高中数学数列求和PPT课件
合集下载
A版必修5数列求和PPT课件
2n 1 2n 1
Hale Waihona Puke 1 (1 1 ) 2 2n 1
∵ (an an 1) 0
∴ (an an 1 2) 0
∴ an 2n 1
(2)当n=1时, a1 S1 1 (a1 1)2 4
得 a1=1
bn
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
Tn 1 (1 1 1 1 ... 1 1 )
2 335
Sn=
a1(1 qn) 1 q
尝试应用
1、有限数列A={a1,a2,a3…an},Sn为其前 n项和,定义 S1 S2 ... Sn 为A的
n
“凯森和”,如有500项的数列,a1, a2…a500的“凯森和”为2004,则有501项 的 A数—列2020,2 a1,Ba22…00a4500的“C凯森20和06”为—D—2008
n(n 1)a
3、求和
Sn 1 3x 5 x2 7 x3 ... (2n 1) xn1, (x 0)
(1)x=1时,Sn=n2 (2)x≠1时
S=1+3x+5x2+7x3+…+(2n-1)x n-1 x·S=x+3x2+5x3+…+(2n-1)x n-1+ (2n-1)x n (1-x)S=1+2(x+x2+x3+…+xn-1)-(2n-1) xn
a [n (q q2 ... qn)]
1 q
a [n q(1 qn) ]
1 q
1 q
na aq(1 qn) 1q 1q
反馈练习2答案
(1)当n≥2时, an Sn Sn 1 1 [(an 1)2 (an 1 1)2] 4
2025届高中数学一轮复习课件《数列求和》ppt
高考一轮总复习•数学
由③-④得12Tn=1211--1212n-n·12n+1, ∴Tn=2-(2+n)·12n.
第19页
高考一轮总复习•数学
第20页
1.一般地,如果数列{an}是等差数列,数列{bn}是等比数列,求数列{an·bn}的前 n 项和 时,可采用错位相减法求和,一般是和式两边同乘等比数列{bn}的公比,然后作差求解.
解析:①当 n 为偶数时,an+2=an+2,则偶数项是以 1 为首项,2 为公差的等差数列, 故 a2+a4+…+a100=50×1+50×2 49×2=2 500.②当 n 为奇数时,an+2=-an+2,即 an+ an+2=2,故 a1+a3+…+a99=2×25=50.综上,S100=2 550.
高考一轮总复习•数学
第1页
第七章 数 列
第4讲 数列求和
高考一轮总复习•数学
第2页
01 重难题型 全线突破 02 限时跟踪检测
高考一轮总复习•数学
第3页
重难题型 全线突破
高考一轮总复习•数学
第4页
题型
分组求和法
典例 1(2024·山东潍坊模拟)已知数列{an}满足a21+a222+…+a2nn=2nn. 从结构特点分析,属于由 Sn 求 an 的类型,应用 an=Sn-Sn-1(n≥2)的运算,求通项公式. (1)求数列{an}的通项公式; (2)对任意的 n∈N*,令 bn=a2na,n,n为n为奇偶数数,, 求数列{bn}的前 n 项和 Sn.
解:(1)由 2an+1-an=16an+1an 可得an1+1=a2n-16,于是an1+1-16=2a1n-16,即 bn+1= 2bn,
而 b1=a11-16=2,所以{b×2n-1=2n.
《数列求和》课件
《数列求和》PPT课件
数列求和 PPT课件大纲
介绍
数列是数学中的重要概念,我们将探讨数列的定义和性质,以及数列求和的意义与公式
了解等差数列的定义和公式,能够根据公式计算等差数列的求和。
2
推导与应用
探究等差数列求和公式的推导过程,并学会利用公式解决实际问题。
3
实例演练
通过实例演练,加深对等差数列求和的理解和应用能力。
深入推导斯特林公式,掌握其原 理和推到过程。
应用示例
探索斯特林公式在数学和科学中 的实际应用,并解决相关问题。
零阶贝塞尔函数
1
定义与性质
学习零阶贝塞尔函数的定义和性质,了解其在数学和物理领域的重要作用。
2
公式推导
深入推导零阶贝塞尔函数的公式,掌握其基本原理。
3
应用案例
研究零阶贝塞尔函数在实际问题中的应用,加深对其应用场景的理解。
总结
数列求和在数学中具有重要的地位,掌握各种数列求和公式的区别和应用, 能够进一步拓展数列求和的研究方向。
等比数列求和
定义与公式
了解等比数列的定义和公式, 能够根据公式计算等比数列 的求和。
推导与应用
探究等比数列求和公式的推 导过程,并学会利用公式解 决实际问题。
实例演练
通过实例演练,加深对等比 数列求和的理解和应用能力。
斯特林公式
定义与定理
学习斯特林公式的定义和定理, 了解其在数学中的重要性。
推导过程
数列求和 PPT课件大纲
介绍
数列是数学中的重要概念,我们将探讨数列的定义和性质,以及数列求和的意义与公式
了解等差数列的定义和公式,能够根据公式计算等差数列的求和。
2
推导与应用
探究等差数列求和公式的推导过程,并学会利用公式解决实际问题。
3
实例演练
通过实例演练,加深对等差数列求和的理解和应用能力。
深入推导斯特林公式,掌握其原 理和推到过程。
应用示例
探索斯特林公式在数学和科学中 的实际应用,并解决相关问题。
零阶贝塞尔函数
1
定义与性质
学习零阶贝塞尔函数的定义和性质,了解其在数学和物理领域的重要作用。
2
公式推导
深入推导零阶贝塞尔函数的公式,掌握其基本原理。
3
应用案例
研究零阶贝塞尔函数在实际问题中的应用,加深对其应用场景的理解。
总结
数列求和在数学中具有重要的地位,掌握各种数列求和公式的区别和应用, 能够进一步拓展数列求和的研究方向。
等比数列求和
定义与公式
了解等比数列的定义和公式, 能够根据公式计算等比数列 的求和。
推导与应用
探究等比数列求和公式的推 导过程,并学会利用公式解 决实际问题。
实例演练
通过实例演练,加深对等比 数列求和的理解和应用能力。
斯特林公式
定义与定理
学习斯特林公式的定义和定理, 了解其在数学中的重要性。
推导过程
高中数学《数列求和》课件
练习4 已知数列-1,4,-7,10,…,(-1)n·(3n- 2),…,求其前n项和Sn. 解 n为偶数时,令n=2k (k∈N*), Sn=S2k=-1+4-7+10+…+(-1)n(3n-2) =(-1+4)+(-7+10)+…+[(-6k+5)+(6k-2)] =3k=2(3)n;
当n为奇数时,令n=2k+1 (k∈N*). Sn=S2k+1=S2k+a2k+1=3k-(6k+1)=2(-3n+1). ∴Sn=(n为偶数).(3n)
∴Sn=2n+1(1)=n+1(2n).
要点四 奇偶并项求和 例4 求和:Sn=-1+3-5+7-…+(-1)n(2n- 1). 解 n为奇数时, Sn=(ቤተ መጻሕፍቲ ባይዱ1+3)+(-5+7)+(-9+11)+…+[(-2n +5)+(2n-3)]+(-2n+1) =2·2(n-1)+(-2n+1)=-n. n为偶数时,Sn=(-1+3)+(-5+7)+…+[(-2n +3)+(2n-1)]=2·2(n)=n. ∴Sn=(-1)nn (n∈N*).
练习1. 求数列1,1+a,1+a+a2,…,1+a+a2 +…+an-1,…的前n项和Sn(其中a≠0). 解 当a=1时,则an=n, 于是Sn=1+2+3+…+n=2(n(n+1)). 当a≠1时,an=1-a(1-an)=1-a(1)(1-an). ∴Sn=1-a(1)[n-(a+a2+…+an)] =1-a(1)1-a(a(1-an))
要点三 裂项相消求和 例3 求和:22-1(1)+32-1(1)+42-1(1)+… +n2-1(1),n≥2. 解 ∵n2-1(1)=(n-1)(n+1)(1) =2(1)n+1(1),
∴原式=2(1)5(1) n+1(1)
=2(1)n+1(1)
第20讲 数列的求和PPT课件
【典例分析】
【典例分析】
考点五 分组求和
有时,可将原数列分解成若干个可用公式法求和的新数列进行分 别求解.
【典例分析】
【典例分析】
考点一 公式法
【典例分析】
【典例分析】
考点二 裂项相消法 将数列的每一项分解成两项的差,逐一累加相消.
【典例分析】
【典例分析】
【典例分析】
考点三 错位相减法
【典例分析】【典例分析】来自【典例分析】考点四 倒序相加法
如等差数列前n项和公式的推导就是使用的该法,有时关于组合 数的求和问题,也常用倒序相加法.
第一部分 基础知识串讲
4.2 数列的求和
数列的求和问题是高中数学中的一个非常重要的知识点,也是各大高校 自主招生试题中经常涉及的内容.由于数列的形式多种多样、种类繁多, 除一般外表形式较为简单的实数数列以外,还有三角函数数列、反三角 函数数列、组合数列、复数数列等.因此,其求和方法也是灵活多样、纷 繁多变的.本节我们介绍几种数列求和的基本方法.
第四节 数列求和 课件(共48张PPT)
-
1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)
=
1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=
数列求和的几种方法课件ppt
2、设法消去中间项:
(2)乘公比,错位相减(对“A·G”型);
(3)裂通项,交替相消
1、转化成等差、等比数列求和
(公式法、分组求和法、错位相减法、 裂(并)项法求和)
练习: 指出下列求和的方法:
合并项求和
特殊的数列,在求数列的和时,可将一些项放在一起先求和,然后再求Sn.
[例] 在各项均为正数的等比数列中,若
的值.
求和: (1)Sn=1+(3+4)+(5+6+7)+…+(2n-1+2n+ …+3n-2); (2)Sn=12-22+32-42+…+(-1)n-1·n2.
(1)一般应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为适用特点的形式,从而求和.
数列求和的方法
(2)解决非等差、等比和,两种思路: ①转化的思想,即化为等差或等比数列. ②裂项相消法、错位相减法、倒序相加法等求和.
数列求和的常用方法:
(1) 拆项(对A±G型 如果拆项不明显,写出通项,如例2 )
na1+ d
n(n+1)(2n+1)
n2(n+1)2
倒序相加
令
例题1. 求和
(1)
[解Байду номын сангаас原式=
n(n+3)/2
(x≠1)
(x=1)
分析:原式=(1+2+3+…+n)+
我们把这种类型的数列称为“A+G”型。而求此类数列的和,一般是把数列的每一项分成两项,再分别利用等差和等比数列的求和公式求解。此方法称为分组求和法。
(2)乘公比,错位相减(对“A·G”型);
(3)裂通项,交替相消
1、转化成等差、等比数列求和
(公式法、分组求和法、错位相减法、 裂(并)项法求和)
练习: 指出下列求和的方法:
合并项求和
特殊的数列,在求数列的和时,可将一些项放在一起先求和,然后再求Sn.
[例] 在各项均为正数的等比数列中,若
的值.
求和: (1)Sn=1+(3+4)+(5+6+7)+…+(2n-1+2n+ …+3n-2); (2)Sn=12-22+32-42+…+(-1)n-1·n2.
(1)一般应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为适用特点的形式,从而求和.
数列求和的方法
(2)解决非等差、等比和,两种思路: ①转化的思想,即化为等差或等比数列. ②裂项相消法、错位相减法、倒序相加法等求和.
数列求和的常用方法:
(1) 拆项(对A±G型 如果拆项不明显,写出通项,如例2 )
na1+ d
n(n+1)(2n+1)
n2(n+1)2
倒序相加
令
例题1. 求和
(1)
[解Байду номын сангаас原式=
n(n+3)/2
(x≠1)
(x=1)
分析:原式=(1+2+3+…+n)+
我们把这种类型的数列称为“A+G”型。而求此类数列的和,一般是把数列的每一项分成两项,再分别利用等差和等比数列的求和公式求解。此方法称为分组求和法。
人教A版高中数学选择性必修第二册4.3.2第二课时数列求和课件
①-②,得(1-q)Sn=a1b1+d
-anbn+1,化简求出 Sn 即可.
[典例 3] 已知数列{an}的前 n 项和 Sn=3n2+8n,{bn}是等差数列,且 an= bn+bn+1.
(1)求数列{bn}的通项公式; (2)令 cn=abn+n+12n+n1,求数列{cn}的前 n 项和 Tn.
当 n 为偶数时,Tn=(-1+14)+(3+22)+(7+30)+…+[(2n-5)+(4n+6)] =[-1+3+7+…+(2n-5)]+[14+22+30+…+(4n+6)]=n2-1+22n-5+ n214+24n+6=3n2+2 7n.
当 n>5 时,Tn-Sn=3n2+2 7n-(n2+4n)=n2-2 n=nn2-1>0,所以 Tn>Sn. 综上可知,当 n>5 时,Tn>Sn.
(2)证明:由(1)知 an=2n+3, 所以 Sn=n[5+22n+3]=n2+4n. 当 n 为奇数时,Tn=(-1+14)+(3+22)+(7+30)+…+[(2n-7)+(4n+2)] +2n-3=[-1+3+7+…+(2n-7)+(2n-3)]+[14+22+30+…+(4n+2)]= n+2 1-12+2n-3+n-2 1142+4n+2=3n2+52n-10. 当 n>5 时,Tn-Sn=3n2+52n-10-(n2+4n)=n2-32n-10=n-52n+2> 0,所以 Tn>Sn.
[方法技巧] 分组转化法求和的常见类型
[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差, 从而求得原数列的和,注意在含有字母的数列中对字母的讨论.
[对点练清] 已知数列{an}的前 n 项和 Sn=n2+2 n,n∈N *.
(1)求数列{an}的通项公式; (2)设 bn=2an+(-1)nan,求数列{bn}的前 2n 项和. 解:(1)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=n2+2 n-n-12+2 n-1=n. a1=1 也满足 an=n,故数列{an}的通项公式为 an=n.
数列求和ppt课件
法,分别求和后相加减.
把数列的通项拆成两项之差,在求和时中间的
一些项可以相互抵消,从而求得前n项和.
如果一个数列的各项是由一个等差数列和一个等
比数列的对应项之积构成的,那么求这个数列的前n项
和即可用错位相减法求解.
如果一个数列{an}与首末两端等“距离”的
(4)倒序相加法:
两项的和相等或等于同一个常数,那么求这个数
an,n 为奇数,
2.若数列{cn}的通项公式为 cn=
其中数列{an},{bn}
bn,n 为偶数,
是等比数列或等差数列,可采用分组求和法求{cn}的前 n 项和.
聚焦必备知识
11
突破核心命题
限时规范训练
1.(2023·全国乙卷)记Sn为等差数列{an}的前n项和,已知a2=11,S10
=40.
(1)求{an}的通项公式;
列的前n项和即可用倒序相加法求解.
(3)错位相减法:
聚焦必备知识
4
常用结论
1.一些常见的数列的前 n 项和
n(n+1)
(1)1+2+3+…+n=
;
2
(2)2+4+6+…+2n=n(n+1);
(3)1+3+5+…+2n-1=n2.
突破核心命题
限时规范训练
聚焦必备知识
5
突破核心命题
限时规范训练
裂项相消法:适用的通项公式如下
( + ) +
聚焦必备知识
16
突破核心命题
考 点 二 裂项相消法求和
1
(1)数列{an}的前 n 项和为 Sn.若 an=
,则 Sn=____
n(n+1)
训练2
已知Sn是数列{an}的前n项和,Sn=n2.
把数列的通项拆成两项之差,在求和时中间的
一些项可以相互抵消,从而求得前n项和.
如果一个数列的各项是由一个等差数列和一个等
比数列的对应项之积构成的,那么求这个数列的前n项
和即可用错位相减法求解.
如果一个数列{an}与首末两端等“距离”的
(4)倒序相加法:
两项的和相等或等于同一个常数,那么求这个数
an,n 为奇数,
2.若数列{cn}的通项公式为 cn=
其中数列{an},{bn}
bn,n 为偶数,
是等比数列或等差数列,可采用分组求和法求{cn}的前 n 项和.
聚焦必备知识
11
突破核心命题
限时规范训练
1.(2023·全国乙卷)记Sn为等差数列{an}的前n项和,已知a2=11,S10
=40.
(1)求{an}的通项公式;
列的前n项和即可用倒序相加法求解.
(3)错位相减法:
聚焦必备知识
4
常用结论
1.一些常见的数列的前 n 项和
n(n+1)
(1)1+2+3+…+n=
;
2
(2)2+4+6+…+2n=n(n+1);
(3)1+3+5+…+2n-1=n2.
突破核心命题
限时规范训练
聚焦必备知识
5
突破核心命题
限时规范训练
裂项相消法:适用的通项公式如下
( + ) +
聚焦必备知识
16
突破核心命题
考 点 二 裂项相消法求和
1
(1)数列{an}的前 n 项和为 Sn.若 an=
,则 Sn=____
n(n+1)
训练2
已知Sn是数列{an}的前n项和,Sn=n2.
【高中数学课件】数列求和及通项的求法ppt课件共24页文档
数列求和的常用方法: 公式法、倒序相加法、 错位相减法、裂项相消法。 尤其是要求掌握用拆项法、裂项 法和错位法求一些特殊的数列的 前n项和。
熟记公式常用数列的前n项和:
123nn(n1) 2
1 3 5 (2 n 1 ) n 2
1 2 2 2 3 2 n 2 n (n 1 )2 ( n 1 ) 1 32 3 3 3 n 3 [n (n 1 )]2 6
2
(1)等差数列求和公式
Snn(a12 an)na1n(n 2 1 )d
(2)等比数列求和公式
S na 1 ( 1 1 q q n)a 1 1 a q n q(q 1 ),S n n1a (q 1 )
例题讲解
拆项法:
例一、求数列
1 1 ,1 4 ,1 7 ,1 1, 0 ,1 ( 3 n 2 ),
an n2 n 1
注意:最后一个式子出现 a n 1 ,必 须验证n 1。此时 a1 1,适合上式, 故 an n2n1
例2 求数列 1,2,8,64 ,102 , 4 的通项公式 a n
利用 S n 与a n 的关系
利用 an SS1naS1n(n1(n1)2,)可解决许多
已知a n 与 S n a 的关系题目中的 n
a a 2 a 3
a n 1
的前n项和。
裂项法:
1.求数列
6, 6, 6,, 6 , 122334 n(n1)
前n项和
2.求数列
1, 1 , ,
1
,
12123 12 (n 1 )
前n项和
3.求数列
{n
1 }
2n
前n项和
5.设等差数列{an}的前n项和为Sn,且
Sn
(an1)2(nN*) 2
熟记公式常用数列的前n项和:
123nn(n1) 2
1 3 5 (2 n 1 ) n 2
1 2 2 2 3 2 n 2 n (n 1 )2 ( n 1 ) 1 32 3 3 3 n 3 [n (n 1 )]2 6
2
(1)等差数列求和公式
Snn(a12 an)na1n(n 2 1 )d
(2)等比数列求和公式
S na 1 ( 1 1 q q n)a 1 1 a q n q(q 1 ),S n n1a (q 1 )
例题讲解
拆项法:
例一、求数列
1 1 ,1 4 ,1 7 ,1 1, 0 ,1 ( 3 n 2 ),
an n2 n 1
注意:最后一个式子出现 a n 1 ,必 须验证n 1。此时 a1 1,适合上式, 故 an n2n1
例2 求数列 1,2,8,64 ,102 , 4 的通项公式 a n
利用 S n 与a n 的关系
利用 an SS1naS1n(n1(n1)2,)可解决许多
已知a n 与 S n a 的关系题目中的 n
a a 2 a 3
a n 1
的前n项和。
裂项法:
1.求数列
6, 6, 6,, 6 , 122334 n(n1)
前n项和
2.求数列
1, 1 , ,
1
,
12123 12 (n 1 )
前n项和
3.求数列
{n
1 }
2n
前n项和
5.设等差数列{an}的前n项和为Sn,且
Sn
(an1)2(nN*) 2
数列求和PPT课件
第26页/共61页
[方法引航] 错位相减法求和的具体步骤 步骤 1:写出 Sn=c1+c2+…+cn; 步骤 2:等式两边同乘以等比数列的公比 q,即 qSn=qc1+qc2+… +qcn; 步骤 3:两式错位相减转化成等比数列求和; 步骤 4:两边同除以 1-q,求出 Sn.同时注意对 q 是否为 1 进行讨 论.
答案:B
第12页/共61页
(2)数列{an}满足 an+1+(-1)nan=2n-1,则{an}的前 60 项和为 ________.
第13页/共61页
解析:利用数列的递推式的意义结合等差数列求和公式求解. ∵an+1+(-1)nan=2n-1, ∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1, a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12= 23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1, ∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57 +a58+a59+a60)=10+26+42+…+234 =15×102+234=1 830.
第3页/共61页
(2)分组求和法 若一个数列是由若干个等差数列或等比数列或可求和的数列组 成,则求和时可用分组求和法,分别求和后相加减.
第4页/共61页
2.倒序相加法与并项求和法 (1)倒序相加法 如果一个数列{an}的前 n 项中首末两端等“距离”的两项的和相 等或等于 同一个常数 ,那么求这个数列的前 n 项和可用倒序相加 法,如等差数列的前 n 项和公式即是用此法推导的.答案Leabharlann 1 830第14页/共61页
[方法引航] 分组转化法求和的常见类型 (1)若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组转 化法求{an}的前 n 项和. (2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn} 是等比或等差数列,可采用分组转化法求和.
[方法引航] 错位相减法求和的具体步骤 步骤 1:写出 Sn=c1+c2+…+cn; 步骤 2:等式两边同乘以等比数列的公比 q,即 qSn=qc1+qc2+… +qcn; 步骤 3:两式错位相减转化成等比数列求和; 步骤 4:两边同除以 1-q,求出 Sn.同时注意对 q 是否为 1 进行讨 论.
答案:B
第12页/共61页
(2)数列{an}满足 an+1+(-1)nan=2n-1,则{an}的前 60 项和为 ________.
第13页/共61页
解析:利用数列的递推式的意义结合等差数列求和公式求解. ∵an+1+(-1)nan=2n-1, ∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1, a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12= 23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1, ∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57 +a58+a59+a60)=10+26+42+…+234 =15×102+234=1 830.
第3页/共61页
(2)分组求和法 若一个数列是由若干个等差数列或等比数列或可求和的数列组 成,则求和时可用分组求和法,分别求和后相加减.
第4页/共61页
2.倒序相加法与并项求和法 (1)倒序相加法 如果一个数列{an}的前 n 项中首末两端等“距离”的两项的和相 等或等于 同一个常数 ,那么求这个数列的前 n 项和可用倒序相加 法,如等差数列的前 n 项和公式即是用此法推导的.答案Leabharlann 1 830第14页/共61页
[方法引航] 分组转化法求和的常见类型 (1)若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组转 化法求{an}的前 n 项和. (2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn} 是等比或等差数列,可采用分组转化法求和.
高中数学人教A版必修5第2章第5节《数列求和》课件
1 2
(1 2
1 4
1 3
1 5
1 4
1 6
1 5
1 7
1 1 1 1 ) n n 2 n 1 n 3
••
•
•
Sn
1 2
(1 2
1 3
n
1
2
1) n3
5 12
2(n
2n 5 2)(n
3)
小规律:
裂项相消时,前面剩几项, 对应后面就剩几项;前面剩 第几项,对应后面就剩倒数 第几项;前后至少各写出两 组数。
解:设等差数列an
的首项为a1
,
公差为d, an
1 an1
的前n项和为Tn
3a1a123dd36
ad1
1 1
an n
1 1 anan1 n(n 1)
1 1 n n1
Tn
11
1 2
1 2
1 3
1 1 n 1
n n 1
1 1 1 11 n 1 n n nn1
常见数列的裂项方法
(1)
(3)2 4 6 (4)12 22 32
(5)13 23 33
2n n(n 1)
n2 n(n 1)(2n 1) 6
n3 n2 (n 1)2 4
二.倒序相加法
适用于:如果一个数列 an 中与首
末两项“等距离”的两项之 和等于首末两项的和。
方法:把数列分别正着写和倒着写再 相加。
1 2
an 2n 1
(2)
1
1
anan1 (2n 1)(2n 1)
1( 1 1 ) 2 2n 1 2n 1
Tn
1 2
(1
1 3
1 3
第七章 第四节 数列求和 课件(共42张PPT)
1.一些常见数列的前 n 项和公式 (1)1+2+3+4+…+n=n(n+ 2 1) ; (2)1+3+5+7+…+2n-1=n2; (3)2+4+6+8+…+2n=n2+n.
2.三种常见的拆项公式
1 (1)n(n+1)
=1n
-n+1 1
;
1 (2)(2n-1)(2n+1)
=12
2n1-1-2n1+1
答案: (1)× (2)√ (3)√
2.(必修 5P47T4 改编)数列{an}的前 n 项和为 Sn,若 an=n(n1+1) ,
则 S5 等于( )
A.1
B.56
C.16
D.310
B [∵an=n(n1+1) =1n -n+1 1 ,∴S5=a1+a2+…+a5=1-12 +12 -13 +…+15 -16 =56 .]
所以 an=-2n1+1 (n 为正奇数), 若 n 为奇数,则 an-1=-2an+21n =(-2)-2n1+1 +21n , 所以 an=21n (n 为正偶数), 所以 a3=-214 =-116 , 因为 an=-2n1+1 (n 为正奇数),所以-a1=--212 =212 ,
因为 an=21n (n 为正偶数),所以 a2=212 , 所以-a1+a2=2×212 , 因为-a3=--214 =214 ,a4=214 , 所以-a3+a4=2×214 , …… -a99+a100=2×21100 .
(2)因为 an=2n,所以 bn=(n+1)log2an=(n+1)log22n=n(n+1), 所以,2n2b+n2 2n =n(n2+1) =21n-n+1 1 , 所以 Tn=21-12+12-13+…+1n-n+1 1 =21-n+1 1 =n2+n1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②
2S 89 S 44 1
2.
求:C
0 n
3C
1 n
5C
2 n
L
2
(2n
1)Cnn
Cn0 3Cn1 5Cn2 L (2n 1)Cnn
Cnn 3Cnn1 5Cnn2 L (2n 1)Cn0 .
评注:由于等差数列{2n+1}中首末两端等距离的两项之
和相等,数列{Cnk } 中与首末两端等距离的两项相等,因
解
和式中第 k 项为 ak=1+12+14+…+2k1-1=11--1212k=21-21k.
∴Sn=21-12+1-212+…+1-21n
=2[(1+1+…+1)-(12+212+…+21n)] n个
=2n-1211--1221n=2n1-1+2n-2.
五 .倒序相加法:
此类问题首末两端等距离的两项存在某种关系(如相等、和相 等等情况)
62) L
282 292 (
2
302 )
10 [ (3k 2)2 (3k 1)2 (3k)2 ] 10 [9k 5] 9 10 11 25 470
k 1
2
k 1
2
2
七、数学归纳法
12 22 32 L n2 n(n 1)(2n 1) 6
此类问题可变形为“ an bn cn ”的数列( bn 为等差数列, cn 为等比数列)
例 2.求和: Sn
1 2 3 L 248
n
2n
.
2.求数列 a, 2a2 , 3a3 ,L , nan ,L ( a 为常数),的前 n 项的和。
三、裂项相消法
此类问题可变形为“ an f (n 1) f (n) ”的数列( f (n) 为关于 n 的表达式)
例 5.求 sin2 1 sin2 2 sin2 3 ... sin2 88 sin2 89 的值。
解:设 S sin2 1 sin2 2 sin2 3 ... sin2 88 sin2 89
①
S sin2 89 sin2 88 ... sin2 3 sin2 2 sin2 1
数列求和
一、常用公式法
等差数列求和公式:
等比数列求和公式:
Sn
na1 a1 (1
q
n
)
1 q
a1 anq 1q
(q (q
1) 1)
例 1:求数列1, a, a2 , a3,L , an 的各项之和。
1
Snห้องสมุดไป่ตู้
n 1
1
a n 1
1 a
(a 0) (a 1)
(a 0, a 1)
二、错位相减法
此可采用倒序相加法,在等比数列求解中,也可借组于
此法解题。
六、配对求和法
次类问题相邻两项(或更多项)求和后具有某种特点(如相等、
成一等差或等比数列)
100
例 6.求 1n n2 。
i 1
100
解: 1n n2 1002 992 982 972 972 962 … 42 32 22 12
例 3.求数列{
1
}的前 n 项和
n1 n
Sn n 1 1
1、 1 1 ( 1 1 ) n(n k) k n n k
2、 1
n1 n
n n1
3.n n! (n 1 1)n! (n 1)! n!
2.数列
1
3 22
5 , 22 32
7 , 32 42
,L
2n 1 , n2 (n 1)2
i 1
199 195 … 7 3 (199 3)50 5050 。
2:数列 {an } 的通项
an
n2 (cos2
n
3
2
sin2
n
3
) ,其前 n
项和为
Sn
,
则【解 S30析为】由47于0{cos。2 n sin2 n }以 3 为周期,故
3
3
S30
12 22 (
2
32 ) ( 42 52 2
,L
的前 n 项和
四、分组转化法
此类问题可转化为“ an bn cn ”的数列( bn 、 cn 为等差或等比数列)
例4.已知集合A={an|an=2n+9n-4,n∈N且an<2000},求A 中元素的个数,以及这些元素的和.
10
2501
2.求和 Sn=1+1+12+1+12+14+…+1+12+41+…+2n1-1.