二次函数知识点总结及典型例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点总结及典型例题

一、二次函数的概念和图像 1、二次函数的概念

一般地,如果)0,,(2

≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于a

b

x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式:

(1)一般式:)0,,(2

≠++=a c b a c bx ax y 是常数,

(2)顶点式:)0,,()(2

≠+-=a k h a k h x a y 是常数,

(3)当抛物线c bx ax y ++=2

与x 轴有交点时,即对应二次好方程0

2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212

x x x x a c bx ax --=++,二次函数c bx ax y ++=2

可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这

样表示。

三、抛物线c bx ax y ++=2

中,c b a ,,的作用

(1)a 决定开口方向及开口大小,这与2

ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2

的对称轴是直线

a b x 2-

=,故:①0=b 时,对称轴为y 轴所在直线;②0>a

b

(即a 、b 同号)时,对称轴在y 轴左侧;③0

(即a 、b 异号)时,对称轴在y 轴右侧.

(3)c 的大小决定抛物线c bx ax y ++=2

与y 轴交点的位置.

当0=x 时,c y =,∴抛物线c bx ax y ++=2

与y 轴有且只有一个交点(0,c ):

①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0

b

. 四、二次函数的性质 1、二次函数的性质

五、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。

因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点。 当∆>0时,图像与x 轴有两个交点; 当∆=0时,图像与x 轴有一个交点; 当∆<0时,图像与x 轴没有交点。 补充:函数平移规律:左加右减、上加下减 六、二次函数的最值

如果自变量的取值围是全体实数,那么函数在顶点处取得最大值(或最小值),即当

a

b

x 2-=时,a b ac y 442-=

最值。 如果自变量的取值围是21x x x ≤≤,那么,首先要看a

b

2-

是否在自变量取值围21x x x ≤≤,若在此围,则当x=a

b

2-时,a b ac y 442-=最值;

若不在此围,则需要考虑函数在21x x x ≤≤围的增减性,

如果在此围,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=22

2最大,当1x x =时,

c bx ax y ++=121最小;

如果在此围,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

典型例题

1.已知函数

()()

()()

2

2

113

513

x x

y

x x

⎧--

=⎨

--

⎪⎩

,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3

2.如图为抛物线2

y ax bx c

=++的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()

A.a+b=-1B.a-b=-1C.b<2a D.ac<0

3.二次函数2

y ax bx c

=++的图象如图所示,则反比例函数

a

y

x

=与一次函数y bx c

=+在同一坐标系中的大致图象是().

4.如图,已知二次函数c

bx

x

y+

+

=2的图象经过点(-1,0),(1,-2),当y随x的增大而增大时,x的取值围是.

5.在平面直角坐标系中,将抛物线223

y x x

=++绕着它与y轴的交点旋转180°,所得抛物线的解析式是().

A.2

(1)2

y x

=-++B.2

(1)4

y x

=--+

x

y

O

1

1

(1,-2)

c

bx

x

y+

+

=2

-1

相关文档
最新文档