概率论第一章1.3节PPT资料37页

合集下载

概率论与数理统计课件完整版.ppt

概率论与数理统计课件完整版.ppt
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质:
性质1. P() 0.
性质2. 若 A1, A2, , An是两两互不相容的事件, 则 P(A1 A2 An)
P(A1) P(A2) P(An). (有限可加性)
性质3. 若A B,则有 P(B A) P(B) P(A);
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 , 两两互不相容, 则
P(Bi | A) P(B i | A).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
A2 , A2 A3 , A1 A2 , A1 A2 , A1 A2 A3 , A1 A2 A2 A3 A1 A3 .

概率论与数理统计(浙大版)第一章课件

概率论与数理统计(浙大版)第一章课件
然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科.
如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
8
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
4
实例2 用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为: 1, 2, 3, 4, 5 或 6.
察出现的点数.
5
实例4 从一批含有正品
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
其结果可能为:
正品 、次品.
则 C A B AB 格”,B=“直径合格”.
30
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
n
称 Ak 为 n 个 事 件 A1 , A2 , , An 的 积 事 件 ;
事件 A 发生 事件B 发生
实例 A=“长度不合格” 必然导致 B=“产品不合格” 所以 A B
27
2.事件的相等
若两个事件 A 和B 相互包 含,则称这两个事件相等, 记为 A .B
A B A =B
A B且B A
A B
A 和 B 同时发生或者同时不发生
28
3.事件的和(并)

第一章 概率论的基本概念PPT课件

第一章 概率论的基本概念PPT课件

性质 4:对任一 A,P 事 (A)件 1. 上一页 下一页 返 回
性质 5:对任一A事,件有 P(A)1P(A).
性 质 6: 对 于 任 意 两A,个 B,事有件 P(AB)P(A)P(B)P(AB)
上一页 下一页 返 回
3、古典概型 定义1.4:
设随机试验E满足如下条件:
(1) 试验的样本空间只有有限个样本点,即
(1)A1 {4个数字排成一个}偶 ; 数 (2)A2 {4个数字排成一个四}位 ; 数 (3)A3 {4个数字中 0恰好出现两}.次
因 为 是 有 放 ,所 回以 抽样 样本 空 间总中数样 1为 04.本 若使 4个数字组,成 则偶 只数 需末位数即字可 . 为
上一页 下一页 返 回
这 有 5种 可 能 :0,2,4,6,8,
P ( A3 )
ห้องสมุดไป่ตู้
C
2 4

9
2
10 4
0 .0486
上一页 下一页 返 回
例4: (一个古老的问题)一对骰子连掷25次.问出现双6 与不出现双6的概率哪个大?
解:设A {出现双6},B {不出现双6},
一对骰子掷1次,有66 36种结果.
掷25次共有3625种结果,
掷一次出现双6只有1种结果,不出现双6共有
上一页 下一页 返 回
解 : (1) A (B C ); (2) AC B或 AB C; (3 ) A B C A B C A B C ;
(4) ABCABCABCABC或 A BA CB;C
(5) AB 或 A C BC; (6) A BAC BC
或 AC BABCABC AB. C
上一页 下一页 返 回
乘法定理可推广至任意有限个事件的情形:

1.3 等可能概型、几何概型

1.3 等可能概型、几何概型
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第26页--
人们在长期的实践中总结得到“概率 很小的事件在一次实验中几乎是不发生的” (称之为实际推断原理)。这样小概率的 事件在一次抽卡的试验中就发生了,人们 有比较大的把握怀疑这是魔术. 具体地说,可以99.9%的把 握怀疑这是魔术.
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
第一章 第三节 --第3页--
例如,一个袋子中装有 10个大小、形状完全相同 的球. 将球编号为1-10 . 把球搅匀,蒙上眼睛,从 中任取一球.
8 5 1 9 4 6 7 2 3 10
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
i 1, 2,, n .
中央财经大学《概率统计》课件--孙 博
其中
2013年7月29日星期一
n
第一章 第三节 --第6页--
古典概型的概率计算(概率的古典定义)
确定试验的基本事件总数
设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数
P ( A1 A2 Ak ) P ( A1) P ( A2 ) P ( Ak ) 可列可加性
排列组合是计算古典概率的重要工具 .
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第8页--
“等可能性”是一种假设,在实际应用中, 需要根据实际情况去判断。在许多场合, 由对称性和均衡性,我们就可以认为基本 事件是等可能的并在此基础上计算事件的 概率.
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第10页--

概率论

概率论
第 16 页
问题:是否能用频率来描述随机事件可能性大小? 问题:是否能用频率来描述随机事件可能性大小? 3. 频率的特性 频率的特性: 1)随机波动性: )随机波动性: 2)稳定性: )稳定性: 较小时, 当n较小时,波动大; 较小时 波动大; 较大时, 当n较大时,波动小。 较大时 波动小。 设想 当n->∞时, fn(A)没有波动 没有波动. 没有波动
第 6 页
(三)事件间的关系与事件的运算 1.包含关系和相等关系 包含关系和相等关系: 包含关系和相等关系 若事件A发生必然导致事件 发生,则称事件 发生必然导致事件B发生 则称事件B包含 若事件 发生必然导致事件 发生 则称事件 包含 事件A,记作 记作A⊂ 事件 记作 ⊂B. 则称A与 相等 相等. 若A ⊂ B且A ⊃B, 即A=B, 则称 与B相等 且 (2)设A,B,C为任意三个事件 事件间的包含 为任意三个事件, 设 为任意三个事件 (1)以后考虑事件间关系和运算时 参加比较 以后考虑事件间关系和运算时, 以后考虑事件间关系和运算时 B 关系有下列性质: 关系有下列性质 或运算的事件都是同一样本空间的子集. 或运算的事件都是同一样本空间的子集 (a) φ⊂ ⊂S; φ⊂A⊂A S (b) A⊂A(自反性 自反性); ⊂ 自反性 (c) 若A⊂1) 且B⊂C,则A⊂C(传递性 传递性); ⊂B且 B 则 ⊂ 传递性 ⊂ ( A⊂ ⊂ (d) 若A⊂B且B⊂A, 则A=B(反对称性 反对称性). ⊂ 且 ⊂ 反对称性
第 10 页
5. 对立事件 逆事件 : 对立事件(逆事件 逆事件):
A 若 UB= S AIB=φ 则 A B 为 事 , 称 且 , 称与 互 逆 件 也 对 事 . : 一 实 中 件与中 然 一 为 立 件即 在 次 验 , 事 A B 必 有 发 , 仅 一 发 . 个 生且 有 个 生

概率论与数理统计第一章(浙大第四版)ppt课件

概率论与数理统计第一章(浙大第四版)ppt课件

ppt课件
9
例:
概率论
一枚硬币抛一次
记录一城市一日中发生交通事故次数
记录一批产品的寿命x
记录某地一昼夜最高温度x,最低温 度y
ppt课件
10
概率论
S={正面,反面}; S={0,1,2,…}; S={ x|a≤x≤b }
S={(x,y)|T0≤y≤x≤T1};
ppt课件
111
n—总试验次数。称 fn ( A) 为A
在这n次试验中发生的频率。
ppt课件
27
例:
概率论
中国男子国家足球队,“冲出亚洲”
共进行了n次,其中成功了一次,在
这n次试验中“冲出亚洲”这事件发
生的频率为 1 n;
ppt课件
28
概率论
某人一共听了16次“概率统计”课,其 中有12次迟到,记A={听课迟到},则
ppt课件
33
(二) 概率
概率论
定义1:fn ( A) 的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 P( A) 0
2。 P(S ) 1
3。 A1, A2,...,Ak ,...,Ai Aj (i j),


P( Ai ) P( Ai )
(1)从袋中随机摸一球,记A={ 摸到红 球 },求P(A).
(2)从袋中不放回摸两球,记B={恰是一 红一黄},求P(B).
ppt课件
47
概率论
解:(1)
S={1,2, ,8},A={1,2,3}

P

A

3 8
(2)P(B)

C31C51

概率论与数理统计图文课件最新版-第1章-随机事件与概率

概率论与数理统计图文课件最新版-第1章-随机事件与概率

AB
注 ▲ 它是由事件 A与 B 的所有
公共样本点构成的集合。
n
▲ 称 I Ak 为 n 个事件 A1 , A2 ,L An 的积事件 k 1
I
k 1
Ak
为可列个事件
A1
,
A2
,L
L
的积事件
概率统计
5.事件的差: 若事件 A 发生而事件 B 不发生,则称 这样的事件为事件 A 与事件 B 的差。
A B 记作: A B x x A且x B
2
0.4
18 0.36
4
0.8
27 0.54
247 0.494
251 0.502 26波2 动0最.52小4
258 0.516
概率统计
从上述数据可得:
(1) 频率有随机波动性
即对于同样的 n, 所得的 f 不一定相同.
(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅 度较大, 但随 n 的增大 , 频率 f 呈现出稳定性.
解: S1 {正面,反面}
S2 0,1, 2, 3,
概率统计
S3 1, 2, 3, S4 0,1, 2, 3, ,10
S5 1, 2, 3,4,5,6

E3 :射手射击一个目标, 直到射中为止,观 察 其射击的次数
E4:从一批产品中抽取十 件,观察其次品数。
E5:抛一颗骰子,观察其 出现的点数。
义上提供了一个理
H
想试验的模型:
(H,T): H (T,H): T (T,T): T
T
在每次试验中必
有一个样本点出
H
现且仅有一个样
本点出现 .
T
概率统计
例4.若试验 E是测试某灯泡的寿命. 试写出该试验 E 的样本空间. 解:因为该试验的样本点是一非负数,

概率论第一章ppt课件

概率论第一章ppt课件

i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e

本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:

概率论第一章PPT课件

概率论第一章PPT课件

2021/3/24
-
10
费尔马的解法
费尔马注意到,如果继续赌下去,最多只要再赌4轮便可 决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜, 那么最后4轮的结果,不外乎以下16种排列。
甲甲甲甲 甲甲甲乙 甲甲乙甲 甲乙甲甲 乙甲甲甲 乙甲甲乙
甲甲乙乙 甲乙甲乙 甲乙乙甲 乙乙甲甲 乙甲乙甲
甲乙乙乙 乙甲乙乙 乙乙甲乙 乙乙乙甲 乙乙乙乙
2021/3/24
-
8
直到1654年,一位经验丰富的法国赌徒默勒以自己的 亲身经历向帕斯卡请教“赌金分配问题“,求助其对这种现 象作出解释,引起了这位法国天才数学家的兴趣,帕斯卡接 受了这些问题,但他没有立即去解决它,而是把它交给另一 位法国数学家费尔马。之后,他们频频通信,互相交流,围 绕着赌博中的数学问题开始了深入细致的研究。这些问题后 来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他也开 始就这方面展开研究。
若每次试验中,事件A与事件B不能同时发生, 即A∩B= 。则称事件A与事件B互斥或互不相 容。
有时,我们也称满足以上三个特点的试验为随机 试验。
2021/3/24
-
20
§1.1.2 样本空间 随机事件
一、样本空间
随机试验E的所有可能的结果组成的集合称为E的 样本空间,记为Ω。Ω的每个元素,即Ω的每一个可能 的结果,称为E的一个样本点或基本事件。
指的是基本 结果
2021/3/24
样本点
-
21
特征:条件不能完全决定结果。
确定性现象与随机现象的共同特点是事物本身的含 义确定。随机现象与模糊现象的共同特点是不确定性, 随机现象的不确定性是指试验的结果不确定,而模糊现 象的不确定性有两层含义,一是指事物本身的定义不确 定,二是结果不确定。

概率论第一章课件

概率论第一章课件

• 使概率论成为数学一个分支的另一奠基人 是瑞士数学家雅各布-伯努利[1654-1705]。 他的主要贡献是建立了概率论中的第一个 极限定理,我们称为“伯努利大数定理” • 到了1730年,法国数学家棣莫弗和数个数 学家建立了关于“正态分布”及“最小二 乘法”的理论 。概率论发展史上的代表人 物是法国的泊松。他推广了伯努利形式下 的大数定律 ,研究得出了一种新的分布 。
课程说明
• 期末闭卷考试,平时课后留作业,每周五收作业。 • 成绩计算方法:期末考试占70%,平时分占30% • 平时分计算方法:作业上交情况,平时上课做题 情况,思考题,讨论题。按百分制记,每上黑板 每上黑板 做一次题加6分 做一次思考题加10分 做一次题加 分,做一次思考题加 分,讲解讨论 题加16分 一次作业没有交扣5分 旷课扣15分 题加 分,一次作业没有交扣 分,旷课扣 分, 累计旷课3次平时分低于 分。 累计旷课 次平时分低于40分 次平时分低于 • 课程安排:讲解 到7章,13周左右作一次概率论 课程安排:讲解1到 章 周左右作一次概率论 应用专题讲解, 周课堂讨论我给出问题 周课堂讨论我给出问题. 应用专题讲解,15周课堂讨论我给出问题 上限100分,下限 分. 注:上限 分 下限0分
摸球问题( 例1.摸球问题(抽奖问题) 摸球问题 抽奖问题)
袋中有a只红球,b 袋中有a只红球,b只白球
(除颜色外无任何差别),现依次将球一只只摸出(不放回), 求第k 求第k次摸到红球的概率
解:将这a + b只球进行编号,其中a只红球为1-a号, b只白球为a+1-a+b号, b只白球为a+1-a+b号,
a b
b
1 f ( x, y ) = 1( a ≤ x ≤b ,0≤ y ≤ M ) M (b − a )

概率论ppt

概率论ppt
当且仅当子集A中某个样本点出现时, 称事件A发生.
实例 抛掷一枚骰子, 观察出现的点数. 特别地:
基本事件 由一个样本点组成的单点集 实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
(2) 随机试验通常用 E 来表示.
实例 “抛掷一枚硬币,观 察正面、反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果: 正面、反面;
(3) 进行一次试验之前不能 确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验. (1) 抛掷一枚骰子,观察出现的点数.
例如 只包含两个样本点的样本空间
{H,T}
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
三、随机事件及其发生
随机事件:
通俗地讲 随机事件是指随机试验中可能发生也 可能不发生的结果。 根据这个说法不难发现 随机事件和样本空间的 子集有一一对应关系!
Ω
.
样本点e
实例1 抛掷一枚硬币,观察正面,反面出现的情况.
1 {H ,T }.
H 正面朝上 T 反面朝上
实例2 抛掷一枚骰子,观察出现的点数.
2 {1, 2, 3, 4, 5, 6}.
实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.

概率论课件(总)

概率论课件(总)
则称P(A)为事件A的概率。
3.概率的性质
• • • • • • • • (1) 加法公式:若A与B为互斥事件,则有: P(AB)=P(A)+P(B ) (2)求逆公式: 设A、 A 互为对立事件,则有: P( A)=1-P( A ) (3)减法公式: 若AB,则 P(A-B)=P(A)-P(B) P(A)P(B) (4)广义加法公式:P(AB)=P(A)+P(B)-P(AB)
§1 概率论的基本概念
• 必然现象: 在一定条件下必然发生或必然
不发生的现象.
•随机现象: 在一定条件下可能出现这样的结 果,也可能出现那样的结果,结果 的出现呈现出一定的偶然性.
统计规律性
:
联想举例?
某一随机现象,其结果的出现就个别试验而 言好象没有规律性,但在大数次试验的情况 下又呈现出某种规律性。
二.随机事件
随机事件:随机试验的结果叫事件。因为结果的 出现是随机的,故也称为随机事件。随机事件常用 大写字母A、B、C、…等表示。 随机事件包括基本事件和复合事件。 基本事件:仅包含一个样本点的事件。 复合事件:包含两个及两个以上样本点的事件。 以掷一枚骰子为例,观察下列随机事件:
A={1}(表示掷出的点数是1) B= {1,2,3}; C={5,6} 样本空间S:S={1,2,3,4,5,6} 结论:随机事件可看作是样本空间的子集。
第一章 概率论基础
统计规律性 必然现象和随机现象 概率论是研究随机现象统计规律性的数 学学科. 概率论问题的起源: 1654年 De Mere Pascal(1623-1662) Fermat(1601-1665) 两赌徒各出32枚金币作为赌金,以先得3分 为赢。第一人现得2分,第二人仅得1分, 设赌局因故中断,问怎样分配赌金才算 公平?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i 1 i 1
1 i j n
1 i j k n
维恩图
B ABA
证明
P ( A U B ) P ( A U B A ) P ( A ) P ( B A ) P ( A ) P ( B ) P ( A B )
( 1 ) n 2 时 , 显 然 有 P ( A 1 U A 2 ) P ( A 1 ) P ( A 2 ) P ( A 1 A 2 )
概率论的起源
帕斯卡、费尔马和惠更斯: 1657年; 《论掷骰子游戏中的计算》
当时法国贵族盛行掷骰子游戏,游戏规则 是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点, 则庄家赢。按照这一游戏规则,从长期来 看,庄家输少赢多,而玩家总是输多赢少。
概率论的起源
后来为使游戏更刺激,游戏规则有了变化。 玩家这回用 2 个骰子连续掷 24 次,不同时出现
统计学进入文学领域后,高鹗续写的定论遭到了计 算机的质疑。 1981年,首届国际《红楼梦》研讨会 在美国召开,美国威斯康星大学讲师陈炳藻独树一 帜,宣读了题为《从词汇上的统计论〈红楼梦〉作 者的问题》的论文,首 次借助计算机进行《红楼梦》 研究,轰动了国际红学界。陈炳藻从字、词出现频 率入手,通过计算机进行统计、处理、分析,对 《红楼梦》后40回系高鹗所作这一 流行看法提出异 议,认为120回均系曹雪芹所作。
《红楼梦》的作者到底是谁?
《红楼梦》成书迄今已逾200年,作为中 国历史上最有影响的小说之一,《红楼 梦》有各种不同的版本、数十种续书, 流传到世界各国,被翻译成多种文字, 感动 了不同民族的长期以来,人们普遍 认为曹雪芹只写了《红楼梦》的前80回, 后40回是高鹗续写的,你认为这是真的 吗?
来自“概率”理论的质疑

P图
AB
1.3.2 概率的单调性
若 AB
则 P(A)P(B)
因为 P (A B ) P (A ) P (B ) 0
所以 P(A)P(B)
1.3.2 概率的单调性
对任意两个事件 A , B ,有
P (A B ) P (A B ) P (A ) P (A B )
(2)假 设 nm 时 , 有
mm
U P (A i ) P ( A i ) P ( A iA j ) P ( A iA jA k ) L ( 1 ) m 1 P ( A 1 A 2 L A m )
i 1 i 1
1 i j m
1 i j k m
那 么 , n m 1 时 , 有
证明:因为
P ( A ) P ( A B ) U A B P ( A B ) P ( A B )
所以 P (A B ) P (A ) P (A B )
例1.3.3
口袋中有编号为1,2,…,n的n个球,从
中有放回的任取m次,求取出m个球的最
大编号为k的概率。
3
4
2
1 ……



… n
所 以 P ( ) P ( U U U L U U L ) P ( ) P ( ) P ( ) L P ( ) L
P ( ) P ( ) L P ( ) L 0
P() 0
1.3.1 概率的可加性
有限可加性 若有限个事件 A1, A2,L An互不相容,则
归纳法
m 1
m
m
m
UU U U P (A i) P (A iU A m + 1 ) P (A i) P ( A m + 1 ) P [ (A i) A m + 1 ]
2个6点,玩家赢,否则庄家赢。 17世纪中叶,法国有一位热衷于掷骰子游戏的贵
族德·梅耳,发现了这样的事实:将一枚骰子连掷 四次至少出现一个六点的机会比较多,而同时将 两枚骰子掷24次,至少出现一次双六的机会却很 少。
练习1-答案
掷一颗骰子4次,至少出现一次6点的概率 1-(5/6)4=0.52 掷两颗骰子24次,至少出现一次双6点的
1.3.3 概率的加法公式
加法公式 对任意两个事件A , B ,有
P (A U B ) P (A ) P (B ) P (A B )
对任意n个事件 A1, A2,L An,有
n
n
U P (A i) P ( A i) P ( A iA j) P ( A iA jA k ) L ( 1 ) n 1 P ( A 1 A 2 L A n )
教学目标
掌握概率的可加性、单调性和加法公式, 并使用公式进行计算。
了解概率的连续性
教学内容
概率的可加性 概率的单调性 概率的加法原则 概率的连续性
概率的公理与计算回顾
三条公理化定义 事件的关系 事件的运算 事件的运算性质
不可能事件的概率
P() 0
证明:
因 为 U U U L U U L
概率 1-(25/36) 24=0.99 1-(35/36)24=0.49
1.3.2 概率的单调性
若 AB
则 P (A B ) P (A ) P (B )
证明:因为 AB
所以
P ( A ) P ( B U A B ) P B U ( A B ) P ( B ) P ( A B )
证明:
n
n
P(UAi) P(Ai)
i1
i1
因为事件 A1, A2,L An 互不相容,且
A 1 U A 2 U L U A n A 1 U A 2 U L U A n U U U L
P ( A 1 U A 2 U L U A n ) P ( A 1 U A 2 U L U A n U U U L ) P ( A 1 ) P ( A 2 ) L P ( A n ) P ( ) L P (A 1 ) P (A 2 ) L P (A n )
P(A)1P(A)
因为
1 P ( ) P (A U A ) P (A ) P (A )
所以
P(A) 1P(A)
例1.3.1
36只灯泡中有4只是60w,其余为40w, 现从中任取3只,求至少取到1只60w灯泡 的概率?
练习1
一赌徒认为掷一颗骰子4次,至少出现一 次6点的概率,与掷两颗骰子24次,至少 出现一次双6点的概率,两者是相等的, 请问是否正确?
相关文档
最新文档