非线性规划模型
最新6非线性规划模型汇总
分 投入资金使生猪体重随时间增加,出售单价随 析 时间减少,故存在最佳出售时机,使利润最大
建模及求解
估计r=2, g=0.1 若当前出售,利润为80×8=640(元)
t 天 生猪体重 w=80+rt 出售 出售价格 p=8-gt
销售收入 R=pw 资金投入 C=4t
注意:缺货需补足
0
T1 T
t
Q~每周期初的存贮量
每周期的生产量 R (或订货量)
RrT 2c1rc2 c3 c2 c3
RQQQ~不允许缺货时的产量(或订货量)
6.2 生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
• 设g=0.1不变
t40r60, r1.5 r
t 对r 的(相对)敏感度
20
t
15
S(t,
r)
Δt Δr
/ /
t r
dt dr
r t
10
60
5
S(t,r)
3
40r60
0
1.5
2
2.5
r3
生猪每天体重增加量r 增加1%,出售时间推迟3%。
敏感性分析
t 4r40g2 rg
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 这是一个优化问题,关键在建立目标函数。
显然不能用一个周期的总费用作为目标函数
目标函数——每天总费用的平均值
模型假设
1. 产品每天的需求量为常数 r; 2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2; 3. T天生产一次(周期), 每次生产Q件,当贮存量
非线性规划模型在管理科学中的应用研究
非线性规划模型在管理科学中的应用研究绪论管理科学是一门研究如何应用科学方法和技术来解决管理问题的学科,其中非线性规划模型作为一种重要的工具,得到了广泛的应用和研究。
本文将从理论和实践两个方面探讨非线性规划模型在管理科学中的应用研究。
一、非线性规划模型的理论基础非线性规划模型是在约束条件下,求解非线性目标函数的最优解。
它的理论基础主要包括最优性条件、解的存在性和稳定性等方面。
其中,最优性条件是非线性规划问题的核心内容之一,包括一阶和二阶条件。
一阶条件主要包括最优解的必要条件和克拉默条件。
最优解的必要条件要求目标函数在最优解处的偏导数等于零,这意味着最优解的局部均衡点满足一阶条件。
克拉默条件要求约束函数在最优解处的梯度向量线性相关,这可以帮助我们判断最优解的全局特性。
二阶条件主要包括最优解的充分条件和李普希茨条件。
最优解的充分条件要求目标函数的海森矩阵在最优解处半正定,这保证了最优解的局部最小性。
李普希茨条件要求约束函数在最优解处的雅可比矩阵满秩,这可以帮助我们判断最优解的全局稳定性。
二、非线性规划模型的应用场景非线性规划模型可以广泛应用于管理科学中的各个领域,如生产计划、供应链管理、投资组合等。
在生产计划中,我们可以利用非线性规划模型来优化产品的生产数量和生产调度,以最大化产能利用率和实现生产成本最小化。
在供应链管理中,非线性规划模型可以用于确定最佳的供应链网络结构和物流配送路线,以最大程度地降低运输成本和缩短交货时间。
在投资组合中,非线性规划模型可以用于确定最佳的资产配置比例,从而实现收益最大化和风险最小化。
三、非线性规划模型的实践应用案例以下以某公司生产计划为例,说明非线性规划模型在实践中的应用。
某公司的生产计划包括两个阶段,每个阶段有不同的生产能力和生产成本。
为了最大化利润,公司需要确定每个阶段的生产数量。
首先,我们可以建立一个非线性规划模型,将利润最大化作为目标函数,将每个阶段的生产数量作为决策变量,将约束条件包括生产能力、市场需求等考虑进去。
第6讲整数规划、非线性规划模型
一、模型准备 该问题是在原料数量一定的限制条件下,求商店生产三种口味 蛋糕各多少时,可获得最大收益. 二、模型假设 1.假设在生产过程中没有材料的浪费. 2. 假设生产的面包能全部售出, 且不考虑影响销售价格的因素. 三、变量假设 设商店生产草莓、蓝莓、柠檬三种口味的蛋糕的数量分别为
x1 , x2 , x3 ,获得的总收益为 R 元.
x=intvar(1,2); C=[240 378]; a=[1 0;0 1;1 1];b=[8 6 10]; f=C*x'; F=set(0<=x<=inf); F=F+set(a*x'<=b')+set(96*x(1)+120*x(2)>=720); solvesdp(F,f) double(f)
double(x)
整
数
规
划
最优化问题中的所有变量均为整数时,这类 问题称为整数规划问题。
如果线性规划中的所有变量均为整数时,称 这类问题为线性整数规划问题。 整数规划可分为线性整数规划和非线性整数 规划 ,以及混合整数规划等。 如果决策变量的取值只能为0或1,则这样的 规划问题称为0-1规划。
double(f)
double(x)
非线性规划
非线性规划问题的一般数学模型:
min
f ( x) h j ( x) 0, j 1, 2, , l.
s.t. gi ( x) 0, i 1, 2,, m,
其中, x E n ,
f (x) 为目标函数,
g i ( x), h j ( x) 为约束函数,这些函数中至少有
最优化模型(2)
一、一般的线性规划模型 二、整数规划模型
非线性规划模型
进行分配,因而存在部分 DVD 的两次被租赁,但因为是处理 同一份订单,因而不存在会员的第二次租赁.
基于这个假设,为了最小化购买量,我们在允许当 前某些会员无法被满足租赁要求,让其等待,利用部分 会员还回的 DVD 对其进行租赁.
根据问题一,我们认为,一个月中每张 DVD 有 0.6 的概率被租赁两次,0.4 的概率被租赁一次。即在二次 租赁的情况下,每张 DVD 相当于发挥了0.6 2 0.4 1.6张 DVD 的作用.
hi
第i种油的每单位的存储费用
ti
第i种油的每单位的存储空间
T
总存储公式
由历史数据得到的经验公式为 :
min
f
(x1, x2 )
a1b1 x1
h1x1 2
a2b2 x2
h2 x2 2
s.t. g(x1, x2 ) t1x1 t2x2 T
且提供数据如表5所示:
表5 数据表
石油的
例 8.(生产计划问题)某厂生产三种布料 A1, A2, A3, 该厂两班生产,每周生产时间为 80h,能耗不得超过 160t 标准煤,其它数据如下表:
布料 生产数量( m/ h ) 利润( 元 / m)
A1
400
0.15
A2
510
0.13
A3
360
0.20
最大销售量( m / 周) 40000 51000 30000
种类
ai
bi
hi
ti
1
9
3
0.50
2
2
4
5
0.20
4
已知总存储空间 T 24
代入数据后得到的模型为:
min
f
(x1, x2 )
chapter 6 非线性规划
– 3. 函数的凸性的判别 – 定理6.1(一阶条件) 设R是n维欧式空间上的开凸
集,f(X)在R上具有一阶连续偏导数,则f(X)为R上 的凸函数的充分必要条件是,对于任意两个不同点 X(1)∈R和X(2)∈R,恒有
– 此外,若将上述关于凸函数定义中两个不等式中 的不等号改为“≥”和“>”,则分别称f(X)为凸集R 上的凹函数和严格凹函数。
– 2. 凸函数的性质
(1)若f(X)为凸函数,则-f(X)必为凹函数,反之亦 然;
(2)若f(X)为凸集R上的凸函数,则对于任意非负实 数α,函数αf(X)亦为凸集R上的凸函数;
chapter 6 非线性规划
chapter 6 非线性规划
概述
一、问题提出
– 生产管理中很多问题的运行过程都是以非线性形式运 行的,如生产成本往往是生产量的非线性函数,产品 的需求量是其价格的非线性函数等等。这样,我们在 建立一个决策问题的数学模型时,目标函数或者约束 条件常常会出现非线性形式。
f ( X (2) ) f ( X (1) ) f ( X (1) )T ( X (2) X (1) )
定理6.2(二阶条件) 设R是n维欧式空间上的某一 开凸集,f(X)在R上具有二阶连续偏导数,则f(X)为 R上的凸函数的充分必要条件是:f(X)的海森矩阵 H(X)在R上处处半正定。
– 6. 全局最优解——对于非线性规划min f = f(X),gi(X) ≥ 0 (i = 1,2,…,l;),设X0∈R,对于任何X∈R均有f(X0) ≤ f(X), 则称X0为非线性规划问题在R上的一个全局最优解。若
X0≠X时,f(X0) < f(X)严格成立,称X0为严格全局最优解。
非线性规划
非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。
其倒数至今在优选法中仍得到广泛应用。
在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。
例如阿基米德证明:给定周长,圆所包围的面积为最大。
这就是欧洲古代城堡几乎都建成圆形的原因。
但是最优化方法真正形成为科学方法则在17世纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。
以后又进一步讨论具有未知函数的函数极值,从而形成变分法。
这一时期的最优化方法可以称为古典最优化方法。
最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。
反之,某些最优化方法可适用于不同类型的模型。
最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。
(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。
求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。
(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。
此时可采用直接搜索的方法经过若干次迭代搜索到最优点。
这种方法常常根据经验或通过试验得到所需结果。
对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。
三、非线性规划模型实例
(2)建立模型。
2 2 2 2 min f c ( 5 a ) +( 1 b ) + (2 a ) (7 b ) 目标函数 i1 i i i i i 1 i 1
6
6
约束条件: (1)每个工地水泥需求量一定:ci1 ci 2
di
(2)料厂日储水泥量一定,所以每个料厂的供给有限制:
三、非线性规划模型实例
例1 工地选址问题。 某公司的6个工地要开工,每个工地的位置与水泥用量见下表, 目前2个临时料厂位置为P(5,1)和Q(2,7),日储量各为20t,请回答以下问题: (1)假设从料厂到工地均有直线道路相连,试制定每天应从P,Q两料厂分别向各工地 运送多少水泥,使总的吨公里数最少。 (2)为减少吨公里数,打算舍弃2个临时料厂,重建2个新料厂,日储量仍各为20t,问 新料厂应建于何处?
综合得非线性模型:
min f cij ( x j ai ) 2 ( y j bi ) 2
j 1 i 1
2
6
ci1 ci 2 di , i 1, 2, 6 6 s.t. cij e j , j 1, 2; cij 0 i 1
(3)模型求解。
00
劳动时间/h
280
250
400
60000
利润/万元
2
3
4
小型
钢材/t 劳动时间/h 利润/万元 1.5 280 2
中型
3 250 3
大型
5 400 4
现有量
600 60000
设每月生产小、中、大型汽车的数量分别为 x1 , x2 , x3 , 工厂的月利润为z, 建立如下模型:
工地号 位置 用量/t 料厂 1
非线性规划模型
非线性规划模型在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解;实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题;一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法;对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法;一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数的极值问题,一般模型为此类问题即为无约束的非线性规划问题无约束非线性规划的解法一般迭代法即为可行方向法;对于问题()min 0x R f X X ∈⎧⎪⎨≥⎪⎩给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的),2,1()( =k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点;由一个解向量)(k X 求出另一个新的解向量)1(+k X向量是由方向和长度确定的,所以),2,1()1( =+=+k P X X k k k k λ即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即 检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否ε≤∇+||)(||1k X f ; 一维搜索法当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点;一维搜索的方法很多,常用的有:1试探法“成功—失败”,斐波那契法,法等;2插值法抛物线插值法,三次插值法等;3微积分中的求根法切线法,二分法等;考虑一维极小化问题若)(t f 是],[b a 区间上的下单峰函数,我们介绍通过不断地缩短],[b a 的长度,来搜索得)(min t f b t a ≤≤的近似最优解的两个方法;通过缩短区间],[b a ,逐步搜索得)(min t f bt a ≤≤的最优解*t 的近似值选择一个使函数值下降速度最快的的方向;把)(x f 在)(k X 点的方向导数最小的方向作为搜索方向,即令)(k k X f P -∇=.计算步骤:1选定初始点0X 和给定的要求0>ε,0=k ;2若ε<∇||)(||k X f ,则停止计算,k X X =*,否则)()(k k X f P -∇=; 3在)(k X 处沿方向)(k P 做一维搜索得1,)1(+=+=+k k P X X k k k k 令λ,返回第二步,直到求得最优解为止.可以求得:共轭梯度法可以得到——能够证明向量——是线性无关的,且关于A 是两两共轭的;从而可得到——,则——为——的极小点;计算步骤:1对任意初始点n E X ∈)1(和向量)()1()1(X f P -∇=,取;1=k2若0)()(=∇k X f ,即得到最优解,停止计算,否则求3令1+=k k ;返回2对于问题:由,0)(=+=∇B AX X f 则由最优条件,0)(=∇X f 当A 为正定时,1-A 存在,于是有B A X 1*--=为最优解 对于一般的二阶可微函数)(X f ,在)(k X 点的局部有当)()(2k X f ∇正定时,也可用上面的牛顿法,这就是拟牛顿法;计算步骤:(1)任取n E X ∈)1(,;1=k2计算)()(k k X f g ∇=,若0=k g ,则停止计算,否则计算)()()(2k k X f X H ∇=,令k k k k g X H X X 1)1())((-+-=;3令1+=k k ;返回22有约束的非线性规划非线性规划的最优性条件若*X 是非线性问题中的极小点,且对点*X 有效约束的梯度线性无关,则必存在向量()****12,,,Tm γγγΓ=使下述条件成立: 此条件为库恩-塔克条件K-T 条件,满足K-T 条件的点也称为K-T 点;K-T 条件是非线性规划最重要的理论基础,是确定某点是否为最优解的必要条件,但不一定是充要条件;对于凸规划它一定是充要条件;非线性规划的可行方向法由于线性规划的目标函数为线性函数,可行域为凸集,因而求出的最优解就是整个可行域上的全局最优解;非线性规划却不然,有时求出的某个解虽是一部分可行域上的极值点,但并不一定是整个可行域上的全局最优解;假设()kX 非线性规划问题中的一个可行解,但不是最优解,为了进一步寻找最优解在它的可行下降方向中选取其中一个方向()kD ,并确定最佳步长k λ,使得 反复进行这一过程,直到得到满足精度要求为止,这种方法称为可行方向法,也称迭代法;有约束非线性规划的解法外点法1对于等式约束问题做辅助函数如果最优解*X 满足或近似满足,),,2,1(0)(*m j X h i ==则*X 就是问题的最优解或近似解2对于不等式约束问题做辅助函数求),(min 2M X P X. 3对于一般问题做辅助函数求解),(min 3M X P X内点法内点法是在可行域内进行得,并一直保持在可行域内进行搜索,只适用于不等式约束的问题辅助函数:X 趋于R 的边界时,使)(X B 趋向于正无穷,)(X B 的常用形式 求解},,2,1,0)(|{),(min 00m j X g X R r X Q j R X =>=∈二.非线性规划的缺陷不足 算法 优点 缺点梯度法 计算量小,存储变量较少,初始点要求不高 初值依赖,收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,越接近极值点时,收敛熟读越慢,后期宜选用收敛快的算法 牛顿法 收敛速度很快 当维数较高时,计算的工作量很大,初值依赖,当初值选择不好时,有可能计算出现异常,导致迭代无法进行,该法需要修正拟牛顿法 收敛速度快,避免牛顿矩阵求逆运算,算法更稳定 初值依赖程度相对牛顿法减弱,但仍然存在。
非线性规划与多目标规划模型及其求解
非线性规划与多目标规划模型及其求解一、实验目的及意义[1] 学习非线性规划模型的标准形式和建模方法;[2] 掌握建立非线性规划模型的基本要素和求解方法;[3] 熟悉MATLAB 软件求解非线性规划模型的基本命令;[4] 通过范例学习,了解建立非线性规划模型的全过程,与线性规划比较其难点何在。
通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB 软件进行非线性规划模型求解的基本命令,并进行灵敏度分析。
解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。
二、实验内容1.建立非线性规划模型的基本要素和步骤;2.熟悉使用MATLAB 命令对非线性规划模型进行计算与灵敏度分析;3.学会计算无约束优化问题和有约束优化问题的技巧。
三、实验步骤1.开启MATLAB 软件平台,开启MATLAB 编辑窗口;2.根据问题,建立非线性规划模型,并编写求解规划模型的M 文件;3.保存文件并运行;4.观察运行结果(数值或图形),并不断地改变参数设置观察运行结果;5.根据观察到的结果和体会,写出实验报告。
四、实验要求与任务根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)基础实验1求解无约束优化1) 画出该曲面图形, 直观地判断该函数的最优解;2) 使用fminunc 命令求解, 能否求到全局最优解?120.5(cos(2)cos(2))12min (,)2022.713..55,1,2x x i f x x e e s t x i ππ-+=--+-≤≤=2. 求解非线性规划,试判定你所求到的解是否是最优?应用实验3.贷款方案某服装连锁店老板希望开办三家新商店:一家在北京,一家在上海.开办这些商店分别需要170万,250万, 100万元.为对此计划融资,该老板与三家银行进行了联系.见表6.1 三家银行对各个项目的贷款利率根据商店的位置和对相关风险的评估,每家银行都决定至多提供8年期总值为300万元的贷款,但对不同商店项目的利率各不相同(见表6.1).请制定从这些银行进行贷款的方案,以使每个商店都能得到所需的资金,并使总支出最小.4. 组合投资问题设有8种投资选择:5支股票,2种债券,黄金. 投资者收集到这些投资项目的年收益率的历史数据 (见表6.1), 投资者应如何分配他的投资资金,即需要确定这8种投资的最佳投资分配比例.421237212221371230.201max 10..67500.419010036,05,0125x x x z s t x x x x x x x =-≥-≥≤≤≤≤≤≤注: 基础实验全做, 应用实验4.下面的是2016年经典励志语录,需要的朋友可以欣赏,不需要的朋友下载后可以编辑删除!!谢谢!!1、有来路,没退路;留退路,是绝路。
非线性规划
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
数模(非线性规划模型)
{
}
( )
( )
( )
( )
6
非现性规划的基本概念 定义 如果目标函数或约束条件中至少有一个是非线性函数 时的最优化问题就叫做非线性规划问题. 时的最优化问题就叫做非线性规划问题. 一般形式: 一般形式:
min f ( X )
gi ( X ) ≥ 0 i = 1,2,..., m; s.t. (1) h j ( X ) = 0 j = 1,2,..., l. f 其中 X = (x1, x2 ,L, xn )T ∈ E n , , gi , h j 是定义在 En 上的实值函
14
定义
设X ⊂ R n , x∈ X , p∈ R n , p ≠ 0,若存在 t > 0,使得
x + tp∈ X
则称向量 p是点 x处 的可行方向。 关于 X 的可行方向。
解非线性规划问题, 解非线性规划问题,关键在于 找到某个方向, 找到某个方向,使得在此方向 上,目标函数得到下降,同时 目标函数得到下降, 还是可行方向。 还是可行方向。 这样的方向称为可行下降方向。 这样的方向称为可行下降方向。
{
}
( )
( )
( )
( )
8
三. 非线性规划的图解法
线性规划问题: 用图解法求解下面的非 线性规划问题: min s .t .
2 2 f ( x1,x2 ) = x1 + x2
1- x1 − x2 ≤ 0 x1 − 1 ≤ 0 x2 − 1 ≤ 0
9
三角形表示的是可行域。 三角形表示的是可行域。 同心圆表示的是目标函数的等值 线。 最优解为( , ) 最优解为(1/2,1/2) 最优值为1/2 最优值为 1/2 1/2
非线性规划模型
Fun.m 文件要同时给出目标函数f和约束条件g。形式为 [f,g]=fun(x); x0为迭代初值; opt为算法选择; v1为下界;v2为上界; grad.m文件要(用分析法)同时给出目标函数f和约束条 件g的梯度,形式为[df,dg]=fun(x);g和dg的表达形式请 见下例:
2:例:研究:
2 6
2 目标函数为(总吨千米 数) :
min f cij
j 1 i 1
x
j
ai y j bi 3
2 2
(3)约束条件 : 各工地日用量必须满足 :
c
j 1
2
ij
d i , i 1, ,6 4
各料场运送量不能超过 日储量, 所以 :
1 2 3 4 1.25 8.75 0.5 5.75 1.25 0.75 4.75 5 3 5 4 7 工地位置(a,b)及水泥日用量 d 5 3 6.5 6 6 7.25 7.25 11
a b c
解:(1)假设变量:
• • • • 记(ai ,bi)为6个工地位置,i=1,……,6; di为6个工地位置的水泥日用量; 料场位置(xj ,yj),日储量为ej,j=1,2; 从料场j向工地i运送量为cij
3:对有不等式约束的(8);可讨论其约束条件
a1 b1 a1 x b1 Ax b x a b a x b m m m m
把其中起约束的不等式改为不等式,不起约束的不等式 去掉,化为等式约束的二次规划求解。称为有效集 法。
3:例:求解:
2 2 min f ( x1 , x2 ) x1 2 x1 x2 2 x2 4 x1 12x2
非线性规划模型
非线性规划模型一、非线性规划问题线性规划和整数规划的目标函数和约束条件都是自变量的线性函数,但在实践中还有大量的问题,其目标函数或约束条件很难用线性函数来表达.如果目标函数或约束条件中有非线性函数,则称这种规划问题为非线性规划问题.问题1 容器设计问题.(1) 问题提出:某公司专门生产储藏用容器,订货合同要求该公司制造一种敞口的长方体容器,容积恰好为12m 3,该种容器的底必须为正方形,容器总质量不超过68kg.已知用作容器四壁的材料为10元/m 2,重3kg ;用作容器底的材料20元/m 2,重2kg.试问制造该容器所需的最小费用是多少?(2) 模型建立:设该容器的底边长和高分别为1x 、2x ,则问题的数学模型为2121min ()4020()f X x x x =+容器的费用21221211212..122680,0x x s t x x x x x ⎧=⎪+≤⎨⎪≥≥⎩问题2 营业计划的制定.(1) 问题提出:某公司经营两种设备,第一种设备每件售价450元,据统计,售出一件第一种设备所需要的营业时间平均是0.5h ,第二种设备是(2+0.252x )h ,其中2x 是第二种设备的售出数量.已知该公司在这段时间内的总营业时间为800h ,试决定使其营业额最大的营业计划.(2) 模型建立:该公司计划经营第一种设备1x 件和第二种设备2x 件,其数学模型为(同问题一类似)二、非线性规划问题的数学模型非线性规划问题的数学模型常表示成以下形式:min(max)()f X 或()0(1,2,,)..()(0)(1,2,,)i i h X i m s t g X i n ==⎧⎨≥≤=⎩或其中,12(,,,),()n X x x x f X =为目标函数,()0()0i i h X X =≥和g 为约束条件.训练题某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为()2f x ax bx =+(单位:元), 其中x 是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a 、b 、c 变化对计划的影响,并作出合理的解释.。
数学建模---非线性规划模型
6.4.3 问题的分析
i i i i i i i
当购买Si的金额为xi(i=0~n),投资组合 x=(x0,x1,…,xn)的净收益总额
R( x) Ri ( xi )
n i 0
(6 )
整体风险:
Q( x) max Qi ( xi )
资金约束:
1i n
n
(7)
(8 )
F ( x) f i ( xi ) M
二、多目标规划模型 多目标规划模型的一般形式为
min f1 x , f 2 x , , f p x gi x 0, i 1, 2,....., m s.t. h j x 0, j 1, 2,....., l
T
5.7
2.7 4.5 7.6
320
267 328 131
模型的假设
1. 2.
3.
4.
在一个时期内所给出的ri,qi,pi保持不变。 在一个时间内所购买的各种资产(如股票、 证券等)不进行买卖交易,即在买入后不再 卖出。 每种投资是否收益是相互独立的。 在投资过程中,无论盈利与否必须先付交易 费。
符号的说明
表1
售价(元) 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 41000 38000 34000 32000 29000 28000 25000 22000 20000
非线性规划建模、图解法
z f ( x1 , x2 ) L zc f ( x1 , x2 ) c L z0
z
0
x1
x2
L 目标函数的等高线
线性规划3-1 规划与决策
二.图解法 (只用于求解两个变量的非线性规划问题) 2.画出目标函数的等高线: 例:在 x1 , x2 坐标平面上画出目标函数: 2 f ( x1 , x2 ) x12 x2 的等高线 x2 2 2 解: 等高线为 x1 x2 c( 0) 是一族以原点为圆心的 同心圆(半径为 c )
max f ( X ) x1 x2
s .t .
2 x1 5 x2 40 x1 , x2 0
可行域:
x2
10 40 60 7
2 x1 5 x2 40 D {( x1 , x2 ) } x1 , x2 0
T
x 等高线: 1 x2 c X (10, 4 )T , f 40
0
f ( x1 , x2 ) c L z0
线性规划3-1 规划与决策
x1
二.图解法 (只用于求解两个变量的非线性规划问题) 3.用图解法求解 例1: 解:
min f ( X ) ( x1 2)2 ( x2 2)2
s .t . g( X ) x1 x2 6 0
一.非线性规划举例及数学模型 例1: 某公司经营两种设备,第一种设备每件售价30元,第 二种设备每件售价450元。根据统计,售出一件第一 种设备所需要的营业时间平均是0.5小时,第二种设 备是2+0.25 x2小时,其中 x2 是第二种设备的售出数 量。已知该公司在这段时间内的总营业时间为800 小时,试决定使其营业额最大的营业计划。
hi ( X ) 0 s.t. gj(X) 0
运筹学胡运权第06章
f ( X ) 2 x2 x2
令 f(X)=0,即:2x1=0和-2x2=0,得稳定点 X=(x1,x2)T=(0,0)T
(2)再用充分条件进行检验:
2 f ( X ) 2 f ( X ) 2 f ( X ) 2 f ( X ) 2 0 2 2 2 x1 x1x2 x2x1 x2 2 0 2 f ( X ) 0 2
多元 函数 极值 点存 在的 条件
二阶可微的一元函数f(x)极值点存在的条件如下: 必要条件: ( x) 0 充分条件:f对于极小点: 且 f ( x) 0 且 f ( x) 0 对于极大点: f ( x) 0 f (x) 0
对于无约束多元函数,其极值点存在的必要条件和 充分条件,与一元函数极值点的相应条件类似。
其中,R为问题的可行域。
二 维 问 题 的 图 解
当只有两个自变量时,求解非线性规划也可像 对线性规划那样借助于图解法。如以下非线性 规划问题:
min f ( X ) ( x1 2) 2 ( x2 1) 2 2 x x 1 2 5 x2 0 x1 x2 5 0 x1 x 0 1 x2 0
1 f ( X ) f ( X (0) ) f ( X (0) )T ( X X (0) ) ( X X (0) )T 2 f ( X )( X X (0) ) 2
其中,X=X(0)+θ(X-X(0)),0<θ<1
若以X=X(0)+P代入,则变为: 其中,X=X(0)+θP
其中,X=(x1,x2,…,xn)T是n维欧氏空间 En中的点(向量),目标函数f(X)和约束 函数hi(X)、gj(X)为X的实函数。
非 线 性 规 划 的 数 学 模 型
非线性规划
非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。
数学模型之数学规划模型
多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性规划模型在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。
实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。
一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。
对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。
一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数的极值问题,一般模型为I r m i n f(X)X 一0此类问题即为无约束的非线性规划问题1.1无约束非线性规划的解法1.1.1 一般迭代法即为可行方向法。
对于问题J mnf(X)[X X O给出f (X)的极小点的初始值X(O),按某种规律计算出一系列的X(k)(k =1,2,…),希望点阵{X (k)}的极限X "就是f (X)的一个极小点。
由一个解向量X(k)求出另一个新的解向量X(kI)向量是由方向和长度确定的,所以XZ I)=X k「k P k(k =12…)即求解A和P k,选择'k和P k的原则是使目标函数在点阵上的值逐步减小,即f (X0) 一f (X1) 一- f (X k) 一.检验{X(k)}是否收敛与最优解,及对于给定的精度;7,是否IIlf(X k JlF ;1.1.2 一维搜索法当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。
一维搜索的方法很多,常用的有:(1)试探法(“成功一失败”,斐波那契法,0.618法等);(2)插值法(抛物线插值法,三次插值法等);(3)微积分中的求根法(切线法,二分法等)。
考虑一维极小化问题a¾f(t)若f (t)是[a,b]区间上的下单峰函数,我们介绍通过不断地缩短[a,b]的长度,来搜索得min f(t)的近似最优解的两个方法。
通过缩短区间 [a,b],逐步搜索得 a 空 m t in f (t)的最优解t *的近似值a-≤ιb2.1.3 梯度法选择一个使函数值下降速度最快的的方向。
把f(x)在X (IO点的方向导数最小的方向作为搜索方向,即令 P k——∖f (X k).计算步骤:(1) 选定初始点 X 0和给定的要求;∙0,k=0 ;(2) 若 |八 f(X k)* ;,则停止计算,X^X k,否则 P(k)=-V f(X k);(3)在X (k)处沿方向P (I)做一维搜索得x (jI)=X k…k P k,令k = kT ,返回 第二步,直到求得最优解为止.可以求得:、_ Vf(X(I))¼ V f (X (I)) ^Vf(X (I))T.H(X (I)^V f(X (I)).2.1.4共轭梯度法又称共轭斜量法,仅适用于正定二次函数的极小值问题:1min f(X) = X TAX B TX C2A 为n n 阶实对称正定阵 X,B ∙ E n,c 为常数从任意初始点X (I)和向量P(I)= -f (X ⑴)出发,由(f (X (I))δχ所(X(I))…<f(X (I)))TCX nCX 2「济(X (I)) 商(X(I))…CF(X(I))I、 JCX 1ZVJ% EX n Cf(X (I)) 商(X (I))…Gr(X (I))cx 2^x 1- CX 2CX 2 ,≡CX 2C X n-Cf(X (I)) 伊(X (I))… GF(X (I)) CX n CX I~!CX^X 2'EXnEX nH(X (I))二If(X (I)) =(k “2 ,n -1)可以得到一一能够证明向量一一是线性无关的,且关于 A 是两两共轭的。
从而可得到则 为 的极小点。
计算步骤:(1)对任意初始点X(I)∙E n和向量P ⑴-f (X ⑴),取k = 1;(2)若If (X (I)) =0,即得到最优解,停止计算,否则求(k =1,2,…,n -1)(3)令 k =k 1 ;返回(2)2.1.5 牛顿法对于问题:1 min f(X) X TAX B TX C2由I f(X)=AX ∙B=0,则由最优条件'f(X) =0,当A 为正定时,Ad 存在,于是有X^ -A 4B 为最优解2.1.6 拟牛顿法对于一般的二阶可微函数f (X),在X (I)点的局部有f(X) : f(X (I)Γ If(X (I))T(X _ X (I)) ∙ 1(X _ X (I))TI 2f(X (I))(^X (I))2当√f(X Ck))正定时,也可用上面的牛顿法,这就是拟牛顿法。
X (k D =X k kP k k= min f (x (k)kP (k ))=Cf(X (k )))T p (k )(P (G )T AP (k)和 P (k I)-f (x (k I)) —P (k「kVf(X (k I)) A (P (Io )T(P (k))TAP(k)X (k 1) = X k kP k, k= min f(X (I) kP (I))=" f(X )) P (P (I))TAP(I)P (k D一屮x (k1))「k P (k)「kU(X (II))A (P (I))T(P (I))TAP(I)计算步骤:(1)任取 X(I)∙E n,k =1;(2)计算g1.八f(X(k)),若g k =0 ,则停止计算,否则计算H(X k)八2f(X(k)),令 X(k I)=X k-(H(X k))S k ;(3)令 k =k 1 ;返回(2)2有约束的非线性规划2.1非线性规划的最优性条件… * *若X是非线性问题中的极小点,且对点 X有效约束的梯度线性无关,则必存在向量r =(丫;异;川I,Y m T使下述条件成立:「mH(X h—z Y浮gj(X"=0Ag j X* =0, j =1,2V* ≥0, j =1,2^∣,mI此条件为库恩-塔克条件(K-T条件),满足K-T条件的点也称为K-T点。
K-T条件是非线性规划最重要的理论基础,是确定某点是否为最优解的必要条件,但不一定是充要条件。
对于凸规划它一定是充要条件。
2.2非线性规划的可行方向法由于线性规划的目标函数为线性函数,可行域为凸集,因而求出的最优解就是整个可行域上的全局最优解。
非线性规划却不然,有时求出的某个解虽是一部分可行域上的极值点,但并不一定是整个可行域上的全局最优解。
假设X k非线性规划问题中的一个可行解,但不是最优解,为了进一步寻找最优解在它的可行下降方向中选取其中一个方向 D k,并确定最佳步长,k,使得[χ(k4τ)= χ(k)十打D(k)w R,k=0,1,2,川.f X k 1: f X k反复进行这一过程,直到得到满足精度要求为止,这种方法称为可行方向法,也称迭代法。
2.3有约束非线性规划的解法2.3.1 外点法(1)对于等式约束问题p^min f (X), Jh(X)=O,i =1,2,…m,做辅助函数mR(X,M) = f (X) +M W h f(X)j4如果最优解X ”满足或近似满足h i(X*) =0 (j =d,2,…,m),则X ”就是问题的最优解或近似解(2)对于不等式约束问题做辅助函数mF2(X,M) = f(X) M' [min{0g(X)}]2j^求mjn P2(X,M ).(3)对于一般问题做辅助函数P3(X,M) = f(X) MP(X)m mP(X)=M' ∣h j2(X) I2M^ [min{0g(X)}]2j j m求解min P3 (X, M)X2.3.2 内点法内点法是在可行域内进行得,并一直保持在可行域内进行搜索,只适用于不等式约束的问题辅助函数:Q(X,r) = f(X) rB(X)X趋于R的边界时,使B(X)趋向于正无穷,B(X)的常用形式mIB(X)八一1Ug j(X)m和B(X)-'I n[g j(X)]j^求解 min Q(X,r)X巩R0 ={X Ig j(X) 0, j =1,2, ,m}•非线性规划的缺陷不足。