点D ,作x CH ⊥轴于H ,则由AB 21=BC ,得AO 21=OD ,故)0,2(a D -. 又COD BOA CDO ∠=∠=∠,所以CO CD =,则H 为OD 中点,即)0,(a H -. 又在直角三角形CHA 中,︒=∠45CHA ,故a AH CH 2==,即)2,(a a C -.故22-=-==-aak a b OC ,即2=ab,故双曲线的渐近线方程为02=±y x . 评注 在解法一种,若注意到AB AC 3=,则可利用B C y y 3=巧妙求解;解法二更能帮助我们挖掘出图形的本质特征.变式 1 过双曲线1:22=-y x C 的右顶点A 的直线l 与双曲线C 的两条渐近线交于P ,Q 两点,且AQ PA 2=,则直线l 的斜率为_____________.题型3 离心率的值及取值范围 思路提示求离心率的本质就是探求a ,c 间的数量关系,知道a ,b ,c 中任意两者的等式关系或不等关系便可求解出e 或其范围,具体方法为标准方程法和定义法.例10.17 已知双曲线13422=-y x ,则此双曲线的离心率e 为( ) A.21B.2C. 22D.27解析 由题意可知42=a ,32=b ,故7222=+=b a c ,所以离心率27==a c e .故选D. 评注 本题若借用公式27474311222=⇒=+=+=e ab e ,则更为简洁,因为此种方法在求解过程中避开了基本量c 的求解,从而使得求解过程变得更为简捷.但是同学们应对公式:椭圆中)10(1222<<-=e a b e ;双曲线中)1(1222>+=e ab e ,加以熟练识记.变式 1 下列双曲线中离心率为26的是( ) A. 14222=-y x B. 12422=-y x C. 16422=-y x D.110422=-y x 变式 2 已知点)3,2(在双曲线)0,0(1:2222>>=-b a by a x C 上,C 的焦距为4,则它的离心率为______.变式 3 已知双曲线1422=+my x 的离心率)2,1(∈e ,则m 的取值范围是( ) A.)0,12(-B.)0,(-∞ C.)0,3(- D.)12,60(-- 例10.18 已知双曲线的渐近线方程是02=±y x ,则该双曲线的离心率等于________分析 因为不确定焦点在x 轴上还是在y 轴上,所以需分情况求解,由渐近线中的a ,b 关系,结合222b a c +=得出离心率.解析 依题意,双曲线的渐近线方程是x y 2±=.若双曲线的焦点在x 轴上,则因为双曲线的渐近线方程为x a b y ±=,故有2=ab,所以离心率5122=+=ab e ;若双曲线的焦点在y 轴上,则因为双曲线的渐近线方程为x b a y ±=,故有2=b a ,即21=a b ,所以离心率25122=+=ab e ;故离心率e 等于5或25.评注 ①若双曲线方程为)0,0(12222>>=-b a b y a x 时(焦点在x 轴上),其渐近线方程为x a by ±=;若双曲线方程为)0,0(12222>>=-b a b x a y 时(焦点在y 轴上),其渐近线方程为x bay ±=;②若双曲线的渐近线方程为)0(>±=k kx y ;则其离心率21k e +=(焦点在x 轴上)或211ke +=(焦点在y 轴上);③若双曲线的离心率为e ,则其渐近线方程为x e y ⋅-±=12(焦点在x 轴上)或x e y ⋅-±=112(焦点在y 轴上).变式 1 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点)2,4(-,则它的离心率为( )A.6B.5C.26D.25 变式 2 若双曲线)0,0(12222>>=-b a b y a x 的离心率3=e ,则其渐近线方程为______.例10.19 已知双曲线)0,0(12222>>=-b a by a x .(1)若实轴长,虚轴长,焦距成等差数列,则该双曲线的离心率_________;(2)若实轴长,虚轴长,焦距成等比数列,则该双曲线的离心率_________.解析 (1)由题设可知c a b +=2,且222b ac +=,故2222⎪⎭⎫⎝⎛+=-c a a c ,得4c a a c +=-,即a c 53=,所以35=e . (2)由题设可知ac b =2,且222b a c +=,即ac a c =-22,由ac e =可得012=--e e ,得215+=e 或251-(舍去),所以215+=e . 变式 1 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么双曲线的离心率是( )A.2B.3C.213+D.215+变式 2 如图10-6所示,双曲线)0,0(12222>>=-b a by a x 的两个顶点为21,A A ,虚轴两个端点为21,B B ,两个焦点为21,F F ,若以21A A 为直径的圆内切于菱形2211B F B F ,切点分别为D C B A ,,,.则(1)双曲线的离心率=e _________.(2)菱形2211B F B F 的面积1S 与矩形ABCD 的面积2S 的比值=21S S例10.20 双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,过1F 作倾斜角为︒30的直线交双曲线右支于点M ,若2MF 垂直于x 轴,则双曲线的离心率为( )A.6B.3C.2D.33解析 依题意,如图10-7所示,不妨设12=MF ,则21=MF ,321=F F ,则3222121=-===MF MF F F a ca c e ,故选B. 变式1 已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两个焦点,M 为双曲线上的点,若21MF MF ⊥,︒=∠3012F MF ,则双曲线的离心率为( )A.13-B.26C.13+D.213+变式2 已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两个焦点,P 是C 上一点,若a PF PF 621=+,且21F PF ∆的最小内角为︒30,则C 的离心率为_____________.例10.21 双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,若P 为其上一点,且212PF PF =,则双曲线的离心率的取值范围是( ) A.)3,1(B.(]3,1 C.),3(+∞ D.[)+∞,3 解析 解法一:由双曲线的定义知a PF PF 221=-,212PF PF =,故a PF 41=,a PF 22=,又c F F PF PF 22121=≥+,故c a 26≥,即3≤e ,又1>e ,故31≤<e ,故选B.解法二:利用21PF PF 的单调性,22221212PF aPF a PF PF PF +=+=,随2PF 的增加,21PF PF 减小,也就是说,当P 点右移时,21PF PF 值减小,故要在双曲线上找到一点P ,使得221=PF PF ,而当P 点在双曲线的右顶点时,221≥PF PF ,得c a ac ca ≥⇒≥-+32,则31≤<e , 故选B.评注 若在双曲线)0,0(12222>>=-b a b y a x 上存在一点P ,使得)1(21>=λλPF PF ,则111-+≤<λλe ,注意与椭圆中)1(111><≤+-λλλe 类似结论的区分和对比识记. 变式1 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为)0,(),0,(21c F c F -,若双曲线上存在点P 使caF PF F PF =∠∠1221sin sin ,则该双曲线的离心率的取值范围是____________.题型4 焦点三角形 思路提示对于题中涉及双曲线上点到双曲线两焦点距离问题常用定义,即a PF PF 221=-,在焦点三角形面积问题中若已知角,则用θsin 212121PF PF S F PF ⋅=∆,a PF PF 221=-及余弦定理等知识;若未知角,则用022121y c S F PF ⋅⋅=∆. 例10.22 过双曲线13422=-y x 左焦点1F 的直线交双曲线的左支于两点N M ,,2F 为其右焦点,则MN NF MF -+22的值为_________.分析 利用双曲线的定义求解解析 如图10-8所示,由定义知412=-MF MF ,12=-NF NF 所以()81122=+-+NF MF NF MF ,所以22=-+MN NF MF变式 1 设P 为双曲线11222=-y x 上的一点,21,F F 是该双曲线的两个焦点,若2:3:21=PF PF ,则21F PF ∆的面积为( )A. 36B.12C. 312D.24变式 2 双曲线1422=-y x 的两个焦点为21,F F ,点P 在双曲线上,21F PF ∆的面积为3,则21PF PF ⋅等于( ) A.2B.3C.-2D.3- 变式 3 已知21,F F 分别为双曲线1279:22=-y x C 左、右焦点,点C A ∈,点M 的坐标为)0,2(,AM 为21AF F ∠的平分线,则=2AF __________.有效训练题1. 已知双曲线1722=-y m x ,直线l 过其左焦点1F ,交双曲线左支于B A ,两点,且4=AB ,2F 为双曲线的右焦点,2ABF ∆的周长为20,则的值为( ) A. 8B. 9C. 16D. 202. 若点O 和点)0,2(-F 分别为双曲线)0(1222>=-a y ax 的中心和左焦点,点P 为双曲线右支上的任意一点,则FP OP ⋅的取值范围为( ) A. [)+∞-,323B. [)+∞+,323C. ⎪⎭⎫⎢⎣⎡+∞-,47D. ⎪⎭⎫⎢⎣⎡+∞,473. 已知21,F F 为双曲线222=-y x 的左、右焦点,点P 在C 上,212PF PF =,则=∠21cos PF F ( ) A.41B.53 C.43 D.544. 若椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线)0,0(12222>>=-b a by a x 的渐近线方程为( ) A. x y 21±= B. x y 2±= C. x y 4±= D. x y 21±=5. 双曲线C 的左、右焦点分别为21,F F ,且2F 恰好为抛物线x y 42=的焦点,设双曲线C 与该抛物线的一个交点为A ,若21F AF ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( ) A. 2B. 21+C. 31+D. 32+6. 如图10-9所示,过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交轴y 于E ,若ME FM =,则该双曲线的离心率为(A.3B.2C. 3D. 27. 已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为)0,5(F ,则=a _______,=b ___________.8. 已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一个点,若21PF PF ⊥,则21PF PF +的值为_________.9. 若双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,P 为双曲线上一点,且213PF PF =,则该双曲线离心率的取值范围是________.10. 根据下列条件,求双曲线的标准方程:(1)与双曲线13422=-y x 有共同的渐近线,且过点)32,2(; (2)与双曲线191622=-y x 有公共焦点,且过点)4,22(-; (3)已知双曲线的渐近线方程为x y 32±=,且过点)1,29(-M ; (4)与椭圆1244922=+y x 有公共焦点,且离心率45=e .11. 中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点21,F F ,且13221=F F ,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3:7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求21cos PF F ∠的值.12. 已知双曲线的中心在原点,焦点21,F F 在坐标轴上,离心率为2,且过点)10,4(-P . (1)求双曲线方程;(2)若点),3(m M 在双曲线上,求证:021=⋅MF MF ; (3)在(2)的条件下,求21MF F ∠∆的面积.。

高中数学双曲线抛物线知识点总结

高中数学双曲线抛物线知识点总结

双曲线平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨迹。

考点题型一 求双曲线的标准方程1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m nλλ-=≠,与双曲线22221x y a b-=共渐近线的方程可设为2222(0)x y a b λλ-=≠。

2、注意:定义法、待定系数法、方程与数形结合。

【例1】求适合下列条件的双曲线标准方程。

(1) 虚轴长为12,离心率为54; (2) 焦距为26,且经过点M (0,12);(3) 与双曲线221916x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22221y x a b-=(0,0)a b >>。

由题意知,2b=12,c e a ==54。

∴b=6,c=10,a=8。

∴标准方程为236164x -=或2216436y x -=。

(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。

又2c=26,∴c=13。

∴222144b c a =-=。

∴标准方程为22114425y x -=。

(3)设双曲线的方程为2222x y a b λ-=(3,A -在双曲线上∴(2231916-= 得14λ=所以双曲线方程为224194x y -= 题型二 双曲线的几何性质方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a=和222c a b =+的关系式。

【例2】双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c 。

求双曲线的离心率e 的取值范围。

解:直线l 的方程为1x ya b-=,级bx+ay-ab=0。

高二数学双曲线知识点及例题

高二数学双曲线知识点及例题

高二数学双曲线知识点及例题一知识点1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。

3. 双曲线的标准方程:(1)焦点在x 轴上的:x ay ba b 2222100(),(2)焦点在y 轴上的:y ax ba b2222100(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b24. 双曲线的几何性质:()焦点在轴上的双曲线,的几何性质:11002222x x ay ba b ()yxF 1F 2A 2A 1O1范围:,或x a x a<2>对称性:图形关于x 轴、y 轴,原点都对称。

<3>顶点:A 1(-a ,0),A 2(a ,0)线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ;线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。

41离心率:ec a e()e 越大,双曲线的开口就越开阔。

5渐近线:y b a x=62准线方程:xac5.若双曲线的渐近线方程为:xa b y则以这两条直线为公共渐近线的双曲线系方程可以写成:)0(2222by ax 【典型例题】例1.选择题。

121122.若方程表示双曲线,则的取值范围是()x m ym m A m B m m ..2121或C m mD m R..21且2022.abax byc 时,方程表示双曲线的是()A. 必要但不充分条件B. 充分但不必要条件C. 充分必要条件D. 既不充分也不必要条件322.s i n s i nc o s 设是第二象限角,方程表示的曲线是()x y A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线416913221212.双曲线上有一点,、是双曲线的焦点,且,xyP F F F PF 则△F 1PF 2的面积为()A B C D (9)633393例2. 已知:双曲线经过两点,,,,求双曲线的标准方程P P 12342945例3.已知B (-5,0),C (5,0)是△ABC 的两个顶点,且sin sin sin BCA 35,求顶点A 的轨迹方程。

高中数学解析几何专题之双曲线(汇总解析版)

高中数学解析几何专题之双曲线(汇总解析版)

圆锥曲线第2讲 双曲线【知识要点】 一、双曲线的定义 1. 双曲线的第一定义:平面内到两个定点1F 、2F 的距离之差的绝对值等于定长a 2(2120F F a <<)的点的轨迹叫双曲线,这两个定点叫做双曲线的焦点,两个焦点之间的距离叫做焦距。

注1:在双曲线的定义中,必须强调:到两个定点的距离之差的绝对值(记作a 2),不但要小于这两个定点之间的距离21F F (记作c 2),而且还要大于零,否则点的轨迹就不是一个双曲线。

具体情形如下:(ⅰ)当02=a 时,点的轨迹是线段21F F的垂直平分线; (ⅱ)当c a 22=时,点的轨迹是两条射线; (ⅲ)当c a 22>时,点的轨迹不存在; (ⅳ)当c a 220<<时,点的轨迹是双曲线。

特别地,若去掉定义中的“绝对值”,则点的轨迹仅表示双曲线的一支。

注2:若用M 表示动点,则双曲线轨迹的几何描述法为aMF MF 221=-(c a 220<<,cF F 221=),即2121F F MF MF <-。

2. 双曲线的第二定义:平面内到某一定点的距离与它到定直线的距离之比等于常数e (1>e )的点的轨迹叫做双曲线。

二、双曲线的标准方程 1. 双曲线的标准方程(1)焦点在x 轴、中心在坐标原点的双曲线的标准方程是12222=-b y a x (0>a ,0>b );(2)焦点在y 轴、中心在坐标原点的双曲线的标准方程是12222=-b x a y (0>a ,0>b ).注:若题目已给出双曲线的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看实半轴跟谁走。

若实半轴跟x 走,则双曲线的焦点在x 轴;若实半轴跟y 走,则双曲线的焦点在y 轴。

2. 等轴双曲线当双曲线的实轴与虚轴等长时(即b a 22=),我们把这样的双曲线称为等轴双曲线,其标准方程为λ=-22y x (0≠λ) 注:若题目已明确指出所要求的双曲线为等轴双曲线,则我们可设该等轴双曲线的方程为λ=-22y x (0≠λ),再结合其它条件,求出λ的值,即可求出该等轴双曲线的方程。

双曲线方程知识点详细总结

双曲线方程知识点详细总结

双曲线方程 1.双曲线的第一定义: 呼\卜更』二加叱厅兰工方程为洩曲线 严j-丹■,卜加卜卩丈,氏軌迹 昭1|_严沪血=町^附1^的_牛端烂的一^播 y 2 y 2 i 1飞―分g”明刍— ⑴①双曲线标准方程: 口] --' 一般方程:.=「_「—:. ⑵①i.焦点在x 轴上: ・=±兰 3"顶点:W 叽 ^焦点: ' ' " ' ii.焦点在尸轴上:顶点: 4 4=o,参数方程:y=±?L—….焦点:(叭g 町.准线方程: 匚x- a&eoO4 q±±_0渐近线方程:或asccQ②轴兀卅为对称轴,实轴长为 2a,虚轴长为2b,焦距2c. 0 g =l通径 .⑤参数关系 .⑥焦点半径公式: 线的左、右焦点或分别为双曲线的上下焦点) 长加短减”原则: [MFjwai.+iH [AfFj |=—ff ■f ■-:构成满足 亠 ■ 焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号) \MP^\~ay t ^a|4fFi|=-ffyi +€J }|--ayi -a ③离心率 口.④准线距心 ^__y^_=x对于双曲线方程<(两准线的距离); 片宀分别为双曲(与椭圆⑶等轴双曲线:双曲线 w 称为等轴双曲线,其渐近线方程 为•亠,离心率*・. ⑷共轭双曲线:以已知双曲线的 虚轴为实轴,实轴为虚 轴的双曲线,叫做已知 双曲线的共轭双 曲 互为共轭双曲线,它们具有共同的渐近线: 的渐近线方程为川 -j-=^ -线. 与 ⑸共渐近线的双曲线系方程: —±Z -=0 如果双曲线的渐近线为厘 时,它的双曲线方程可设为 「厂且过心丿 1_,求双曲线的方程?.1- 得囊匕 例如:若双曲线一条渐近线为 Jr= # 可 P>_—)解:令双曲线的方程为: 4 ,代入 1 ⑹直线与双曲线的位置关系: 区域①:无切线,2条与渐近线平行的直线,合计 2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计 4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计 2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个,求确定直线的斜率可用代入"△"法与渐近线求交和两根之和与两根之积同号•⑺若P在双曲线. ,则常用结论1: P到焦点的距离为 m = n,则P到两准线的距离比为m : n.简证:=丹.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于 b.双曲线的标准方程和简单几何性质4、点訊心片)和败側r=1 > 0,6 >0)的位盖关丟口- D“求汉曲线的方程,用待定系频法、先宦位「后定星"常见考法在段考中,多以选择题、填空题和解答题的形式考查双曲线的简单几何性质。

高中数学双曲线知识点及题型总结(学生版)

高中数学双曲线知识点及题型总结(学生版)

双曲线知识点及题型总结1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.5.曲线的简单几何性质22a x -22by =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx (什么是共轭双曲线?)⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x 0(≠λ⑻与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 6曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 7曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.9线与椭圆相交的弦长公式 AB =若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+= ]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想;高考题型解析题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件2.若R ∈k ,则“3>k ”是“方程13322=+--k yk x 表示双曲线”的( )A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件.3.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面横线上. _________.4.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型二:双曲线的渐近线问题1.双曲线42x -92y =1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x-y 2=1有公共渐近线的双曲线方程是( )A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( )A.2 B.3 C. 2 D. 33.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 (4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2) C .[2,+∞) D.(2,+∞) 题型四:双曲线的距离问题1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6 C .7 D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3] 3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。

第20讲 双曲线高考6大常考基础题型总结(解析版)_20230722153245

第20讲  双曲线高考6大常考基础题型总结(解析版)_20230722153245

第20讲双曲线高考6大常考基础题型总结【考点分析】考点二:双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22b a.考点三:双曲线常考性质结论①双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c;②双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;考点四:双曲线焦点三角形面积为2tan2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)【题型目录】题型一:利用双曲线定义解题题型二:求双曲线的标准方程题型三:双曲线焦点三角形面积题型四:双曲线的渐近线有关题型题型五:双曲线的离心率问题题型六:双曲线的最值问题【典型例题】题型一:利用双曲线定义解题【例1】已知双曲线()222:1012x y C a a -=>的左右焦点分别为1F 、2F ,0y +=,若点M在双曲线C 上,且15MF =,则2MF =()A .9B .1C .1或9D .1或7【例2】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为.【答案】121,22,a c PF PF a ==∴-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+= 【例4】已知曲线C 的方程为221mx ny +=,下列说法正确的是()A .若0mn >,则曲线C 为椭圆B .若0mn <,则曲线C 为双曲线C .若曲线C 为焦点在x 轴的椭圆,则0m n >>【题型专练】1.设双曲线221169x y -=的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆2216x y +=相切于点N ,M 为线段PF 的中点,O 为坐标原点,则MN MO -=()A .12B .1C .32D .22.已知F 1、F 2分别为双曲线C :29x -227y =1的左、右焦点,点A 为C 上一点,点M 的坐标为(2,0),AM为∠F 1AF 2的角平分线.则|AF 2|=.3.方程132m m +=-+表示双曲线的一个充分不必要条件是()A .23m -<<B .20m -<<C .2m <-或3m >D .32m -<<题型二:求双曲线的标准方程【例1】与椭圆22:11612y x C +=共焦点且过点(的双曲线的标准方程为()A .2213y x -=B .2221yx -=C .22122y x -=D .2213y x -=【答案】C 【解析】【分析】求出椭圆的焦点坐标,利用双曲线的定义可求得a 的值,再由b =b 的值,结合双曲线的焦点位置可求得双曲线的标准方程.【详解】椭圆C 的焦点坐标为()0,2±,设双曲线的标准方程为()222210,0y x a b a b-=>>,由双曲线的定义可得2a =-=,a ∴2c = ,b ∴=因此,双曲线的方程为22122y x -=.故选:C.【例2】已知圆22:(4)16M x y ++=,M 为圆心,P 为圆上任意一点,定点(4,0)A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=【例3】已知双曲线H :219x y a -=(0a >),以原点为圆心,双曲线的虚半轴长为半径的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形ABCD 的面积为4a ,则双曲线的方程为()A .22199x y -=B .221189x y -=C .221279x y -=D .221369x y -=【例4】已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在双曲线C 的右支上,12MF MF ⊥,若1MF 与C 的一条渐近线l 垂直,垂足为N ,且12NF ON -=,其中O 为坐标原点,则双曲线C 的标准方程为()A .2212016x y -=B .221204x y -=C .221416x y -=D .221420x y -=【题型专练】1.已知双曲线的对称轴为坐标轴,两个顶点间的距离为2,焦点在y ,则双曲线的标准方程是()A .2212y x -=B .2212x y -=C .2212x y -=D .2212y x -=2.已知双曲线C 的焦点为1F ,)2F ,点P 在双曲线C 上,满足112PF F F ⊥,14PF =,则双曲线C 的标准方程为()A .2214x y -=B .2214y x -=C .22132x y -=D .22123x y -=3.已知圆M :()2224x y ++=,M 为圆心,P 为圆上任意一点,定点()2,0A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=4.已知双曲线方程为222x y k -=,焦距为6,则k 的值为________.故答案为:±6.5.(2022·重庆·三模)已知双曲线C :()222210,0x y a b a b-=>>的左右焦点为1F ,2F ,左右顶点为1A ,2A ,过2F 的直线l 交双曲线C 的右支于P ,Q 两点,设12PA A α∠=,21PA A β∠=,当直线l 绕着2F 转动时,下列量保持不变的是()A .1PQA △的周长B .1PF Q 的周长与2PQ之差C .tan tan αβD .tan tan αβ⋅【答案】BD 【解析】【分析】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,可判断A ,根据双曲线定义求解可判断B ,设(),P x y ,则tan ,tan y y a xx aαα==-+-根据商与积的值可判断CD .【详解】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,故A 不正确;1PF Q 的周长为1122442PF QF PQ a PF QF PQ a PQ++=+++=+所以1PF Q 的周长与2PQ之差为4a ,故B 正确;设(),P x y ,则tan ,tan y ya x x aαα==-+-,由tan tan a xa xαβ-=+不是常量,故C 不正确;由22222222221tan tan x b y y a y b a x a x a x a x aαβ⎛⎫- ⎪⎝⎭⋅=⋅==-+---为常量,故D 正确;故选:BD题型三:双曲线焦点三角形面积【例1】设双曲线2222:1(00)x y C a b a b,-=>>的左、右焦点分别为1F ,2F 5.P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a =()A .1B .2C .4D .8【答案】A【思路导引】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【解析】解法一:5ca=5c a ∴=,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥ ,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b ,又∵5==ace ,∴1=a .解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .【例2】已知1F ,2F 是双曲线C :()2210,0436x y a b -=>>的左、右焦点,M ,N 是C 上关于原点对称的两点,且12MN F F =,则四边形12MF NF 的面积是______.【答案】72【分析】判断四边形12MF NF 为矩形,设1MF m =,2MF n =,可得2221212160MF MF F F +==,结合双【题型专练】1.已知1F ,2F 分别是双曲线C :22144x y -=的左、右焦点,P 是C 上一点,且位于第一象限,120PF PF ⋅= ,则()A .PB .12PF =C .12PF F △的周长为4D .12PF F △的面积为42.设1F ,2F 是双曲线2:13C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则△12PF F 的面积为()A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B .题型四:双曲线的渐近线有关题型焦点在x 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b y a x x a b y 焦点在y 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b x a y x b a y 若双曲线的方程为122=+ny mx ,要求渐近线只需令022=+ny mx ,解出即可即已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线知识点及题型总结目录双曲线知识点 (2)1双曲线定义: (2)2.双曲线的标准方程: (2)3.双曲线的标准方程判别方法是: (2)4.求双曲线的标准方程 (2)5.曲线的简单几何性质 (2)6曲线的内外部 (3)7曲线的方程与渐近线方程的关系 (3)8双曲线的切线方程 (3)9线与椭圆相交的弦长公式 (3)高考题型解析 (4)题型一:双曲线定义问题 (4)题型二:双曲线的渐近线问题 (4)题型三:双曲线的离心率问题 (4)题型四:双曲线的距离问题 (5)题型五:轨迹问题 (5)高考例题解析 (6)练习题 (10)双曲线知识点1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程:12222=-by ax 和12222=-bx ay (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.5.曲线的简单几何性质22ax -22by =1(a >0,b >0)⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-by ax ⇒渐近线方程⇒=-02222by ax x ab y ±=②若渐近线方程为x ab y ±=⇒0=±by ax ⇒双曲线可设为λ=-2222by ax③若双曲线与12222=-by ax 有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =ab x ,y =-ab x⑸准线:l 1:x =-ca2,l 2:x =ca2,两准线之距为2122aK K c=⋅⑹焦半径:21()aPF e x ex a c=+=+,(点P 在双曲线的右支上x a ≥); 22()aPF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥); 当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-by a x 共渐近线的双曲线系方程是λ=-2222by ax 0(≠λ⑻与双曲线12222=-by ax 共焦点的双曲线系方程是12222=--+kb yka x6曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b ab-=>>的外部22221x y a b ⇔-<.7曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by ax ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-by ax 有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).8双曲线的切线方程(1)双曲线22221(0,0)x y a b ab -=>>上一点00(,)P x y 处的切线方程是00221x x y y ab-=.(2)过双曲线22221(0,0)x y a b ab-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab-=.(3)双曲线22221(0,0)x y a b ab-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.9线与椭圆相交的弦长公式A B =若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x kAB -++=-⋅+=]4)[()11(11212212122y y y y ky y k-+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想;高考题型解析题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件 2.若R ∈k ,则“3>k ”是“方程13322=+--k yk x表示双曲线”的( )A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件. 3.给出问题:F 1、F 2是双曲线162x-202y=1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面横线上. _________.4.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型二:双曲线的渐近线问题1.双曲线42x-92y=1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是( ) A .22y-42x=1 B.42x-22y=1 C.42y-22x=1 D.22x-42y=1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a by ax 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( ) A.2 B.3 C. 2 D. 3 3.过双曲线M:2221yx b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )324.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) A.22 B. 2 C .2 D. 225..已知双曲线12222=-by ax (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2) C .[2,+∞) D.(2,+∞)题型四:双曲线的距离问题1.设P 是双曲线22ax -92y=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6 C .7D.92.已知双曲线141222=-yx的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3]3.已知圆C 过双曲线92x-162y=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。

AP 是⊿AF 1F 2的外角平分线,且 P F AP 2⋅=0.则点P 的轨迹方程是 .2.双曲线x 2-y 2 =4的两焦点分别为F 1、F 2,A 为双曲线上任一点。

AP 是∠F 1AF 2的平分线,且 P F AP 2⋅=0.则点P 的轨迹是 ( )A.椭圆的一部分B.双曲线的一部分C.圆的一部分D.抛物线的一部分3求与圆1)3(22=+-y x 及9)3(22=++y x 都外切的动圆圆心的轨迹方程高考例题解析1.已知21,F F 是双曲线1222=-yx的左、右焦点,P 、Q 为右支上的两点,直线PQ 过2F ,且倾斜角为α,则PQ QF PF -+11的值为 ( )A 24B 8C 22D 随α的大小变化 答案: A 解析: 用双曲线定义列方程可解2.过双曲线02222=--y x 的右焦点作直线l 交曲线于A 、B 两点,若4=AB 则这样的直线存在 ( )A 0条B 1条C 2条D 3条答案: D 解析: ⊥l x 轴时的焦点弦长AB=4最短为通径,故交右半支弦长为4的直线恰有一条;过右焦点交左右两支的符合要求的直线有两条3. 直线531+-=x y 与曲线12592=+yx x 的交点个数是 ( )A 0个B 1个C 2个D 3个答案: D 解析: (0, 5)点为完整双曲线和椭圆的极值点,故y=5为其切线,当直线斜率不为0时,直线必与每个曲线交于两点4. P 为双曲线12222=-by ax 上一点,1F 为一个焦点,以1PF 为直径的圆与圆222a yx =+的位置关系为( )A 内切B 外切C 内切或外切D 无公共点或相交 答案: C 解析: 用两圆内切或外切的条件判断5. 设21,F F 是双曲线1422=-yx的两个焦点,点P 在双曲线上且满足9021=∠PF F ,则21F PF ∆的面积为( )A 1 B25 C 2 D5答案: A 解析: 勾股定理,双曲线定义联立方程组h 或面积公式6. 设21,F F 是双曲线1422=-yx的左、右焦点,P 在双曲线上,当21PF F ∆的面积为1时,21PF PF ⋅的值为( )A 0B 1 C21 D 2答案: A 解析: 不妨设,p x ,0>p y 由511221=∴=⋅⋅p p y y c , )55,5302(P )55,53025(1---=∴PF ,)55,53025(2--=PF ,021=⋅∴PF PF7.过点A (0,2)可以作___条直线与双曲线x 2-42y=1有且只有一个公共点答案:4 解析:数形结合,两切线、两交线过点P (4,4)且与双曲线x 216-y 29=1只有一个交点的直线有 ( )A .1条B .2条C .3条D .4条 解析:如图所示,满足条件的直线共有3条.答案:C8.已知A (3,2),M 是双曲线H :1322=-yx 上的动点,F 2是H 的右焦点,求221MF AM +的最小值及此时M 的坐标。

相关文档
最新文档