【免费下载】材料现代分析技术
现代材料分析方法(英文)

Characterization techniques:(A) XPS (X-ray photoelectron spectroscopy):Hydrothermally deposited epitaxial thin films are characterized by XPS to retrieve useful information like composition, chemical structure and local arrangement of atoms that make up few layers of surface of film and also the interfacial layer between the film and substrate.X-ray photoelectron spectroscopy (XPS) was developed in the mid –1960s by Kai Siegnahm and his research group at the University of Uppsala, Sweden.Surface analysis by XPS involves irradiating a solid in vacuum with monoenergetic soft x-rays and analyzing the emitted electrons by energy. The spectrum is obtained as a plot of the number of detected electrons per energy interval versus their kinetic energy. The principle on which the XPS technique is based can explained with the help of figure 1 as shown below. [27]Figure 1. An energy level diagram showing the physical basis of XPS technique.The energy carried by an incoming X-ray photon is absorbed by the target atom, raising it into excited state from which it relaxes by the emission of a photoelectron. Mg Kα(1253.6eV) or Al Kα (1486.6 eV) x-rays are generally used as a source of monoenergetic soft x-rays. These photons have limited penetrating power in a solid on the order of 1-10 micrometers. They interact with atoms in the surface region, causing electrons to be emitted by the photoelectric effect. The emitted electrons have measured kinetic energies given by:KE=hγ-BE -φsWhere hγ is the energy of the photon, BE is the binding energy of the atomic orbital from which the electron originates and φs is the spectrometer work function. The binding energy may be regarded as the energy difference between the initial and final states after the photoelectron has left the atom. Because there are a variety of possible final states of the ions from each type of atom, there is corresponding variety of kinetic energies of the emitted electrons. Photoelectrons are emitted from all energy levels of the target atom and hence the electron energy spectrum is characteristic of the emitting atom type and may be thought as its XPS fingerprint. Each element has unique spectrum .The spectrum from a mixture of elements is approximately the sum of peaks of the individual constituents. Because the mean free path of electrons in the solids is very small, the detected electrons originate from only the top few atomic layers making XPS a unique surface sensitive technique for chemical analysis. Quantitative data can be obtained from peak heights or peak areas and identification of chemical states often can be made from exact measurement of peak positions and separations as well from certain spectral features.The line lengths indicate the relative probabilities of the various ionization processes. The p,d and f levels split upon ionization leading to vacancies in the p1/2,p3/2,d3/2,d5/2,f5/2 and f7/2.The spin orbit splitting ratio is 1:2 for p levels ,2:3 for d levels and 3:4 for f levels .Because each element has a unique set of binding energies, XPS can be used to identify and determine the concentration of the elements in the surface. Variations in the elemental binding energies (the chemical shifts) arise from the differences in the chemical potential and polarizibilty of compounds. These chemical shifts can be analyzed to identify the chemical state of the materials being analyzed.The electrons leaving sample are detected by an electron spectrometer according to their kinetic energy. The analyzer is usually operated as an energy window, referred to as pass energy. To maintain a constant energy resolution, the pass energy is fixed. Incoming electrons are adjusted the pass energy before entering the energy analyzer. Scanning for different energies is accomplished by applying a variable electrostatic field before the analyzer. This retardation voltage may be varied from zero upto and beyond the photon energy. Electrons are detected as discrete events, and the number of electrons for the given detection time. And energy is stored and displayed.In general, the interpretation of the XPS spectrum is most readily accomplished first by identifying the lines that almost always present (specifically those of C and O), then by identifying major lines and associated weaker lines.(B) Auger electron spectroscopy:Auger electron spectroscopy is a very useful technique in elemental characterization of thin films. In the current project this technique has been utilized not only for elemental compositional analysis but also for understanding nucleation and growth mechanism. Auger electron effect is named after the French physicist Pierre Auger who described the process involved in 1925.Auger is process is bit more complicated than the XPS process.The Auger process occurs in three stages. First one being atomic ionization. Second being electron emission (Auger emission) and third being analysis of emitted auger electrons .The source of radiation used is electrons that strike in the range of 2 to 10 kev. The interatomic process resulting in the production of an Auger electron is shown in figure 2 below.Figure 2 showing the interatomic process resulting in production of the Auger electrons. One electron falls a higher level to fill an initial core hole in the k-shell and the energy liberated in this process is given to second electron ,fraction of this energy is retained by auger electron as kinetic energy.X-ray nomenclature is used for the energy levels involved and the auger electron is described as originating from for example ,an ABC auger transition where A is the level of the original core hole,B is the level from which core hole was filled and C is the level from which auger electron was emitted. In above figure 2 shown above the auger transition is described as L3M1M2, 3.The calculation of energies of the lines in the Auger electron spectrum is complicated by the fact that emission occurs from an atom in an excited state and consequently the energies of the levels involved are difficult to define precisely.Each element in a sample being studied gives rise to characteristic spectrum of peaks at various kinetic energies. Area generally scanned is 1 mm2.To understand the variation in the concentration with the distance from the surface depth profiling can also be carried out. For depth profiling the surface has to be etched away by using argon beam.The principle advantage that AES hold over XPS is that the source of excitation in case of AES is electrons which allows it to take a spectra from micro-regions as small as 100 nm diameters or less instead of averaging over the whole of the surface of the sample as is done generally in XPS.(C) Atomic force Microscope:Atomic Force Microscope (AFM ) is being used to solve processing and materials problems in a wide range of technologies affecting the electronics, telecommunications, biological, chemical, automotive, aerospace, and energy industries. The materials being investigating include thin and thick film coatings, ceramics, composites, glasses, synthetic and biological membranes, metals, polymers, and semiconductors.In the current work AFM was used to understand the nucleation and growth mechanism of the epitaxial thin films and to understand the surface morphology of totally grown films in terms of surface coverage and surface roughness.In the fall of 1985 Gerd Binnig and Christoph Gerber used the cantilever to examine insulating surfaces. A small hook at the end of the cantilever was pressed against the surface while the sample was scanned beneath the tip. The force between tip and sample was measured by tracking the deflection of the cantilever. This was done by monitoring the tunneling current to a second tip positioned above the cantilever. They were able to delineate lateral features as small as 300 Å. This is the way force microscope was developed. Albrecht, a fresh graduate student, who fabricated the first silicon microcantilever and measured the atomic structure of boron nitride. The tip-cantilever assembly typically is microfabricated from Si or Si3N4. The force between the tip and the sample surface is very small, usually less than 10-9 N.According to the interaction of the tip and the sample surface, the AFM is classified as repulsive or Contact mode and attractive or Noncontact mode. In contact mode the topography is measured by sliding the probe tip across the sample surface. In noncontact mode, topography is measured by sensing Van de Waals forces between the surface and probe tip. Held above the surface. The tapping mode which has now become more popular measures topography by tapping the surface with an oscillating probe tip which eliminates shear forces which can damage soft samples and reduce image resolution. 1. Laser2. Mirror3. Photo detector4. Amplifier5. Register6. Sample7. Probe8. CantileverFigure 3 showing a schematic diagram of the principle of AFM.Compared with Optical Interferometric Microscope (optical profiles), the AFM provides unambiguous measurement of step heights, independent of reflectivity differences between materials. Compared with Scanning Electron Microscope, AFM provides extraordinary topographic contrast direct height measurements and unobscured views of surface features (no coating is necessary). One of the advantages of the technique being that it can be applied to insulating samples as well. Compared with Transmission Electron Microscopes, three dimensional AFM images are obtained without expensive sample preparation and yield far more complete information than the two dimensional profiles available from cross-sectioned samples.(D) Fourier Transform Infrared Spectroscopy:Infrared spectroscopy is widely used chemical analysis tool which in addition to providing information on chemical structures also can give quantitative information such as concentration of molecules in a sample.The development in FTIR started with use of Michelson interferometer an optical device invented in 1880 by Albert Abraham Michelson. After many years of difficultiesin working out with time consuming calculations required for conversion intereferogram into spectrum, the first FTIR was manufactured by the Digilab in Cambridge Massachusetts in 1960s .These FTIR machines stared using computers for calculating fourier transforms faster.The set up consists of a source, a sample and a detector and it is possible to send all the source energy through an interferometer and onto the sample. In every scan, all source radiation gets to the sample. The interferometer is a fundamentally different piece of equipment than a monochromater. The light passes through a beamsplitter, which sends the light in two directions at right angles. One beam goes to a stationary mirror then back to the beamsplitter. The other goes to a moving mirror. The motion of the mirror makes the total path length variable versus that taken by the stationary-mirror beam. When the two meet up again at the beamsplitter, they recombine, but the difference in path lengths creates constructive and destructive interference: an interferogram:The recombined beam passes through the sample. The sample absorbs all the different wavelengths characteristic of its spectrum, and this subtracts specific wavelengths from the interferogram. The detector reports variation in energy versus time for all wavelengths simultaneously. A laser beam is superimposed to provide a reference for the instrument operation.Energy versus time was an odd way to record a spectrum, until the point it was recognized that there is reciprocal relationship between time and frequency. A Fourier transform allows to convert an intensity-vs.-time spectrum into an intensity-vs.-frequency spectrum.The advantages of FTIR are that all of the source energy gets to the sample, improving the inherent signal-to-noise ratio. Resolution is limited by the design of the interferometer. The longer the path of the moving mirror, the higher the resolution.One minor drawback is that the FT instrument is inherently a single-beam instrument and the result is that IR-active atmospheric components (CO2, H2O) appear in the spectrum. Usually, a "Background" spectrum is run, and then automatically subtracted from every spectrum.(E) Scanning Electron Microscopy:Scanning electron microscopy is one the most versatile characterization techniques that can give detailed information interms of topography, morphology, composition and crystallography. This has made it widely useful in thin film characterization.The scanning electron microscope is similar to its optical counterparts except that it uses focused beam of electrons instead of light to image the specimen to gain information about the structure and composition.A stream electron is accelerated towards positive electrical potential. This stream is confined and focused using metal apertures and magnetic lenses into a thin, focused, monochromatic beam. This beam is focused onto the sample using a magnetic lens. Interactions occur inside the irradiated sample, affecting the electron beam. These interactions and effects are detected and transformed into an image. The electron detector collects the electrons and then image is created. Scanning with SEM is accomplished bytwo pairs of electromagnetic coils located within the objective lens, one pair deflects the beam in x-direction across the sample and the other pair deflects it in the y direction. Scanning is controlled by applying an electric signal to one pair of scan coils such that the electron beam strikes the sample to one side of theFigure 4 Schematic view of a SEM instrument.center axis of the lens system. By varying the electrical signal to this pair of coils as a function of time, the electron beam is moved in a straight line across the sample and then returned to its original position. Thus by rapidly moving the beam the entire sample surface can be irradiated with the electron beam. The output signal consists of backscattered and secondary electrons which generally serve as basis of scanning electron microscope and whereas the x-ray emission serves as the basis of the energy dispersive spectroscopy as shown in figure 4.Figure 5.Schematic presentation of the interaction of the electron with the sample.Energy dispersive spectroscopy is analytical method which is used in determination of elemental composition of the specimen.EDS uses the electrons generated characteristic x-radiation to determine elemental composition. The SEM/EDS combination is a powerful tool in inorganic microanalysis, providing the chemical composition of volumes as small as 3 m3.(F) Transmission Electron microscopy:Transmission electron microscopy was used to analyze the interface between the BaTiO3 on SrTiO3 single crystals.For TEM specimen must be specially prepared to thicknesses which allow electrons to transmit through the sample, much like light is transmitted through materials in conventional optical microscopy. Because the wavelength of electrons is much smaller than that of light, the optimal resolution attainable for TEM images is many orders of magnitude better than that from a light microscope. Thus, TEMs can reveal the finest details of internal structure - in some cases as small as individual atoms. Magnifications of 350,000 times can be routinely obtained for many materials, whilst in special circumstances; atoms can be imaged at magnifications greater than 15 million timesThe energy of the electrons in the TEM determine the relative degree of penetration of electrons in a specific sample, or alternatively, influence the thickness of material from which useful information may be obtained.Cross-sectional specimens for TEM observation of the interface between the film and the substrate were prepared by conventional techniques employing mechanical polishing, dimpling and ion beam milling.TEM column is shown in figure 6 consists of gun chamber on the top to the camera at the bottom everything is placed under vacuum.Figure 6. Main components of TEM system. [28]At the top of the TEM column is the filament assembly, which is connected to thehigh voltage supply by insulated cable. In standard TEM, normal accelerating voltagesranges from 20,000 to 100,000V.Intermediate-voltage and high voltage TEMs may use accelerating voltages of 200,000 V to 1000000 V.The higher the accelerating voltage, the greater the theoretical resolution. Below the filament tip and above it the anode is a beam volume called crossover. In this area of the filament chamber, the electron beam volume iscondensed to its highest density. There are more electrons per unit area at the cross over than at any other place in the microscope. Crossover is the effective electron source for image formation. In a TEM, the diameter of the electron beam at crossover is approximately 50 μm.The anode or positively charged plate, is below the filament assembly.Electron beam then travels to the condenser –lens system.TEMs has two condensers lenses. Condenser system lens system controls electron illumination on the specimen and on the viewing screen for such functions as viewing, focusing and photography. Condenserlenses are fitted with apertures which are usually small platinum disks or molybdenum strips with holes of various sizes ranging from 100 to 400 μm and it protects specimen from too many stray electrons which can contribute to excessive heat and limit X-ray production farther down the columnObjective lens is the first magnifying lens and the specimen is inserted into the objective lens, which must be designed so that the specimen can be moved in both X and Y directions and have tilting and rotating capabilities. As the electron beam interacts with the specimen, a number of signals useful in the formation of the TEM image occur: absorption, diffraction, elastic scattering and inelastic scattering.(H) X-ray Diffraction (XRD):X-ray diffraction is the most commonly known technique which I used to determination of the phase formed in films and also to assess texture and crystallinity.X-rays were discovered in 1895 by the German physicist Wilhelm Conrad Röntgen - in some languages x-rays are called Röntgen-rays - and x-ray diffraction was discovered in 1912.The X-rays used in diffraction experiments all have a wavelength of 0.5-2.5 Å. The intensity of a beam of x-rays is the rate of transport of energy flow through a unit area perpendicular to the direction of propagation. To produce x-rays, a source of electrons, a high accelerating voltage and a target are needed. To get the voltage, the metal target is grounded and a cathode is at 30-50 kV. To get the electrons a metal filament is resistively heated (the tube is called a filament tube). The filament current is 3-5 amps. The cathode and the filament is one and the same thing and surrounding the target and the filament is an air evacuated envelope.The electrons from the filament are accelerated towards the target. They bombard the target in a rectangular shaped area called the focal spot. From there the x-rays are emitted in all directions. The walls of the tube are impenetrable for the x-rays except where beryllium windows are inserted. Beryllium has a very low absorption coefficient for the x-rays.The amount of x-rays produced depends on the number of electrons emitted and their energy when they reach the target. The number of electrons in turn depends on the filament temperature, and thus the filament current. The current of electrons from the filament to the target is measurable and usually 25-55 mA. This current can be chosen freely as a feedback loop will feed the filament with the current needed. The energy ofthe electrons depend on the accelerating voltage. Thus the total intensity emitted by thex-ray tube depends on both the operating voltage and the tube current.In general, diffraction is possible when the length of the wave is of the same order of magnitude as the distance between the regularly spaced scattering objectsTwo scattered rays are in phase, if their path difference is equal to a whole number n of wavelengths. Scattered rays emerging from a plane surface as a result of a beam incident on that surface, have a path difference equal to a whole number of wavelengths, if n l = 2 d' sinq (The Bragg Law),where d' is the distance between the diffracting planes in the crystal and q is the angle between the incident beam and the surface. n is the order of reflection and n can be any integral number as long as sin q < 1. n is also equal to the number of wavelengths in the path difference of two rays scattered from adjacent planes (e.g. If n = 2 then a ray scattered from one plane will have a path that is two wavelengths shorter than a ray scattered from a deeper lying neighbor plane).The basis for phase analysis is that the crystal of a certain phase will have interatomic distances peculiar to that phase and these different distances will cause a series of reflections as the detector are shifted through 2theta.Two phases can have similar or almost similar structures and hence interatomic distances. This makes identifying phases in an unknown sample very difficult, but knowing what elements are present in the sample will narrow the possibilities down quite a bit. Also crystallite size using XRD .X-ray pole figure measurements are used to characterize the film with respect to any preferred orientation with which growth has taken place. Rocking curve is another application to characterize the film with respect to its quality ofcrystallinity comparing to the single crystals or polycrystalline materials.。
现代材料分析方法第八章表面分析技术ppt课件

篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
Monochromator
24
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
半球型光电子能量分析器
只有能量在选定的很窄范围内的电子可能循着一定的轨道 达到出口孔,改变电势,可以扫描光电子的能量范围。
25
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
3. 电子探测及数据处理
• 光电子信号微弱;10-16~ 10 -14A
Electron Spectroscopy for Chemical Analysis),
这一称谓仍在分析领域内广泛使用。
2
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概述
• XPS是瑞典K.Siegbahn教授及其同事经近20年潜心 研究,于六十年代中期研制开发的一种新型表面分 析方法。
3. 逃逸深度(λm)
• 只有那些来自表面附近在逃逸深度以内的光 电子才没有经过散射而损失能量,才对确定 Eb的谱峰有所贡献。
• 对于XPS 有用的光电子能量100~1200eV λm =0.5~2.0nm(金属) =4~10nm(高聚物)
9
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
• 他们发现了内层电子结合能的位移现象,解决了电 子能量分析等技术问题,测定了元素周期表中各元 素轨道结合能,并成功地应用于许多实际的化学体 系。
材料现代分析方法

材料现代分析方法一.绪论1.材料现代分析方法:是关于材料成分、结构、微观形貌与缺陷等的现代分析,测试技术及其有关理论基础的科学。
2.基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法。
3.各种方法的分析、检测过程均可大体分为信号发生器、检测器、信号处理器与读出装置等几部分组成。
二.核磁共振1.核磁共振(Nuclear Magnetic Resonance,NMR):无线电波照射样品时,使特定化学结构环境中的原子核发生的共振跃迁(核自旋能级跃迁)。
2.拉摩尔进动:外磁场与核自旋磁场的相互作用,导致核自旋轴绕磁场方向发生回旋,称为拉摩尔进动。
3.核磁共振现象的产生机理:主要是由核的自旋运动引起的,核的自旋产生了不同的核自旋能级,当某种频率的电磁辐射与核自旋能级差相同时,原子核从低自旋能级跃迁到高自旋能级,产生了核磁共振现象。
4.描述核自旋运动的量子数I与原子核的质子数和中子数有关,有下列三种情况:(1)偶-偶核,I=0;(2)奇-偶核,I为半整数;(3)奇-奇核,I为整数。
5.核磁共振的条件:(1)原子核有自旋现象(I﹥0);(2)在外磁场中发生能级裂分;(2π)。
(3)照射频率与外磁场的比值υB=γIB。
6.1H核磁共振条件:υO=γI2π7.化学位移:某一质子吸收峰出现的位置,与标准物质质子吸收峰出现的位置之间的差异,称为该质子的化学位移δ。
8.化学位移现象:同一种类原子核,但处在不同的化合物中,或是虽在同一种化合物中,但所处的化学环境不同,其共振频率也稍有不同,这就是所谓的化学位移现象。
9.影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键效应和溶剂效应。
质子周围电子云密度↑,屏蔽效应↑,在较高磁场强度处(高场)发生核磁共振,δ小;电子云密度↓,屏蔽效应↓,在较低磁场强度处(低场)发生核磁共振,δ大。
浙大材料现代分析技术-讲义-热分析1

料
现 代
第一章 材料热分析
分
析
技
术
材
要点回顾
料 现 代
材料与材料科学 材料研究与现代分析技术
分
材料现代分析技术的分类
析
电磁辐射与材料的相互作用
技
粒子(束)与材料的相互作用
术
材料现代分析的任务与方法
材料分析技术的选择
材
料
现 代
组成
分
析
技
术
元素组成 1. 整体组成分析 2. 微区体组成分析 3. 微区表面、晶界、相界组成分析
技
量自高温物体向低温物体传递,功转变为热
术
等),而其逆过程则不能自发地进行。
§1. 材料热分析绪论
材
对于封闭体系,系统只作体积功,在等温和
料
等压下,由始态变化到终态时,吉布斯函数
现
的变化值为,∆G=∆H-T∆S
代
式中, ∆G-吉布斯函数的变化; ∆H-焓变;T-热
分
力学温度; ∆S-嫡变。
析
∆G < 0时,为自发进行过程;
现
划分可分为固态、液态和气态。物质的聚集态与 温度和压力有关。
代
相态是热力学概念,可分为固相(晶相、非晶相)、
分
液相和气相。物质在一定条件下从一种相转变为
析 技
另一种相称为相变。相变时热力学函数有突变。 晶相中其分子或原子呈规则、对称和周期性结 构状态。
术
非晶相和液相中分子或原子呈近程有序远程无
序状态,因此具有类似液相结构的非晶相固体
种形式,它与过程的性质无关。
§1. 材料热分析绪论
材 料
热力学平衡态
现 代 分
现代材料分析技术

材料研究的三个方面:化学组成、组织结构、微观形貌材料的三层次结构(按存在形式)分为:晶体结构、非晶体结构、孔结构以及上述结构的组合四层次(按尺度大小)分为:宏观结构、显微结构、亚微观结构、微观结构晶体:是指组成它的原子(离子、分子、原子团)有规则的排列的固体分类:32个晶类,7个晶系,3个晶族,14种布拉菲阵点光谱按强度对波长的分布特点分为:线光盘,带光谱,连续光谱特征X射线:原子内层出现空位,较外层电子向内层跃迁,发射的辐射即X射线,其光子频率取决于电子跃迁前与跃迁后的能级差,也可以说取决于初态与终态电子结合能之差,故称为特征X射线(表征元素的特征信息),由于是光激发,故发射的X射线为荧光(二次)X射线。
俄歇效应:原子的退激发不以X射线的方式进行,则以发射俄歇电子的方式进行,此过程称为俄歇效应。
俄歇电子:如图,以K层出现空位为例,L层电子向K层跃迁,多余能量不以产生辐射的形式释放,而使L层上的另一电子脱离原电子发射出去,此电子称为俄歇电子,俄歇电子是一个无辐射的跃迁过程。
俄歇电子的标识为KL2L3俄歇电子,KL2L3顺序表示俄歇过程的初态空位所在能级,向空位作无辐射跃迁电子原在能级及发射电子原在能级的能级符号。
X射线的产生过程:X射线仪是产生X射线的装置,其基本原理是以由阴极发射并在管电压作用下向靶材料(阳极)高速运动的电子流为激发源,到致靶材发生辐射,即产生X射线特征X射线中K系特征辐射的机理:若K层产生空位,其外层电子向K层跃迁产生X射线统称为K系特征辐射,其中由L、M层或更外层电子跃迁产生的K系特征辐射顺序分别为Kα,Kβ……Kα强度最大特征X射线波长由靶材料决定,与管电压无关滤波片选择的原则:1选择滤片材料,使其K吸收限处于入射的Kα射线与Kβ射线波长之间,则Kβ射线因激发滤片的荧光辐射而被滤片吸收。
2滤片材料原子序数Z滤与Z靶满足下列条件时:λKβ靶<λK滤<λKα靶;当Z靶<40时,Z滤=Z靶,当Z靶>40时,Z滤>Z靶—2衍射的本质:是晶体中各原子相干散射波叠加(合成)的结果布拉格方程(实验):入射X射线照射到安装在样品台上,在满足反射定律的方向设置反射接收装置,X射线照射过程中,记录装置与样品台以2:1的角速度同步转动,以保证记录装置始终处于接收反射线的位置上。
材料现代分析与测试技术论文DOC

材料现代分析与测试技术论文一、X射线单晶体衍射仪(X-ray single crystal diffractometer,简写为XRD)基本原理:根据布拉格公式:2dsinθ=λ可知,对于一定的晶体,面间距d一定,有两种途径可以使晶体面满足衍射条件,即改变波长λ或改变掠射角θ。
X射线照射到某矿物晶体的相邻网面上,发生衍射现象。
两网面的衍射产生光程差ΔL=2dsinθ,当ΔL等于X射线波长的整数倍nλ(n为1、2、3….,λ为波长)时,即当2dsinθ=nλ时,干涉现象增强,从而反映在矿物的衍射图谱上。
不同矿物具有不同的d值。
X射线分析法就是利用布拉格公式并根据x射线分析仪器的一些常数和它所照出的晶体结构衍射图谱数据,求出d,再根据d值来鉴定被测物。
主要功能:收集晶体衍射数据以及进一步确定晶体结构,过程主要包括:挑选样品,上机,确定晶胞参数,设定参数进行数据收集,数据还原,结构解析。
二、光学显微镜(Optical Microscopy ,简写为OM)基本原理:显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。
因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大率。
显微镜观察物体时通常视角甚小,因此视角之比可用其正切之比代替。
显微镜放大原理光路图显微镜由两个会聚透镜组成,光路图如图所示。
物体AB经物镜成放大倒立的实像A1B1,A1B1位于目镜的物方焦距的内侧,经目镜后成放大的虚像A2B2于明视距离处。
主要功能:把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息。
三、扫描式电子显微镜(scanning electron microscope,简写SEM)工作原理:SEM的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。
【精选】现代材料分析技术PPT课件

s102A 1
w sgg 5
4.2.3 不全位错 非常复杂,衬度还受层错的影响!
Partial dislocations in fcc crystals
b 1 [112] 6
b 1[111] 3
b 1 [110] 6
Shockley partial Frank partial Stair-rod partial
3. 衍射衬度理论
3.1 基本假设
运动学理论的基本假设
运动学理论
晶柱假设 平面波假设 双束近似 衍射束总是比透射束弱得多 电子只能衍射一次 不存在对电子的吸收
动力学理论
晶柱假设 平面波假设 双束近似 衍射束可以和透射束一样强 电子可以多次衍射 电子吸收不可避免
3.2 公式
运动学公式 :
t
3.衍射斑点强度 IE/IX160~170
4.辐射深度:(E):低于1μm数量级 (X):低于100μm数量级
5.作用样品体积:(E):V1μm 3109mm 3 (X):V0.1~5mm 3
6.晶体位向测定精度: (E):用斑点花样测定,约±3° (X):优于1°
注:(E)表示电子衍射,(X)表示X射线衍射。
第二相粒子分析
粒子/基体取向关系
成份分布
有序化和超点阵
界面和晶界
与成象条件有关
除与1)相同外还有:
晶态—非晶态转变
相变
晶体缺陷结构
是晶体点阵沿入射束方向的投
表示晶体的真实结构
影,在相位衬度传递函数第一
晶体缺陷的原子结构
个零点范围内图像与实际晶体
晶体缺陷的原子缀饰
结构原子排列有一一对应关系
材料的现代分析测试技课件

§1-5
X射线与物质的相互作用
一、X射线的散射
物质对X射线的散射主要是电子与X射线的相互作用的结果。 相干散射 相干散射 X射线的散射 X射线的散射 非相干散射 非相干散射 入射X射线与物质中原子 入射X射线与物质中原子 核束缚较松的的电子相互 核束缚较松的的电子相互 作用所产生的衍射效应。 作用所产生的衍射效应。 入射X射线与物质中原子 入射X射线与物质中原子 核束缚较紧的的电子相互 核束缚较紧的的电子相互 作用所产生的衍射效应。 作用所产生的衍射效应。
R∞-里德伯常数, R∞=1.0974×107m-1
1 = k ⋅ (z - σ ) λ
莫塞莱定律
莫塞莱定律说明:标识X射线的波长取决于物质的原子序数。 不同的物质原子序数不同,标识X射线的波长不同,一种物质 有它自己的标识X射线的波长 如果把K层电子电离,所产生的X射线为K系标识X射线: K层电子电离后,L层电子跃迁到K层所得的X射线为Kα射线, M层电子跃迁到K层所得的X射线为Kβ射线, N层电子跃迁到K层所得的X射线为Kγ射线,
① 波动性
X射线沿着y方向传播时,同时具有电场强度E和 磁场强度H,这两个矢量总是以相同的周相,在两个 相互垂直的平面内作周期振动且于y方向相垂直。传 播速度等于光速。
如果用数学式子表示波函数:
r r y t ϕ E = E 0 exp[2πi ( − − )] λ T 2π r r y t ϕ H = H 0 exp[2πi ( − − )] λ T 2π
Z靶≤Z试样+1
结
束
第二章 X射线衍射方向
§2-1 晶体几何学基础
一、空间点阵
在晶体中凡是几何 环境、物理环境完全相 同的点称为等同点。 这些等同点按连接 起来,按原晶体中的原 子(原子团)的排列完全 相同的骨架,称为空间 点阵。
南京工业大学材料学院材料现代分析测试技术经典完整版资料.doc

第一章X射线衍射分析一、X射线的性质:1、本质是电磁波0.01~1000A. 介于紫外线和r射线之间,没有明显的分界线。
2、波粒二象性:E=h c/λ;p=h/λ,都具有波动和粒子的双重性。
二、X射线的获得1、获得条件:a产生并发射自由电子b 在真空中迫使电子朝一定的方向加速,以获得尽可能高的速度c 在高速电子流运动的方向设一障碍、使高速运动电子突然受阻而停止2、射线的获得仪器:X射线机,同步辐射X射线源,放射性同位素X射线源三、X射线谱:a连续X射线谱(白色x射线谱):从某个最大波长(称之为短波极限)开始的连续的各种同波长的x射线;极限波长λ0=hc/ev,取决于管电压、管电流、原子序数)b特征X射线谱(标识x射线谱):若干个特定波长的X射线,取决于靶材料,根本原因是原子内层电子的跃迁四、X射线与物质的相互作用:a:一部分光子由于与原子碰撞改变方向,造成散射线。
b:另一部分光子可能被原子吸收,发生光电效应。
c:部分光子能量可能在与原子碰撞过程中传递给了原子,成了热振动能量产生的结果:产生了散射X射线、电子、荧光X射线、热能。
主要应用:(荧光X射线光谱分析,X射线光谱分析、X光电子能谱分析、X射线衍射分析)1、散射现象(分为相干散射和不相干散射)a:相干散射(X射线散射线的波长与入射线相同,并且有一定的相位关系,它们可以相互干涉形成衍射图样,称为相干散射)b:不相干散射(X射线光子与自由电子撞击时,光子的部分能量损失,波长变长,因此与入射光子形成不相干散射)2、光电吸收(光电效应):当X射线的波长足够短的时候,其光子的能量大,以至于可以把原子中处于某一能级上的电子打出来,而它本身则被吸收。
它的能量传递给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态五、X射线的吸收及应用1、强度衰减规律:当X射线穿过物体时,其强度按指数下降I=I0 e-u1x (u1是线吸收系数)与吸收体的密度原子序数Z及X射线波长有关I=I0 e-u mÞx (u m 是质量吸收系数)只与吸收体原子序数和X射线波长有关结论:X射线波长越短,吸收体原子越轻(Z越小),则透射线越强。
材料现代分析技术整理

电子显微分析
1. 背散射电子:被固体样品原子反射回来的一部分入射电子,分为弹性和非弹性两种。产 生范围为 1000 A 到 1um,成像分辨率 500~2000 A ,产额:与式样的原子序数有密切关 系,背反射电子的产额随原子序数的增加而增加。应用:形貌特诊分析、显示原子序数 衬度、定性成分分析。
第一部分 X 射线衍射分析(XRD)
1. K 系特征谱线特点:由 L、M、N 等壳层的电子跃迁到 K 壳层的空位时发出的 X 射线,分 别称为 Kα 、Kβ 、Kγ 谱线,共同组成 K 线系特征谱线。Kα 特征谱线最强,比相邻谱线 强 90 倍,是最常用的谱线。 2. 特征 X 射线的产生:在原子内固定壳层上的电子具有特定能量,当外加能量足够大时, 可将内层电子激发出去,形成一个内层空位,外壳层的电子跃迁到内层,多余的能量以 X 射线形式放出。 3. X 射线的本质为电磁波。 4. 滤光片的目的和材料: 用来过滤或降低 X 射线光谱中的连续 X 射线和 Kβ 线的金属薄片,K β 大部分被吸收,Kα 损失较小,滤波片材料的原子叙述一般比 X 射线管靶材的原子序 数低 1。 5. CuKα 的含义:以 Cu 作为靶材,高速电子轰击在铜靶上,使铜 K 层产生了空位,L 层电 子跃迁到 K 层,产生 K 系特征辐射。 6. X 射线的衍射方向是根据布拉格方程理论推导出的。 7. 布拉格方程的推导: 含义: 线照射晶体时, 只有相邻面网 之间散射的 X 射线光程差为波长的整数 倍时,才能产生干涉加强,形成衍射线, 反之不能形成衍射线。 2d hkl sin n 讨论: (1) 当 一定,d 相同的晶面, 必然在 相同的情况下才能 获得反射。 (2) 当 一定,d 减小, 就要增大,这说明间距小的晶面,其掠过角必须是较 大的,否则它们的反射线无法加强,在考察多晶体衍射时, 这点由为重要。 (3) 在任何可观测的衍射角下,产生衍射的条件为: 2 d ,但波长过短导致 衍射角过小, 使衍射现象难以观测, 常用 X 射线的波长范围是 0.25~0.05nm。 (4) 波长一定时,只有 d / 2 的晶面才能发生衍射—衍射的极限条件。 8. X 射线的强度 (严格定义) 单位时间内通过衍射方向垂直单位面积上 X 射线光量子数目。 表示方法:衍射峰高度或衍射峰积分面积。理论计算 I PF 结构因子, ( ) -因数) 。
《材料现代分析技术》课程教学方法研究与实践

[ 收稿 时间] 2 0 1 3 — 0 6 — 0 5 [ 基 金项 目] 上海工程技术 大学《 材料现代分析技 术》 课程建设项 目( 编号 : k 2 0 1 2 0 5 0 0 3 ) 。 [ 作 者简 介] 李军( 1 9 7 7 一 ) , 男, 内蒙古人 , 博士 , 教授 , 研 究方向: 材料表 面改性。 1 0 8
彦 裔
2 0 1 3 年 l 1 Un i v e r s i t y Ed u c a t i o n No v e mb e r, 2 0 1 3
《 材料现代分析技术》 课程教学方法研究与实践
李 军 刘延辉 何 亮 李 忠文
( 上海工程技术大学 材料工程学院, 上海 2 0 1 6 2 0 )
授 的内容包括 x射线衍 射 、 电子衍射原理 、 电子光 学基 础、 衍 衬运动学 基础等 基本理论 和 x射 线衍射仪 、 电子
线被发现后 仅 7 个 月就体 验了此种新技术 , 成为拍 x光 片检查枪伤 的第一个 中国人 。通过 这些背景 的介 绍 , 极 大地调动了学生的积极性 , 学生迫切需要知道 x射线 的 本质是什么 , x射线 和其他 电磁波 的本质 区别是什 么 , x 射线的具体用途有哪些 。这样再讲授 以上 内容就变得顺
生 的创 新 思 维 能 力 和理 论 与 工程 实践 相 结合 的 能 力 。
[ 关键 词 ] 材料分析技 术
教 学方法 实践
[ 中图分类号] G 6 4 2 . 0 引 言
[ 文献标识码 ] A
[ 文章编号 ] 2 0 9 5 — 3 4 3 7 ( 2 0 1 3 ) 2 1 — 0 1 0 8 — 0 2
[ 摘 要] 《 材料现代 分析技术》 课程在 实际授课 中存在理论性过强、 内容晦 涩难懂 , 学生 学习积极性不 高、 兴趣 不大的问题 。教
材料现代分析技术 课件 第3--5章 衍射原理、 X射线应用、电子衍射

二 、单原子对非偏振入射X射线的散射强度
非偏振入射-单电子:
设原子核外有Z个电子,受核束缚较紧,且集中于一点,则单原子对 X射线的散射强度Ia就是Z个电子的散射强度之和,即
注意:
令
则
得 瞬时值: 平均值:
定义原子散射因子f为:
注意:
推导过程:
原子散射因子的讨论:
1.当核外的相干散射电子集中于一点时,各电子的散射波之间无相位差, =0 即:f=Z。
材料研究方法 劳埃方程与布拉格方程知识点
课程内容
— 二 三 四
劳埃方程 布拉格方程 布拉格方程的讨论 衍射矢量方程
一、劳埃方程
标量式: 矢量式:
一维
二维
三维
二 、布拉格方程
几点假设: 1 原子静止不动; 2 电子集中于原子核; 3 X射线平行入射; 4 晶体由无数个平行晶面组成,X射线可同时作用于多个晶面; 5 晶体到感光底片的距离有几十毫米,衍射线视为平行光束。
2dHKLsin =
三 、布拉格方程的讨论
2.衍射条件分析
要求
减小入射波长时,参与衍射的晶面数目将增加!
例如, -Fe体心立方结构中,晶面间距依次减小的晶面(110)、(200)、
(211)、(220)、(310)、(222)
中,当采用铁靶产生的特征X射线
为入射线时, K =0.194nm,仅有前四个晶面能满足衍射条件参与衍射, 若采用铜靶产生的特征X线入射时, 降至0.154nm,参与衍射的晶面
课后思考:多晶平板试样转动过程中,衍射晶面平行于试样表面?
谢谢!
材料研究方法
电子、原子、单胞对x射线的散射知识点
课程内容
X射线的散射强度介绍顺序:
材料现代分析测试技术-光谱分析共167页文档

1. -ray spectrometry
天然或人工放射性物质的原子核在衰变的过程中发射
和粒子后,使自身的核激发,然后核通过发射射线回到 基态。测量这种特征射线的能量(或波长),可以进行定 性分析,测量射线的强度(检测器每分钟的记数),可以 进行定量分析。
元素的定性定量分析 原子吸收、原子发射、荧光光谱法等
MS用一定能量源轰击 气态分子,使其成为 带正电的分子离子、 碎片离子,所有的正 离子在电场和磁场的 综合作用下按质荷比 (m/z)大小依次排列 而得到谱图而建立的 分析方法。
8.3 原子发射光谱法
一、Summary 物质通过电致激发、热致激发或光致激发等激发过程获得 能量,变为激发态原子或分子M* ,当从激发态过渡到低 能态或基态时产生发射光谱
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
材料现代分析测试技术
金韶华
第8章 光谱分析 第9章 原子核环境的研究方法 第10章 质谱
主要参考书: 1、王富耻,材料现代分析测试方法,北京理工大学 2、宁永成,有机化合物结构鉴定及有机波谱学,科学出版社
材料现代分析测试技术-光谱分析
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
分子光谱法(Molecular spectrometry)是基于分子外层 电子能级的变化而产生的,由于分子光谱包含许多精细结构, 因而表现为带状光谱,例如:紫外-可见吸收光谱,分子荧 光光谱等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料现代分析技术实验指导书上海工程技术大学材料工程学院二OO六年二月实验一利用X射线衍射技术进行物相定性分析一、实验目的1.了解X射线物相定性分析步骤。
2.掌握X射线物相定性分析方法。
二、实验要求熟悉由一张粉末衍射谱线,获得相关数据,借助Pcpdfwin计算机软件,标定出谱线对应的物相类型。
通过本实验,利用计算机软件熟练进行PDF卡片检索工作。
确定每个衍射峰的衍射角2θ和衍射强度I´,掌握X射线物相定性分析实验方法。
三、实验内容1.根据已获得的待测样品的衍射谱线及相关数据,确定每个衍射峰的衍射角2θ和衍射强度I´,规定最强峰的强度为I´max=100,依次计算其它衍射峰的相对强度I=100(I´/ I´max)值;根据入射X线波长λ和各个2θ值,由布拉格方程计算出各个衍射峰对应的晶面间距d,并按d由大到小的顺序分别将d和I排成两列。
2.利用这一系列d和I数据进行PDF卡片检索,通过这些数据与标准卡片中数据对照,从而确定出待测物相的类别。
四、实验步骤1.取一张已制备的衍射谱线,了解其相关衍射实验条件。
2.熟悉Pcpdfwin计算机软件的使用。
3.按衍射强度I由大到小的顺序分别将d和I排成两列。
4.借助Pcpdfwin软件,确定待测样品的物相类别。
五、实验报告要求1.写出依据X射线衍射进行材料物相定性分析的基本步骤。
2.说明利用Pcpdfwin软件检索PDF卡片确定物相的过程。
3.列出所得物相的关键数据。
(物相化学式及英文名称、卡片号、三强线、最大晶面间距、试验条件、晶体学数据、物理性质、d值序列等)4.物相分析包括X射线衍射实验和PDF卡片检索两部分内容,结合本实验简要叙述获得正确结果的实验要点、注意事项以及实验体会等。
实验二透射电子显微分析技术及复型样品制备一、实验目的1.了解透射电镜的工作原理和结构特点,掌握基本操作方法。
2.掌握透射电镜二级复型样品的制备方法。
二、实验要求通过实验帮助大家了解透射电镜的工作原理和结构特点,初步熟悉透射电镜的正确使用;要求加深对有关电子光学基础知识的理解,并能用示意图简要说明透射电镜的主要结构特点和工作原理,重点是电子光学系统(镜筒)及其成象原理;能利用光栅法标定放大倍率。
通过复型样品制备实践,加深了解透射电镜对复型样品的基本要求。
掌握利用金相试样制备透射电镜二级复型样品的方法。
为进一步应用透射电镜分析技术打下基础。
三、实验内容1.透射电镜的工作原理和结构特点以DX201型透射电子显微镜为对象,通过指导教师现场讲解和示范,了解设备的结构特点和工作原理;然后在实验教师指导下,利用实验室已制备好的光栅复型画出该设备M-I i曲线。
DX201型透射电子显微镜加速电压最高80千伏,分辨率优于2nm,最高放大倍数为5万倍,其镜筒由电子枪、单聚光镜照明系统和物镜、中间镜、投影镜三级成象系统及样品室等部分组成。
DX201型透射电子显微镜功能不多,但结构简单,操作方便,稳定性好。
其总放大倍率为三个电磁透镜放大倍率之乘积:M=M o M i M p, 式中M o、M i、M p 分别为物镜、中间镜、投影镜的放大倍率。
它们随各自的透镜电流而变化。
但投射电镜的放大倍率还将受到样品平面高度和加速电压影响。
在不太高的放大倍率(5万倍)下,常用衍射光栅复型作为标样来标定仪器在一定加速电压和透镜电流条件下的放大倍率。
若光栅常数为N条/mm,所摄底片上测得几条条纹像的平均距离为Smm,则该条件(一定加速电压和中间镜电流I i)下的放大倍率为:M=SN/n。
其中n为所测条纹数。
2.塑料-碳二级复型样品制备(1)制备原始样品:其方法与普通金相试样相同,但浸蚀应稍浅,以免失去组织细节。
(2)贴膜:在样品试面上滴一滴丙酮,然后贴上预先制备的醋酸纤维薄膜(厚30—80μm,简称A·C纸),膜下不应有气泡、间隙和皱折(若试面粗糙,可在溶剂完全蒸发前用软橡皮适当轻压),静置片刻后即可在普通白炽灯下烘烤使之干燥,通常将试面上制取的第一、二张膜弃去,借以清洁试面。
(3)取膜:小心揭下已干燥的塑料膜,剪去多余部分,浮雕面向上,以其背面平整地粘贴在玻璃片上的透明胶纸上,且中间衬以纸片以防止复型的有用部分被粘而损坏。
(4)喷镀:将制取的塑料膜连同玻璃片置于高真空镀膜台内,先投影铬,投射倾斜角视试面浮雕深浅选用15—45º,投影厚度可为3—5nm,然后以垂直方向喷碳(第二级复型),其厚度以白色瓷片作参照物,呈现浅棕色为宜。
(5)溶解A·C膜:将制好的复合膜剪成约2mm见方的小块,然后在酒精灯上把一小片玻璃烘热,用纯净石蜡将小方块喷碳一面贴在该玻璃片上,待玻璃片冷却、石蜡凝固后,将玻璃片置于清洁丙酮中,并待A稢膜基本溶解完毕后,再置于水浴内加热至60℃左右(石蜡熔点以上),保温15—20分钟,石蜡熔解后,碳膜(包括所投影之铬)便漂浮起来。
(6)清洗和捞膜:用细铜布制成的小勺把漂浮的碳膜转移到清洁的丙酮中(只可静漂,勿使破碎),再转移到蒸馏水中,依靠水的表面张力使碳膜平展于水面上(若碳膜强度不够,为防止破碎,可先入50%丙酮水溶液过渡,再入水)。
然后,用镊子夹住电镜的支持铜网(φ3mm)将水面的碳膜捞起,连同支持铜网置于滤纸上,吸水干燥后,即可供观察。
四、注意事项1.实验前应仔细阅读本实验指导书,并参阅教学参考书中有关内容;2.进入实验室后,应严格遵守有关规章制度,严格按教师指定的部分进行操作。
五、实验报告要求1.画出DX201型透射电子显微镜的系统框图和电子光学原理图;2.画出50KV下的M-I i曲线;分析影响透射电镜放大倍数的因素。
3.写出二级复型样品制备过程的要点及注意事项。
4.简要叙述你在操作过程中的体会。
实验三扫描电子显微分析技术及金属薄膜样品制备一、实验目的1.了解扫描电子显微镜基本构造,掌握基本操作方法。
2.掌握金属薄膜样品的制备方法。
二、实验要求通过扫描电子显微设备和样品观察实践,以加深对扫描电镜的构造和工作原理的了解,并初步熟悉基本操作方法(包括安装样品、调像及摄影等)和扫描图象的观察分析,巩固有关图象衬度理论的知识。
通过金属薄膜样品制备实践,加深了解透射电镜对样品的基本要求和常用的样品制备方法,初步熟悉金属薄膜样品制备方法及制备过程中应注意的主要事项。
三、实验内容1.扫描电镜的结构特征及工作原理本实验以S-2700型扫描电镜为对象,主要由镜筒、真空系统、扫描系统、信号检测放大系统、图象显示和记录系统以及电源系统等部分组成。
电子枪采用发夹式钨丝热阴极,加速电压0.2-30KV;最大样品直径为200mm,样品台可以倾斜并作原位旋转;样品室一侧装有闪烁计数器探头,可接收样品的二次电子讯号,并经由光电倍增管形成更大电讯号输出,供给前置放大器和视频放大器;其真空系统由一只机械泵和油扩散泵二级组成,最低真空度可达7×10-4Pa;图象显示和记录部分分开,观察与拍照可同步进行等。
S-2700型扫描电镜放大倍率为15—300000倍,可分档调节,最优分辨率可达4nm,能满足断口和金相组织形态的分析要求,适用于一般生产单位和教学单位。
2.扫描电镜的样品及图象观察(1)扫描电镜的样品除了要求良好的导电性能和受样品台尺寸限制,S-2700型扫描电镜对样品几乎没有其它特殊要求,通常样品应用特制的导电胶粘在样品座上,以利于多余电荷的转移而不致影响成像质量。
(2)图象的衬度特征及观察S-2700型扫描电镜的主要工作讯号是二次电子。
图象衬度主要是利用样品表面微区特征的差异。
二次电子象衬度来源于二次电子信号强度对样品表面形貌变化敏感的特征,二次电子象分辨率较高,适合于形貌特征。
通常用二次电子象来显示金属断口和某些显微组织,尤其对断口的形态观察,二次电子象更具有立体感强,层次清晰的优点;图象中的明亮部分对应样品上二次电子信号强的部分。
显然,样品表面的边缘、棱角、孤立粒子等处,在二次电子象中呈现明亮。
解理断口的二次电子象中,呈现明显的解理台阶和河流花样;准解理断口的二次电子象则具有由点状裂纹源向四周放射的河流状亮纹,显示其断口上呈现许多短而弯曲的撕裂棱特征;晶间断裂断口的二次电子象主要呈现冰糖状形貌特征;韧性断口的二次电子象能形象地显示微坑(又称韧窝)的形貌特征;疲劳断口的二次电子象中可见疲劳条带(又称疲劳辉纹)的形貌特征。
扫描电镜可以提供丰富的资料,以供研究和分析断口,尤其是放大倍数能实现由低倍到高倍原位可调,更显示其进行断口分析的优越性。
3.金属薄膜样品制备通常由大块金属试样制备薄膜样品的过程可分为三个阶段:(1)机械减薄:根据试样材料的性能和分析要求不同,选用不同的方法。
通常采用电火花切割法获得厚度为0.5—1mm的片状薄块试样,然后用机械研磨法使试样减薄到0.1—0.2mm厚的薄片,其两面不允许有宏观粗条划痕。
(2)化学减薄:通常对切割制得的薄片试样利用化学抛光法使之进一步减薄到约50—100μm,对于不同的金属材料应选用不同化学抛光液,普通碳素钢和合金钢可采用HF:H2O:H2O2=1:4.5:4.5的溶液减薄,但对于多相合金,应慎重选择化学抛光液,以使能均匀减薄。
(3)电解抛光减薄:这是最终减薄的最简便的方法,目的是由50—100μm 的薄片制成对于电子束能“透明”的薄膜。
为制取有尽可能大的“透明”面积的薄膜,可以采用多种电解抛光方法,目前已广泛采用的是双喷电解抛光(又称PTFE夹具圆片抛光法),制得的样品中心穿孔附近有相当大的“透明”区域,薄膜也具有很好的刚性,无需铜网支承而可直接置于样品座上进行观察。
四、实验步骤1.现场听取实验教师讲解S-2700型扫描电镜的结构特征和工作原理;2.听取教师讲解仪器操作要领和示范,仔细阅读规程和注意事项;3.在教师指导下按规定范围学习操作仪器,并进行样品安装练习;4.观察实验室制备的断口样品,并选择其中一个样品进行摄影、制成照片。
5.听取教师讲解并示范金属薄膜的制备过程。
五、实验报告要求1.画出S-2700型扫描电镜的系统框图和电子光学原理图。
2.根据所摄断口照片,分析描述断口微观特征。
2.写出金属薄膜制备过程的要点及注意事项。
3.简要叙述你在操作过程中的体会。