高三数学第一轮复习课件

合集下载

空间直线平面的平行课件高三数学一轮复习

空间直线平面的平行课件高三数学一轮复习

【命题说明】
考向 考法
预测
高考命题常以空间几何体为载体,考查直线、平面平行的判断 和证明.线面平行的证明是高考的热点.常以解答题的形式出现. 2025年高考这一部分知识仍会考查,以解答题第(1)问的形式出 现,难度中档.
必备知识·逐点夯实
知识梳理·归纳 1.直线与平面平行 (1)直线与平面平行的定义 直线l与平面α__没__有__公__共__点__,则称直线l与平面α平行.
角度2 平面与平面平行的性质 [例4](2023·承德模拟)如图,正方体ABCD-A1B1C1D1的棱长为3,点E在棱AA1上,点F 在棱CC1上,G在棱BB1上,且AE=FC1=B1G=1,H是棱B1C1上一点.
(1)求证:E,B,F,D1四点共面;
【证明】(1)如图,在DD1上取一点N使得DN=1, 连接CN,EN,则AE=DN=1.CF=ND1=2, 因为CF∥ND1,所以四边形CFD1N是平行四边形,所以D1F∥CN. 同理四边形DNEA是平行四边形, 所以EN∥AD,且EN=AD, 又BC∥AD,且AD=BC, 所以EN∥BC,EN=BC, 所以四边形CNEB是平行四边形, 所以CN∥BE,所以D1F∥BE, 所以E,B,F,D1四点共面;
对点训练 如图,四边形ABCD为矩形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面
PDC∩平面PBE=l.证明:
(1)DF∥平面PBE;
如图,四边形ABCD为矩形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面 PDC∩平面PBE=l.证明:
(2)DF∥l. 【证明】(2)由(1)知DF∥平面PBE, 又DF⊂平面PDC,平面PDC∩平面PBE=l, 所以DF∥l.
解题技法 1.判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α). (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). 2.应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作 辅助平面确定交线.

3.3-幂函数课件-2025届高三数学一轮复习

3.3-幂函数课件-2025届高三数学一轮复习

(1)只有形如y=xα(其中α为任意实数,x为自变量)的函数才是幂函
数,否则就不是幂函数.

(2)判断一个函数是否为幂函数的依据是该函数是否为 y=xα(α为常
数)的形式,函数的解析式为一个幂的形式,且:①指数为常数,②
底数为自变量,③底数系数为1.
知识点2 幂函数的图象与性质
1.五个幂函数的图象
5
6
5
∴ 0.31 < 0.35 ,即 −0.31
6
5
6
5
< 0.35 .
6
5
例12 (2024·湖南省长沙市期末)已知幂函数y =
m2
+m−5
2 −2m−3
m
x
,当
2
x ∈ 0, +∞ 时,y随x的增大而减小,则实数m的值为___.
【解析】∵ y
=(m2
+m
2 −2m−3
m
− 5)x
是幂函数,
(x α 的系数为1,注意该隐含条件)
高中数学人教版必修第一册A版
第三章 函数的概念与性质
3.3-幂函数
知识点1 幂函数的概念
一般地,函数________叫做幂函数,其中
x是自变量,α是常数.
y=xα
基础过关
例1-1 在函数y = x −4 ,y = 3x 2 ,y = x 2 + 2x,y = 1中,幂函数的个数为(
A.0
B.1
C.2
对于C,由幂函数的性质可知,幂函数的图象一定不经过第四象限,故C正确;
对于D,幂函数y = x与y = x 3 的图象的交点为(−1, −1), 0,0 , 1,1 ,共3个,故D
错误.

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

根据集合的运算结果求参数的值或范围的方法 (1)将集合中的运算关系转化为两个集合之间的关系.若集合中 的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若 是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取 到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.
1.设集合 A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则 A∩B
(5,6] 解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
与集合中的元素有关问题的求解思路 (1)确定集合中元素的特征,即集合是数集还是点集或其他集合. (2)看清元素的限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,但要检 验参数是否满足集合元素的互异性.
1.A∪B=A⇔B⊆A. 2.A∩B=A⇔A⊆B. 3.∁U(∁UA)=A.
4.常用结论 (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n 个,真子集有(2n -1)个,非空真子集有(2n-2)个. (2)子集的传递性:A⊆B,B⊆C⇒A⊆C. (3)∁U(A∩B)=(∁UA)∪(∁UB), ∁U(A∪B)=(∁UA)∩(∁UB).
(4)集合与集合间的基本关系 ①子集:集合A中任意一个元素都是集合B中的元素.用符号表 示为 A⊆B (或 B⊇A ). Venn图如图所示:
②真子集:集合 A⊆B,但存在元素 x∈B,且 x A.用符号表示 为:A B(或 B A).
Venn 图如图所示:
③集合相等:集合A的任何一个元素都是集合B的元素,同时集 合B的任何一个元素都是集合A的元素.用符号表示为 A=B .
1.设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x-2)·log2x=0} 的关系可表示为( )

高三高考数学第一轮复习课件三角函数复习

高三高考数学第一轮复习课件三角函数复习

]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2

(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+

双曲线课件-2025届高三数学一轮复习

双曲线课件-2025届高三数学一轮复习
9

|PF1|-|PF2|=±2 a =±6,又|PF 1|=5,则|PF 2|=11.
6.
2
2
已知双曲线 C : 2 - 2 =1( a >0, b >0)的焦距为4


线 C 的渐近线方程为
3 ,实轴长为4 2 ,则双曲
2 x ± y =0 .

[解析] 由题意知,2 c =4 3 ,2 a =4 2 ,则 b = 2 − 2 =2,所以 C 的渐近线


C.
2 2
2
双曲线 - =1的渐近线方程是y=± x
9
4
3
D. 等轴双曲线的渐近线互相垂直,离心率等于 2
2. [浙江高考]渐近线方程为 x ± y =0的双曲线的离心率是(
A.
2
2
B. 1
C. 2
C )
D. 2
[解析] 因为双曲线的渐近线方程为 x ± y =0,所以无论双曲线的焦点在 x 轴上还是
轴上.又离心率 e =

2 ,所以 =

2 ,所以 a = 2 ,则 b 2= c 2- a 2=2,所以双曲
2
2
线 C 的标准方程为 - =1.
2
2
解法二
因为双曲线 C 的离心率 e = 2 ,所以该双曲线为等轴双曲线,即 a = b .又
双曲线 C 的焦点为(-2,0)和(2,0),所以 c =2,且焦点在 x 轴上,所以 a 2+ b 2=
1
以| PF 1|·| PF 2|=8,所以 △ = | PF 1|·| PF 2|·sin
2
1 2
解法二
60°=2 3 .
2
2
由题意可得双曲线 C 的标准方程为 - =1,所以可得 b 2=2,由双曲

第五讲+指数与指数函数 课件——2025届高三数学一轮复习

第五讲+指数与指数函数 课件——2025届高三数学一轮复习

要特别注意应分 a>1 与 0<a<1 来研究.
考点一 指数幂的运算
1.化简 3 ab2 a2b2 (a,b 为正数)的结果是( 11 3 b (a6b4 )4
b2 A.a2
B.a2b2
a2 C.b2
) D.ab
12
78
解析:原式= a3b3 1
a2b2
2
a 3b3
21
=a2b2.故选
B.
2025年高考一轮总复习
第二章 函数、导数及其应用
第五讲 指数与指数函数
1.根式 (1)一般地,如果 xn=a,那么 x 叫做 a 的 n 次方根,其中 n>1, 且 n∈N*.
(2)式子n a叫做根式,其中 n 叫做根指数,a 叫做被开方数.
(3)(n a)n=a.当 n 为奇数时,n an=a;当 n 为偶数时,n an= |a|=a-,aa,≥a0<,0.
4.指数函数y=ax(a>0,且 a≠1)的图象与性质
底数
a>1
0<a<1
图象
性质
定义域为 R,值域为(0,+∞) 图象过定点(0,1)
(续表)
底数
a>1
当 x>0 时,y>1;
性质 当 x<0 时,0<y<1
在定义域 R 上为增函数
0<a<1 当 x>0 时,0<y<1; 当 x<0 时,y>1 在定义域 R 上为减函数
考点二 指数函数的图象
[例 1](1)(多选题)若函数 y=ax+b-1(a>0,且 a≠1)的图象经
过第一、三、四象限,则下列选项中正确的有( )
A.a>1

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(

A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]

D、[5,+∞﹚

集合课件高三数学一轮复习

集合课件高三数学一轮复习

第一章 集合、常用逻辑用语、不等式
主干知识·回顾
核心题型·突破
课时分层检测
3.设全集为 R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)= ________,(∁RA)∩B=________.
答案 {x|x≤2 或 x≥10} {x|2<x<3 或 7≤x<10}
第一章 集合、常用逻辑用语、不等式
得 m>-6.]
第一章 集合、常用逻辑用语、不等式
主干知识·回顾
核心题型·突破
课时分层检测
题型三 集合的基本运算
命题点 1 集合的运算
[例 3] (2023·天津卷,5 分)已知集合 U=1,2,3,4,5 ,A=
1,3
,B={1,2,4},则(∁UB)∪A=(
)
A. 1,3,5
B. 1,3
__A_∩__B___ __∁_U__A___
第一章 集合、常用逻辑用语、不等式
主干知识·回顾
核心题型·突破
课时分层检测
【常用结论】 1.若集合 A 有 n(n≥1)个元素,则集合 A 有 2n 个子集,2n-1 个真子 集. 2.子集的传递性:A⊆B,B⊆C⇒A⊆C. 3.等价关系:A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB.
所以 M∩N={-2}.故选 C. 方法二 因为 M={-2,-1,0,1,2},将-2,-1,0,1,2 代入 不等式 x2-x-6≥0,只有-2 使不等式成立,所以 M∩N={-2}.故选 C.]
第一章 集合、常用逻辑用语、不等式
主干知识·回顾
核心题型·突破
课时分层检测
跟踪训练 1 (1)(多选)集合 A={x|mx2+2x+m=0,m∈R}中有且只有 一个元素,则 m 的取值可以是( )

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

2019年6月1日
缘分让我们相遇,缘分让我们在一起
1
2.常用逻辑用语 (1)理解命题的概念.
(2)了解“若 p,则 q”形式的命题及其逆命题、否命题
与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的含义. (4)了.解逻辑联结词“或”“且”“非”的含义. (5)理解全称量词和存在量词的意义.
第一章 集合与常用逻辑用语
考纲链接
1.集合 (1)集合的含义与表示 ①了解集合的含义,体会元素与集合的属于关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两.个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
=∅,则实数 a 的取值范围为________.
2019年6月1日
缘分让我们相遇,缘分让我们在一起
19
解:(1)因为{1,a+b,a}=0,ba,b,a≠0, 所以 a+b=0,ba=-1,从而 b=1, 所以 a=-1,b=1,所以 b-a=2.故填 2. (2)由 A=∅知方程 ax2+3x-2=0 无实根, 当 a=0 时,x=23不合题意,舍去;
(6)能正确地对含一个量词的命题进行否定 .
2019年6月1日
缘分让我们相遇,缘分让我们在一起
2
• 1.1 集合及其运算
2019年6月1日
缘分让我们相遇,缘分让我们在一起
3
1.集合的基本概念

高三数学一轮复习北师大PPT课件

高三数学一轮复习北师大PPT课件
=13×82×4 14-13×42×2 14=2243 14(cm3).
第42页/共61页
[点评] 求锥体的体积常用方法为:割补法和等积变 换法:(1)割补法:求一个几何体的体积可以将这个几何 体分割成几个柱体、锥体,分别求出柱体和锥体的体积, 从而得出几何体的体积.有时将几何体补成易求几何体的 体积,如长方体、正方体,然后求出两个或几个几何体的 体积之差.
第12页/共61页
5.(2010·浙江理)若某几何体的三视图(单位:cm)如 图所示,则此几何体的体积是________cm3.
第13页/共61页
[答案] 114 [解析] 三视图还原为一个正棱台和长方体的组合体, 对棱台:下底边长8,上底边长为4,高为3,对其上的长 方体,边长为4,4,2,则体积为144cm3.
第25页/共61页
如图,在直三棱柱ABC-A1B1C1中,AB=BC=,AA1 =2,∠ABC=90°,E、F分别为AA1、B1C1的中点,沿棱 柱的表面从E点到F点的最短路径的长度为d,求d的最小 值.
第26页/共61页
[分析] 可将直三棱锥的表面展开,利用“两点间线 段最短”来解决.
[解析] 将三棱柱的侧面、底面展开有三种情形:
方体各个面的中心为顶点的凸多面体的体积为
()
2
2
3
2
A. 6
B. 3
C. 3
D.3
[答案] B
第10页/共61页
[解析] 本小题主要考查正方体的有关性质和凸多 面体的体积公式.
如图,凸多面体为两个相同正四棱锥的组合体, ∵AC= 2,AE=1, 且 AECF 为正方形, ∴EC=1,∴SAECF=1, ∵高为 22, ∴V=2×31× 22= 32,故选 B.

高三数学第一轮复习《第1课时 集合的概念及其基本运算》课件

高三数学第一轮复习《第1课时 集合的概念及其基本运算》课件

探究提高 在解决两个数集关系问题时,避免出错的 一个有效手段即是合理运用数轴帮助分析与求解,另 外,在解含有参数的不等式(或方程)时,要对参数 进行讨论.分类时要遵循“不重不漏”的分类原则, 然后对每一类情况都要给出问题的解答. 分类讨论的一般步骤:①确定标准;②恰当分类; ③逐类讨论;④归纳结论.
(2)当a=0时,显然B A;
当a<0时,若B A,如图,
4 则 a
1 a
1 2
2
,
a a
8 1.
2
1 2
a
0;
当a>0时,若B A,如图,
则4 a
1 a
2
1
2
,
a a
2 .0
2
a
2.
综上知,当B
A时,
1 2
a
2
(3)当且仅当A、B两个集合互相包含时,A=B.
由(1)、(2)知,a=2.
( B)
A.a<1 B.a≤1 C.a<2 D.a≤2
解析 由图象得a≤1,故选B.
明年目标
工作详情
题型一 集合的基本概念
【例1】 集合A={0,2,a},B={1,a2},
若A∪B={0,1,2,4,16},则a的值为 ( )
A.0
B.1
C.2
D.4
思维启迪 根据集合元素特性,列出关于a的方程
则A∩( UB)等于 A.{x|0≤x<1}
(B) B.{x|0<x≤1}
C.{x|x<0}
D.{x|x>1}
解析 ∵B={x|x>1},
∴ UB={x|x≤1}. 又A={x|x>0},
∴A∩( UB)={x|0<x≤1}。

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =

,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得

1
an+1
+k=2
1
an
+k

1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3

1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1

2023届高考人教A版数学一轮复习课件:函数的概念及其表示

2023届高考人教A版数学一轮复习课件:函数的概念及其表示

A.0
)
B.2
C.3
D.-3
2 ()
(2)(2021广东珠海高三期中)若一次函数f(x)满足f(f(x))=x+1,则g(x)=

(x>0)的值域为
.
答案 (1)D
(2)[2,+∞)
解析 (1)由 f(x)-2f
1
f(x)=3

2
+

1

=x+2,可得
1

1
-2f(x)= +2,联立两式可得

(2)(2021湖南长沙长郡中学高三二模)已知函数f(x)= ( + 2), ≤ 0, 则
f(-5)=
.
答案 (1)B (2)e
解析 (1)当a≤0时,f(a)=a2+1=5,解得a=-2;当a>0时,f(a)=2a+3=5,解得a=1.
故选B.
e , > 0,
(2)由f(x)= ( + 2), ≤ 0, 得f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(1+2)=f(1)=e.
的定义域是[1,+∞),则
2
+ -1
函数y=f(x)的定义域是
.
答案 (1)D
解析
(2)(1,2]
(1)因为函数 f(x)的定义域为[-2,1],所以对于函数
(3-2)
y=
,有
lg(1-)
-2 ≤ 3-2 ≤ 1,
(3-2)
解得 0<x<1,因此函数 y=
的定义域为(0,1).
1- > 0,
-2,代入 x=2 可得 f(2)=-3,故选 D.

函数的奇偶性课件-2024届高三数学一轮复习

函数的奇偶性课件-2024届高三数学一轮复习
,

的最小值为

x
1 e
m n
− = −
−x ∈ A,且_______________,那么函数f
x 就叫作奇函数
图象
关于

______
对称
关于
坐标原点
_______
对称
【微点拨】奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点
对称是函数具有奇偶性的必要不充分条件.
1.函数f x 具有奇偶性的前提是什么?
D.f c > f b > f a
1
log 2 ,
4
活动四 奇偶性的应用(求参数)
34页 2.已知函数f x = a −
2
ex +1
1
a ∈ 是奇函数,则a =___.
[例4] (1)若函数f x = x + a ln
A.−1
(2)若f x = ln a +
B.0

1
1−x
2x−1
2x+1
为偶函数,则a =(
B.c < b < a
C.b < c < a
2.(2024·常州调研)已知f x = lg e
则f a ,f b ,f c 的大小关系为(
A.f c

x
+ 1 ,a =
20.3 ,b
)
D.a < b < c
= log 3 2,c =
)
>f a >f b
B.f b > f a > f c
C.f a > f b > f c
3.已知f x = ax 2 + bx是定义在[a − 1,2a]上的偶函数,那么a + b的值是(

高三数学一轮复习PPT课件

高三数学一轮复习PPT课件
如何求解? 解:①若 B=∅,则 Δ=m2-4<0, 解得-2<m<2; ②若 1∈B,则 12+m+1=0, 解得 m=-2,此时 B={1},符合题意; ③若 2∈B,则 22+2m+1=0, 解得 m=-52,此时 B=2,12,不合题意. 综上所述,实数 m 的取值范围为[-2,2).
第28页/共60页
第23页/共60页
[典题 2] (1)已知集合 A={x|x2-3x+2=0,x∈R},B
={x|0<x<5,x∈N},则满足条件 A⊆C⊆B 的集合 C 的个
数为( D )
A.1
B.2
C.3
D.4
第24页/共60页
[解析] 由 x2-3x+2=0,得 x=1 或 x=2, ∴A={1,2}. 由题意知 B={1,2,3,4}, ∴满足条件的 C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
第30页/共60页
1.[2017·广东河源东江中学月考]已知全集 U=R,集合 A ={y|y=2x,x∈R},B={y|y=x2,x∈R},则能正确表示集 合 A,B 关系的韦恩(Venn)图是( C )
A
B
C
D
第31页/共60页
解析:∵A={y|y=2x,x∈R}=(0,+∞),B={y|y=x2,x ∈R}=[0,+∞),∴A B.故选 C.
[点石成金] 1.集合间基本关系的两种判定方法和一个关键
第29页/共60页
2.根据两集合的关系求参数的方法 已知两个集合之间的关系求参数时,要明确集合中的元素, 对子集是否为空集进行分类讨论,做到不漏解. (1)若集合元素是一一列举的,依据集合间的关系,转化为解 方程(组)求解,此时注意集合中元素的互异性; (2)若集合表示的是不等式的解集,常依据数轴转化为不等式 (组)求解,此时需注意端点值能否取到.

直线的方程课件 高三数学一轮复习

直线的方程课件 高三数学一轮复习

解析:如图所示:
当直线l过B时设直线l的斜率为k1,
则k1=
3−0=-0−13, Nhomakorabea当直线l过A时设直线l的斜率为k2, 则k2=12−−01=1,
∴要使直线l与线段AB有公共点,则直线l的斜率的取值范围是(-∞,- 3] ∪
1, + ∞ .
题后师说
(1)由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围 求 π)上直的线单倾调斜性角求的解取,值这范里围特时别,要常注借意助,正正切切函函数数y=在ta[0n,x在π2)[∪0,(π2,π2)π∪)上(π2 , 并不是单调的.
课堂互动探究案
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算 公式.
2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜 式、两点式及一般式).
问题思考·夯实技能 【问题1】 直线的倾斜角越大,斜率越大对吗?
答案:不对.设直线的倾斜角为α,斜率为k.
【问题2】
在平面直角坐标系中,给定直线l上一个定点P0(x0,y0)和斜率k,则 直线l上不同于该定点的任意一点P(x,y)的横坐标x与纵坐标y所满足 的关系式是什么?
公共点,则直线l斜率的取值范围为__[13_,___3_]_.
解析:∵P(-1,0),A(2,1),B(0, 3), ∴kPA=2−1−−01 =13,kPB=0−3−−01 = 3. 由图可知,直线l的斜率k的取值范围为[13 , 3].
【变式练习】 若本例(2)中“P(-1,0)”改为“P(1,0)”,其他 条件不变,则直线l的斜率的取值范围为__(-__∞__,_-___3_]_∪__1_,__+__∞__.
题后师说
求直线方程的两种方法 (1)直接法:由题意确定出直线方程的适当形式. (2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待 定的系数,再由题设条件求出待定系数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


下表是某地的年降雨量(mm)与年平均气 温(℃)的数据资料,两者是线性相关关系 吗?求回归直线方程有意义吗? 12 12 12 13 13 12 13 年平均 . . . . . . . 气 5 8 8 6 3 7 0 温(℃) 1 4 4 9 3 4 5 年降雨 74 54 50 81 57 70 43 量 8 2 7 3 4 1 2 (mm)

[例1] 5个学生的数学和物理成绩如下表:
学生 A B C D E
学科 80 75 70 65 60 数学 70 66 68 64 62 物理 画出散点图,并判断物理成绩和数学成绩 是否有相关关系.

[解析]把数学成绩作为横坐标,把相应的 物理成绩作为纵坐标,在直角坐标系中描 点(xi,yi)(i=1,2,…,5),作出散点图如 图.

[答案] C [解析] 回归直线必过点(4,5),故其方程 为y-5=1.23(x-4),即y=1.23x+0.08, 故选C.


2.(2009·海南宁夏理3)对变量x,y有观 测数据(xi,yi)(i=1,2,…,10),得散点 图1;对变量u,v有观测数据(ui,vi)(i= 1,2,…,10),得散点图2.由这两个散点 图可以判断.( )


若两个变量x和y的散点图中,所有点看上 线性相关 去都在一条直线附近波动,则称变量间是 的.若所有点看上去都在某条曲 线非线性相关 (不是一条直线)附近波动,则称此相关 为 的.如果所有的点在散点图 中没有显示任何关系,则称变量间是不相 关的.
2.回归方程 (1)最小二乘法 如果有n个点:(x1,y1),(x2,y2),…, 直线y=a+bx (xn,yn)可以用下面的表达式来刻画这些 与 的接近程度: 2+…+ 直线 y+ =a +bx [y1-(a+bx1)]2+[y2- (a bx )] 2 [yn-(a+bxn)]2 使得上式达到最小值的 就是我 们要求的直线,这种方法称为最小二乘 法.

3.下列两个变量之间的关系: ①角度和它的余弦值; ②正n边形的边数与内角和; ③家庭的支出与收入; ④某户家庭用电量与电价间的关系. 其中是相关关系的有( ) A.1个 B.2个 C.3个 D.4个 [答案] A

4.某考察团对全国10大城市的职工人均 工资水平x(千元)与居民人均消费水平y(千 元)进行统计调查,y与x具有相关关系, 回归方程y=0.66x+1.562,若某城市居 民人均消费水平为7.675(千元),估计该 城市人均消费额占人均工资收入的百分比 约为( ) A.83% B.72% C.67% D.66% [答案] A [解析] 由7.675=0.66x+1.562得x=

(2)回归直线方程 回归直线方程 y=a+bx 中
i=1
xi- x yi- y xi- x 2
n
n
b=
i=1
i=1
xiyi-n x y xi2-n x 2
n
n

i=1
a=
y -b x x1+x2+…+xn y1+y2+…yn , y = n n
其中 x =
基础自测 1.已知回归直线斜率的估计值为1.23, 样本的中心为点(4,5),则回归直线的方 程为( ) A.y=1.23x+4 B. y = 1.23 x+ [分析 ] 5 回归直线必过样本中心点( x , y ),又回归 C.y=1.23 x+ 0.08 D. y= 直线的斜率为 1.23 ,可代入直线的点斜式方程解决. 0.08x+1.23
(1)将上述数据制成散点图; (2)你能从散点图中发现施化肥量与水稻 产量近似成什么关系吗?水稻产量会一直 随施化肥量的增加而增长吗?

[分析] 描点可画出散点图,观察散点图 中的点大致分布在一条直线附近,则线性 相关. [解析] (1)散点图如下:


(2)从图中可以发现数据点大致分布在一 条直线的附近,因此施化肥量和水稻产量 近似成线性相关关系,当施化肥量由小到 大变化时,水稻产量由小变大,但水稻产

5 .线性回归方程 - y =b- x + a 中, b 的意义是y就平均增加b 个单位.

6.下面是水稻产量与施化肥量的一组观 测数据: 施化 15 20 25 30 35 40 45 肥量 水稻 32 33 36 41 46 47 48 0 0 0 0 0 0 0 产量
A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 [答案] C [解析] 本题主要考查了变量的相关知识, 考查学生分析问题和解决问题的能力. 用散点图可以判断变量x与y负相关,u与 v正相关.

考纲解读 1.会作两个有关联变量的数据的散点图, 会利用散点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出 的线性回归方程系数公式建立线性回归方 程. 考向预测 1.以考查线性回归系数为主,同时可考


知识梳理 1.散点图 (1)将变量所对应的点描出来,就组成了 散点图 变量之间的一个图, 这种图为变量之间 的 . (2)从散点图上可以看出,如果变量之间 光滑的曲线 存在着某种关系,这些点会有一个集中的 大致趋势,这种趋势可用一条 来近似,这种近似的过程称为曲线拟 合.

从图中可以直观地看出数学成绩和物理成 绩具有相关关系,且当数学成绩增大时, 物理成绩也在由小变大,即它们正相关.
[点评] 在散点图中,如果所有的样本点 都落在某一函数的曲线上,就用该函数来 描述变量之间的关系,即变量之间具有函 数关系.如果所有的样本点都落在某一函 数的曲线附近,变量之间就有相关关 系.如果所有的样本点都落在某一直线附 近,变量之间就有线性相关关系. 提醒:函数关系是一种理想的关系模型, 而相关关系是一种更为一般的情况.
相关文档
最新文档