导数中两种零点问题解决方法

合集下载

导数中两种零点问题解决方法

导数中两种零点问题解决方法

导数中两种零点问题解决方法导数中的零点问题是指函数在其中一点的导数为零。

解决导数零点问题的方法有两种:一种是解析法,一种是数值法。

一、解析法解析法是指使用数学知识和方法,通过分析函数的性质来求解导数的零点。

解析法包括以下几种常见的方法:1.1.方程法方程法是根据导数的定义,将函数的导数表达式设置为零,得到一个方程,从而求解出导数的零点。

具体步骤如下:1.将函数的导数表达式设置为零,得到一个方程。

2.解方程,求出方程的根。

3.将根带入原函数,计算出在根处的函数值。

1.2.倒数法倒数法是指使用导数的倒数来求解导数的零点。

具体步骤如下:1.对函数进行求导,并求出导数的表达式。

2.求导数的倒数,得到一个新的函数。

3.使用方程法求解导数的倒数的零点。

4.将零点带入原函数,计算出在零点处的函数值。

1.3.函数性质法函数性质法是指通过分析函数的图像和性质来求解导数的零点。

具体步骤如下:1.根据函数的图像和性质,确定导数的零点的位置。

2.使用方程法求解导数的零点,得到具体的数值。

3.将零点带入原函数,计算出在零点处的函数值。

二、数值法数值法是指使用数值计算的方法来求解导数的零点。

数值法包括以下几种常见的方法:2.1.二分法二分法是一种迭代求根的方法,通过函数在区间内取值的正负性来确定区间,并通过不断缩小区间的范围来求解导数的零点。

具体步骤如下:1.根据函数的图像和性质,选择一个初值区间,并确定函数在区间内的正负性。

2.通过计算区间的中点,并确定中点的函数值的正负性,来缩小区间。

3.不断迭代上述步骤,直到区间的宽度满足要求,得到导数的零点的近似值。

2.2.切线法切线法是使用切线近似原曲线的方法,通过迭代求解切线与横轴交点的坐标,来求解导数的零点。

1.根据函数的图像和性质,选取一个初始点,并求出该点处的导数值。

2.过初始点作函数图像的切线,并求出切线方程。

3.求出切线与横轴的交点的坐标,并将该点作为新的初始点。

4.重复上述步骤,直到满足迭代终止条件,得到导数的零点的近似值。

高考数学利用导数研究函数的零点

高考数学利用导数研究函数的零点
[总结反思]根据参数确定函数的零点个数有两种解决方法:一种是利用单调性与零点存在定理求解,另一种是化原函数为两个函数,利用两个函数图像的交点来求解.
课堂考点探究
变式题 已知函数f(x)=ex-ax+sin x-1.(1)当a=2时,讨论函数f(x)的单调性;
课堂考点探究
解: 当a=2时,f(x)=ex-2x+sin x-1(x∈R),则f'(x)=ex-2+cos x,设h(x)=f'(x)=ex-2+cosx, 则h'(x)=ex-sin x,当x∈(-∞,0]时,ex≤1,所以f'(x)=ex-2+cos x≤-1+cos x≤0,所以f(x)在(-∞,0]上单调递减;当x∈(0,+∞)时,ex>1,所以h'(x)=ex-sin x>1-sin x≥0,所以f'(x)在(0,+∞)上单调递增,所以f'(x)>f'(0)=0,所以f(x)在(0,+∞)上单调递增.综上,f(x)在 (-∞,0]上单调递减;在(0,+∞)上单调递增.
[总结反思]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数的单调性确定函数图像与x轴的交点个数,或者通过两个相关函数图像的交点个数确定参数需满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.
课堂考点探究
课堂考点探究
变式题 已知f(x)=x2-x+asin x.(1)当a=1时,求证:f(x)>0在(0,+∞)上恒成立;
课堂考点探究
例4 已知函数f(x)=x·cos x.(2)求证:当x∈时,方程2f(x)-1=0有且仅有2个不等的实数根.

利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。

导数隐零点问题处理的8大技巧(附30道经典题目)

导数隐零点问题处理的8大技巧(附30道经典题目)

导数隐零点问题处理的8大技巧(附30道经典题目)导数隐零点问题处理的8大技巧如下:1.分类讨论:对于含参数的零点问题,常常需要根据参数的不同取值范围进行分类讨论。

2.构造函数:利用导数研究函数的单调性,进而研究不等式恒成立问题。

3.分离参数:通过分离参数将参数与变量分开,转化为求最值问题。

4.数形结合:利用数形结合思想,将函数图像与x轴的交点问题转化为求函数的最值问题。

5.转化与化归:将复杂问题转化为简单问题,将陌生问题转化为熟悉问题。

6.构造法:通过构造新的函数或方程,将问题转化为已知的问题进行求解。

7.放缩法:通过对不等式进行放缩,将问题转化为易于处理的形式。

8.判别式法:通过引入判别式,将方程问题转化为二次方程的判别式问题。

以下是30道经典题目,以供练习:1.已知函数f(x)=x3−3x2+5,则f(x)的单调递增区间为( )A.(−∞,1)和(2,+∞)B.(−∞,−1)和(1,+∞)C.(−∞,−1)和(2,+∞)D.(−∞,2)和(1,+∞)2.已知函数f(x)=x3−3x2+5,则f(x)在区间[−2,3]上的最大值是____.3.已知函数f(x)=x3+ax2+bx+c在x=1和x=−21时取极值.(1)求a,b的值;(2)求函数极值.4. 已知函数f(x)=x3−3ax2+4,若x∈[0,2]时,f(x)的最大值为417,求实数a的取值范围.5. 已知函数f(x)=ln x−mx+m有唯一的零点,则实数m的取值范围是____.6. 已知函数 f(x) = x^3 - 3ax^2 + 3x + 1,若 x ∈ [0,1] 时,f(x) ≤ f(0) 恒成立,则 m 的取值范围是 _______.7. 已知函数 f(x) = ax^3 + bx^2 - 3x (a、b ∈ Z) 在 x = ±1 和x = ±2 时取极值.(1) 求 f(x) 的解析式;(2) 求 f(x) 的单调区间和极值;8. 已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = ±1 和 x = ±3时取极值.(1) 求 a,b 的值;(2) 求 f(x) 的单调区间和极值.1.已知函数 f(x) = x^3 - 3x^2 + 4 在 [0,3] 上的最大值和最小值分别为 M, N,则 M + N = _______.2.设f(x)=x3−3x2+4,则f(−x)+f(x)的值等于____3.已知函数f(x)=x3−3x2+4,则f(x)在(−3,2)上的最大值是____.4.已知函数f(x)=x3−3x2+4,则f(x)在区间[−1,3]上的最大值是____.5.已知函数f(x)=x3−3ax2+bx+c在x=±1时取极值,且函数y=f(x)图象过原点.(1) 求函数y=f(x)的表达式;(2) 求函数的单调区间和极值;14. 已知函数 f(x) = x^3 - 3ax^2 + bx 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-2,4] 上的最大值和最小值.15. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±2 时取极值.(1) 求 a,b 的值;(2) 若 f(x) 的最大值为 8,求 c 的值.16. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±√2 时取极值,且 f(-2) = -4.(1) 求 a,b,c 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.17. 已知函数 f(x) = x^3 - 3ax^2 + b (a > 0),若 f(x) 在区间[-1,0] 上是减函数,则 a 的取值范围是 _______.18. 若关于 x 的方程 x^3 - 3ax + a^3 = 0 有实根,则实数 a 的取值范围是 _______.19. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 a,b 应满足的条件是 _______.20. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b应满足的条件是 _______.1.函数 f(x) = x^3 - 3x^2 + 4 在区间 [-1,3] 上的最大值和最小值分别为 _______.2.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) +3x^2 ≤ f(y) + 3y^2,则 x + y 的取值范围是 _______.3.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) ≤f(y) + 3,则 x + y 的取值范围是 _______.4.若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则a,b 应满足的条件是 _______.5.已知函数 f(x) = x^3 - 3ax^2 + b 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.26. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b 应满足的条件是 _______.27. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.28. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.29. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个相等的实根,则 a,b 应满足的条件是 _______.30. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个相等的实根,则 a,b 应满足的条件是 _______.。

求解导数零点问题的四种策略

求解导数零点问题的四种策略

2020年第12期中学数学教学参考(下旬)'想方法求解导数零点问题的四种策略毛正燕(贵州省安顺市西秀区高级中学)余登高(贵州省安顺市西秀区岩腊乡三股水学校)摘要:导数零点是导数综合应用中非常重要的知识,其考查形式多样,问题设置一般较为复杂,尤其是导 数零点不可求问题。

本文给出四种策略下求解导数零点问题的示例,展现了一种策略独领风骚,多种策略 助力的解题过程。

关键词:导数;零点定理;函数文章编号:1002-2171 (2020) 12-0054-03导数作为高中数学中的重点内容,一直是高考函数压轴题涉及的主要知识。

导数零点问题考查形式多样,问题设置较为复杂,常常给学生的解题带来障碍。

下面笔者通过示例说明求解该类问题的四种策略。

1 一个定理——零点存在性定理在判断导函数/(:c)在给定区间U,6)内的单调 性后,可在区间(a,6)内取两个特殊值(往往取比较容易计算的具有明显特征的数值),计算对应的导函数值,并与〇进行比较,结合函数的零点存在性定理,就 可以得到导函数/'(x)在给定区间(a,6)内存在唯一 的零点。

例1(2019年高考数学全国卷I文科第20题第(I )问)已知函数 /(x) =2sin x—xcos x— x, /U)为/(X)的导函数。

证明:/(1)在区间(0,7T)内存在唯一零点。

分析:先对函数/(I)求导,然后对导函数再次求导,利用函数的单调性与最值,结合函数的零点存在性定理证明。

证明:由题意可得/^(工)=2cos x— [cos x+x(— sin x)] —l=cos x+xsin x一1,设函数g(x)=//(x)=c o s x+xsin x—1,贝!j(:r) =:ccos x。

当时,单调递增;当(|,7T)时,^/(:r)<0,g(jc)单调递减。

则函数g O)的最大值为 —1>〇。

又 g(0) =0,g(7t)=—2,可得 d f) .g(7t)<〇,即/'(f) ./(兀)<〇,所以根据函数的零点存在性定理,可知/(:c)在区间(0, 7t)内存在唯一零点。

导数中两种零点问题解决方法

导数中两种零点问题解决方法

导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。

一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。

例 1.已知函数 f (x) = x + a g ( x)x , g (x) = ln x ,若关于 x 的方程 x 2 = f (x) - 2e 只有一个实数根,求 a 的值。

g ( x) ln x ln x解析: x 2 = f (x) - 2e ⇒ a = x - x 2 + 2ex ,令 h (x) = x - x 2 + 2ex ,1- ln xh ' (x) =- 2x + 2e ,令 h ' (x) = 0 ,则 x= e x 2当 0 < x < e 时, h ' (x) > 0 , h (x) 单调递增;当 x > e 时, h ' (x) < 0 , h (x) 单调1递减, h (x) max = h (e ) = e + e 2注意这里 h (x) 的单调性不是硬解出来的,因为你会发现 h ' (x) 的式子很复杂,但是如ln x果把 h (x) 当成两个函数的和,即 m (x) = x , n(x) =- x 2 + 2ex ,此时 m (x), n (x) 的单调性和极值点均相同,因此可以整体判断出 h (x) 的单调性和极值点。

所以 a = 1e + e 2 (注意:有一个根转化为图像只有一个交点即可)二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如 f (x) 在区间 (0,1) 上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调, 只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着 f (x) 在区间(0,1) 上存在极值点。

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳

导函数零点问题一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题.二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【2020·福建南平期末】已知函数()()21e x f x x ax =++. (1)讨论()f x 的单调性;(2)若函数()()21e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e xf x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()21e xg x m x =+'-,当0m 函数在定义域上单调递增,不满足条件;当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m ,01m <<三种情况讨论可得.【解析】(1)因为()()21x f x x ax e =++,所以()()221e xf x x a x a ⎡⎤=+++⎣⎦'+, 即()()()11e xf x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-.①当0a =时,()()21e 0x f x x =+',当且仅当1x =-时,等号成立.故()f x 在(),-∞+∞为增函数.②当0a >时,()11a -+<-,由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-;所以()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数.③当0a <时,()11a -+>-,由()0f x >′得()1x a >-+或1x <-,由()0f x <′得()11x a -<<-+;所以()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.综上,当0a =时,()f x 在为(),-∞+∞增函数;当0a >时,()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数;当0a <时,()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.(2)因为()()21e 1x g x x mx =+--,所以()()21e x g x m x =+'-, ①当0m 时,()0g x ',()g x 在[)1,-+∞为增函数,所以()g x 在[)1,-+∞至多一个零点.②当0m >时,由(1)得()g x '在[)1,-+∞为增函数.因为()01g m '=-,()00g =.(ⅰ)当1m =时,()00g '=,0x >时,()0g x '>,10x -<<时,()0g x '<;所以()g x 在[)1,0-为减函数,在[)0,+∞为增函数,()()min 00g x g ==.故()g x 在[)1,-+∞有且只有一个零点.(ⅱ)当1m 时,()00g '<,()()210m g m e m m '=+->,()00,x m ∃∈,使得()00g x '=, 且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.所以()()000g x g <=,又()()()22221e 1110m g m m m m m =+-->+--=, 根据零点存在性定理,()g x 在()0,x m 有且只有一个零点.又()g x 在[)01,x -上有且只有一个零点0.故当1m 时,()g x 在[)1,-+∞有两个零点.(ⅲ)当01m <<时,()01g m -'=-<,()00g '>,()01,0x ∃∈-,使得()00g x '=,且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.因为()g x 在()0,x +∞有且只有一个零点0,若()g x 在[)1,-+∞有两个零点,则()g x 在[)01,x -有且只有一个零点.又()()000g x g <=,所以()10g -即()2110e g m -=+-,所以21e m -, 即当211em -<时()g x 在[)1,-+∞有两个零点. 综上,m 的取值范围为211em -< 【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x时,常猜x =0或x =ln x .2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】 【2020·山西吕梁期末】已知函数221()ln ()x f x a x a R x-=-∈. (1)讨论()f x 的单调性;(2)设()sin x g x e x =-,若()()()()2h x g x f x x =-且()y h x =有两个零点,求a 的取值范围. 【解析】(1)()f x 的定义域为(0,)+∞,1()2ln f x x a x x =--, 21()2f x x '=+2221a x ax x x-+-=, 对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<,得44a a x <<,所以()f x 在,)+∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在(44a a 上是减函数. (2)由已知可得()cos x g x e x '=-, 因为0x >,所以e 1x >,而c o s 1x ≤,所以cos 0x e x ->,所以()0g x '>,所以()sin xg x e x =-在()0+∞,上单调递增. 所以()()00g x g >=.故()h x 有两个零点,等价于()2y f x x =-=1aInx x--在()0+∞,内有两个零点. 等价于1ln 0a x x--=有两根, 显然1x =不是方程的根, 因此原方程可化为()1ln 01x x x x a-=>≠且, 设()ln x x x φ=,()ln 1x x φ='+,由()0x φ'>解得11x e<<,或1x > 由()0x φ'<解得10x e <<, 故()ln x x x φ=在10e ⎛⎫ ⎪⎝⎭,上单调递减,在()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.其图像如下所示:所以()min 11x e eφφ⎛⎫==- ⎪⎝⎭, 所以110e a-<-<, 所以a e >. 类型二 设而不求,巧“借”零点 【例2】【2015高考新课标1,文21】设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 【解析】(I )()f x 的定义域为0+,,2()=20x a f x e x x . 当0a时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,a x 单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. (II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00x x ,时,()0f x ;当0+x x ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0x x 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x ,所以00022()=2ln 2ln 2a f x ax a a a x a a . 故当0a 时,2()2ln f x a a a. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最值.因此需要求()0f x '=的根.但是2()=20x af x e x 的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”.【举一反三】 【2020·江西赣州期末】已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+.(1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值. 【解析】(1)令2()x f x e ax x =--,则()21x f x e ax '=--,得:(1)e 1f a =--,(1)e 21f a '=--,由题得:(1)e 21e 31(1)e 1e 31f a a f a b b ⎧=--=-=⎧⇒⎨⎨=--=-+=⎩'⎩(2)根据题意,要证不等式4()5f x m >+对于任意恒成立,即证(0,)x ∈+∞时,4()5f x -的最小值大于m , 令244()()()2155x x g x f x e x x g x e x '=-=---⇒=--, 记()()21()2x xh x g x e x h x e ''==--⇒=-,当(0,ln 2)x ∈时,()0h x '<;当x (ln 2,)∈+∞时,()0h x '>,故()h x 即()g x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 又(0)0g '=,(ln 2)12ln 20g '=-<,且(1)30g e '=-<,323402g e ⎛⎫'=-> ⎪⎝⎭, 故存在唯一031,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=, 故当()00,x x ∈时,0g x ;当()0,x x ∈+∞时,()0g x '>;故()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()02min 0004()5x g x g x e x x ==--- 一方面:()014(1)5g x g e <=- 另一方面:由()00g x '=,即00210x e x --=,得()022*********x g x e x x x x =---=-++ 由031,2x ⎛⎫∈ ⎪⎝⎭得:()0111205g x -<<,进而()011140205g x e -<<-<, 所以1120m <- ,又因为m 是整数,所以1m -,即max 1m =-. 类型三 二次构造(求导),避免求根 【例3】【2020重庆巴蜀中学月考】已知函数()()21ln 12f x x a x =+-.(1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210e x e --<<.【分析】(1)求出()'f x ,令()'0f x ≥,解不等式可得单调递增区间;(2)通过求()f x 的导函数,可得()f x 在()0,1上有两个极值点,设为1x ,2x ,又由()f x 在()0,1上有唯一的零点0x 可得0110,2x x ⎛⎫=∈ ⎪⎝⎭,所以有()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,消去a ,可得0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭,研究其单调性,利用零点存在性定理可得结果.【解析】(1)由已知()f x 的定义域为0x >,当1a =-时,()()21ln 12f x x x =--, 则()()2111'x x x xf x x -++=--=, 令()'0f x ≥且0x >,则102x +<≤, 故()f x在10,2⎛ ⎝⎦上单调递增;(2)由()()21ln 12f x x a x =+-, 有()()2111'ax f x ax a x x x-+=+-=,记()21g x ax ax =-+,由4a >,有()()001011110242110a g g a a g >⎧⎪=>⎪⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎪⎪⎩, 即()f x 在()0,1上有两个极值点,设为1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根, 则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞,当1x =时,()10f =, 所以得0110,2x x ⎛⎫=∈ ⎪⎝⎭, 所以()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()00'2ln 1t x x =+,其在10,2⎛⎫ ⎪⎝⎭上单调递增,所以()001'2ln 12ln 11ln 402t x x =+<+=-< 则()00'2ln 10t x x =+<在10,2⎛⎫⎪⎝⎭上恒成立, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212*********e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩, 由零点存在定理,210ex e --<<. 【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【2020·云南昆明一中期末】已知函数2()(1)x x f x eax e =-+⋅,且()0f x . (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【解析】(1)因为()()ee 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥, 构造函数()e 1x u x ax =--,则()'e xu x a =-,又()00u =, 若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >,则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e x xf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()0022200000011e 1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭.三.强化训练1.【2020·安徽合肥二中月考】已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】0x ≤时,()xf x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()xx f x x e x e x x'=+--=+-,显然10x +>, 由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=, 0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点.故选B . 2.【2020江苏盐城期中】已知函数,若函数存在三个单调区间,则实数的取值范围是__________. 【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。

高考数学专题一 微专题8 利用导数研究函数零点问题

高考数学专题一 微专题8 利用导数研究函数零点问题

④当x∈(π,+∞)时,ln(x+1)>1, 所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点.
跟踪训练1 (2023·常德模拟)已知函数f(x)=x2+2-aln x(a∈R). x
(1)若f(x)在x=2处取得极值,求f(x)在点(1,f(1))处的切线方程;
因为 f(x)=x2+2x-aln x,x>0,
2x3-ax-2
所以 f′(x)= x2
(x>0),
令g(x)=2x3-ax-2,则g′(x)=6x2-a,
由 a>0,g′(x)=0,可得 x= a6,
所以 g(x)在0,
a6上单调递减,在
a6,+∞上单调递增,
由于 g(0)=-2<0,故当 x∈0,
a6时,g(x)<0,
又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,
从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,
由于f(x)有唯一零点x0,故x1=x0,且x0>1,
所以有 2x30-ax0-2=0,x20+x20-aln x0=0,
联立得 2ln x0-x30-3 1-1=0,
(*)
令 h(x)=2ln x-x3-3 1-1,可知 h(x)在(1,+∞)上单调递增,
由于 h(2)=2ln 2-170<2×0.7-170<0,h(3)=2ln 3-2296>2×1-2296>0, 故方程(*)的唯一解,即f(x)的唯一零点x0∈(2,3),故[x0]=2.
考点二 由零点个数求参数范围
③若a<-1, (ⅰ)当x∈(0,+∞)时, 则g′(x)=ex-2ax>0, 所以g(x)在(0,+∞)上单调递增, 又g(0)=1+a<0,g(1)=e>0, 所以存在m∈(0,1), 使得g(m)=0,即f′(m)=0, 当x∈(0,m)时,f′(x)<0,f(x)单调递减, 当x∈(m,+∞)时,f′(x)>0,f(x)单调递增, 所以当x∈(0,m)时,f(x)<f(0)=0,

难点4 解答导数零点不可求问题的三种方法

难点4 解答导数零点不可求问题的三种方法

难点4 解答导数零点不可求问题的三种方法导数是研究函数的有力工具,其核心是由导数值的正、负确定原函数的单调性.用导数研究函数f(x)=0的单调性,往往需要解方程f '(x)=0.当该方程不易求解时,如何继续解题呢? 1.猜——猜出方程f '(x)=0的根典例1 设f(x)=.(1)若函数f(x)在(a,a+1)上有极值,求实数a的取值范围;(2)若关于x的方程f(x)=x2-2x+k有实数解,求实数k的取值范围.解析(1)f '(x)=-,令f '(x)=0,得x=1.由f(x)在(a,a+1)上有极值,得即0<a<1.所以实数a的取值范围是(0,1).(2)方程f(x)=x2-2x+k,即f(x)-x2+2x=k.设g(x)=f(x)-x2+2x,可得所求实数k的取值范围,即函数g(x)的值域.g'(x)=2(1-x)+.接下来,需求函数g(x)的单调区间,所以需解不等式g'(x)≥0及g'(x)≤0,因而需解方程g'(x)=0,但此方程不易求解,所以我们可以先猜后解.易得g'(1)=0,且当0<x<1时,g'(x)>0,当x>1时,g'(x)<0,所以函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故g(x)=g(1)=2.进而可得函数g(x)的值域是(-∞,2],所以所max求实数k的取值范围是(-∞,2].点拨当所求函数的解析式中出现ln x时,常猜x=1;当函数解析式中出现e x时,常猜.x=0或x=ln x对点练求函数f(x)=e x+x2-(2+ln 2)x的最小值.解析由题意可得,f '(x)=e x+x-(2+ln 2).接下来,需求函数f(x)的单调区间,所以需解不等式f '(x)≥0及f '(x)≤0,因而需解方程f '(x)=0.但此方程不易求解,所以我们可以先猜后解.易知f '(x)是增函数,所以方程f '(x)=0至多有一个实数解,且可观察出此实数解就是ln 2,所以函数f(x)在(-∞,ln 2)、(ln 2,+∞)上分别是减函数、增函数,得f(x)min=f(ln 2)=2-2ln 2-ln22.2.设——设出方程f '(x)=0的根典例2 设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f '(x)零点的个数;(2)证明:当a>0时, f(x)≥2a+aln.解析(1)f(x)的定义域为(0,+∞),f '(x)=2e2x-(x>0).当a≤0时, f '(x)>0, f '(x)没有零点;当a>0时,因为y=e2x单调递增,y=-单调递增,所以f '(x)在(0,+∞)上单调递增.又f '(a)>0,当b满足0<b<且b<时, f '(b)<0,故当a>0时, f '(x)存在唯一零点.(2)证明:设f '(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x)时, f '(x)<0;当x∈(x,+∞)时, f '(x)>0.故f(x)在(0,x0)上单调递减,在(x,+∞)上单调递增,所以当x=x时, f(x)取得最小值,最小值为f(x0).由于2-=0,所以f(x)=+2ax+aln≥2a+aln,当且仅当x=时取“=”.故当a>0时, f(x)≥2a+aln.点拨本题第(2)问的解题思路是求函数f(x)的最小值,因此需要求f '(x)=0的根,但是f'(x)=2e2x-=0的根无法求解,故设出f '(x)=0的根为x0,通过f(x)在(0,x)和(x,+∞)上的单调性知f(x)min =f(x)=+2ax+aln,进而利用基本不等式证得结论,这种解决方法类似解析几何中的设而不求. 对点练设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(2)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<+x(x>0).(*)令g(x)=+x,则g'(x)=+1=.令h(x)=e x-x-2,由(1)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于(*)式等价于k<g(α),故整数k的最大值为2.3.证——证明方程f '(x)=0无根典例3 已知m∈R,函数f(x)=mx--ln x,g(x)=+ln x,h(x)=,若∃x∈[1,e],使得f(x0)-g(x)>h(x),求实数m的取值范围.解析由题意知关于x的不等式f(x)-g(x)>h(x)在[1,e]上有解,即关于x的不等式<m(1<x≤e)有解.设u(x)=(1<x≤e),下面求函数u(x)的最小值.u'(x)=(1<x≤e),不易求解方程u'(x)=0.可大胆猜测方程u'(x)=0无解,证明如下:由1<x≤e,可得-(2x2+2)ln x<0;2x2-4ex-2=2(x-e)2-2e2-2<0,所以u'(x)<0.所以u(x)在(1,e]上是减函数,所以函数u(x)的值域是,进而可得所求实数m的取值范围是.点拨当利用导数求函数f(x)在区间[a,b]、[a,b)或(a,b]上的最值时,可首先考虑函数f(x)在该区间上是否单调,若单调,则f(x)在区间的端点处取得最值.对点练若存在x使不等式>成立,求实数m的取值范围.解析由题意知存在x使不等式-m>e x-x成立.设=t(t≥0),则∃t≥0使不等式-m>t-t2成立.设f(t)=t-t2(t≥0),下面求函数f(t)的最小值.f '(t)=(2t2+1)-2t(t≥0),需解方程f '(t)=0,但此方程不易求解.可大胆猜测方程f '(t)=0无解(若方程f '(t)=0无解,则f '(t)的值恒正或恒负,则f(t)是增函数或减函数),证明如下:f '(t)=(2t2+1)-2t≥2t-2t≥0(t≥0),当且仅当t=时取“=”,进而可得f '(t)≥0(t≥0),所以函数f(t)是增函数,得其最小值为f(0)=0.所以-m>0,故实数m的取值范围为m<0.。

导数零点问题解题方法

导数零点问题解题方法

导数零点问题解题方法
一、不定积分求导数
1、首先要找到函数的原函数表达式:通过求导将函数原函数表达式带
入不定积分解析;
2、可以把函数分解成多项式简化解析过程,然后再求出各项求和得到
函数的原函数表达式;
3、利用反代的方法,根据函数的原函数表达式求得函数的导数;
4、如果函数原函数表达式不明确,亦可通过拉格朗日方法求导数解决。

二、图解法
1、首先在图像的横轴上取某个点作为参考点,观察左右坐标两边函数
有无十字交点;
2、如果有十字交点,说明这个点运动时X坐标是不变的,且该点应为
函数的零点;
3、如果求解的是函数的导数,需要把函数以十字交点两点为原点,重
新建立一个图象;
4、再对这个新图象进行分析,从图象中观察函数的曲线,从而解出函数的导数零点。

三、斜截式法
1、将函数的绝对值大于零的点用斜线连接起来,形成斜截线;
2、用斜截线代替函数曲线,从而可以推算出函数的零点及零点处的函数切线斜率;
3、它是一种比较粗略的解决方案,当函数曲线较复杂时,效果不是很好。

四、数值法
1、将函数设置初值和步长,运用循环语句求函数的极值点:比较前后两点的函数值的大小,当函数值变化符号变化时,则此时所在点便是函数的零点。

2、确定一定区间后,可以运用不定积分法与理论解求导比较所求函数的零点的准确性;
3、如果此法在大量求穷使用插值表、计算机等技术,获得更精确的解决方案。

专题05 利用导数研究函数零点问题 (解析版)

专题05 利用导数研究函数零点问题 (解析版)

导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。

例谈突破导数零点问题的几种策略

例谈突破导数零点问题的几种策略
x x+1
且仅当x=-1等号成立. 当x>-2时, e ≥x+2两边取对数得x+1≥ln (x+2 ) , 于
x+1
是 e ≥x+1 ≥ln (x+2 ) , 由于等号不能同时成立, 所以 ex>
x
ln (x+2 ) .又当m≤2时, ln (x+2 ) ≥ln (x+m ) . 即( f x ) >0. (x+m ) >0, 故ex-ln 点评: 此题借助教材上重要函数不等式: 对任意 x∈ R, e ≥x+1, 并加以灵活运用达到了曲径通幽之功效.
四 、结束语
做好解题教学,首先要求教师有较高的解题能力, 需要老师勤于解题、 研题, 提高自己的解题功力, 深化对 数学学科的理解和掌握, 肚子里要有货.好的解题教学, 更要契合学生的实际情况, 能和学生原有的认知结构搭 上桥, 还要考虑学生的情绪和情感状态, 要 “贴地” 而行, 接上学生的 “地气 ” . 好的解题教学, 还要寻求恰当的方 式保证教学渠道的畅通 、 有趣、 积极、 高效, 这需要教师 在解题教学过程中 “各显神通” , 进行艺术的处理. F 高中版
的取值范围, 并证明( f x ) 的所有极值和大于ln
二 、利用重要的函数不等式
课本例习题或平时常做的一些题经常作为出题者 的母题来进行编题, 在解题时可以作为结论提供一些思 路.例如, 我们证过一个常见的不等式: 对任意x∈R, ex≥ x+1, 可以为一些导数题提供方法. (x+m ) . 例2 已知函数( f x ) =ex-ln (1 ) 设x=0是( f x ) 的极值点, 求m 的值, 并讨论( f x ) 的 单调性; (2 ) 当m≤2时, 证明( f x ) >0. 解: (1 ) 略. (2 ) 首先证明: 对任意x∈R, e ≥x+1.

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳导函数零点问题一、方法综述导数是研究函数性质的有力工具,其核心是由导数值的正负确定函数的单调性。

应用导数研究函数的性质或研究不等式问题时,绕不开研究$f(x)$的单调性,往往需要解方程$f'(x)=0$。

若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题。

二、解题策略类型一:察“言”观“色”,“猜”出零点例1】【2020·福建南平期末】已知函数$f(x)=x+ax+\frac{1}{e^{2x}}$1)讨论$f(x)$的单调性;2)若函数$g(x)=x+\frac{1}{e^{-mx}-1}$在$[-1,+\infty)$有两个零点,求$m$的取值范围。

分析】1)首先求出函数的导函数因式分解为$f'(x)=(x+a+1)(x+1)e^{-2x}$,再对参数$a$分类讨论可得:①当$a=0$时,$f'(x)=(x+1)e^{-2x}$,当且仅当$x=-1$时,等号成立。

故$f(x)$在$(-\infty,+\infty)$为增函数。

②当$a>0$时,$-10$得$x-1$,由$f'(x)<0$得$-a-1<x<-1$;所以$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数。

③当$aa+1$,由$f'(x)>0$得$x>-a-1$或$x<-1$,由$f'(x)<0$得$-1<x<-a-1$;所以$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。

综上,当$a=0$时,$f(x)$在$(-\infty,+\infty)$为增函数;当$a>0$时,$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数;当$a<0$时,$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。

微专题 利用导数研究函数的零点问题

微专题 利用导数研究函数的零点问题

利用导数研究函数的零点问题内容概览题型一 利用导数探究函数零点的个数题型二 利用函数零点问题求参数范围题型三 与函数零点有关的证明[命题分析]函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一 利用导数探究函数零点的个数[典例1](2022·陇南模拟)已知函数f(x)=r1e-a(a∈R),讨论f(x)的零点个数.【解析】令f(x)=r1e-a=0,得a=r1e,设g(x)=r1e,则g'(x)=e−(r1)e(e)2=−e,当x>0时,g'(x)<0,当x<0时,g'(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以g(x)≤g(0)=1,而当x>-1时,g(x)>0,当x<-1时,g(x)<0,g(x)的大致图象如图所示:所以①当a>1时,方程g(x)=a无解,即f(x)没有零点;②当a=1时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;③当0<a<1时,方程g(x)=a有两解,即f(x)有两个零点;④当a≤0时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;综上,当a>1时,f(x)没有零点;当a=1或a≤0时,f(x)有唯一的零点;当0<a<1时,f(x)有两个零点.【方法提炼】利用导数确定函数零点或方程的根的个数的方法:(1)构造函数:构造函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值(最值),并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·成都模拟)设函数f(x)=ln x+,m∈R.讨论函数g(x)=f'(x)-.3的零点个数【解析】由题设,可知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0),设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的极大值点,也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23,画出y=φ(x)的大致图象(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;)有两个零点.当0<m<2时,函数g(x【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞),当x=-2时,f(x)有极小值为f(-2)=-1e2,无极大值;(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1);当x→-∞时,与一次函数相比,指数函数y=e-x增长更快,从而f(x)=r1e−→0;当x→+∞时,f(x)→+∞,f'(x)→+∞,根据以上信息,画出f(x)大致图象如图所示,函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,当x=-2时,f(x)有极小值f(-2)=-1e2,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二 利用函数零点问题求参数范围[典例2](2022·全国乙卷)已知函数f(x)=ax-1-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【解析】(1)当a=0时,f(x)=-1-ln x,x>0,则f'(x)=12-1=1−2,当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=-1;(2)f(x)=ax-1-(a+1)ln x,x>0,则f'(x)=a+12-r1=(B−1)(K1)2,当a≤0时,ax-1<0,所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=a-1<0,此时函数无零点,不合题意;当0<a<1时,1>1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;又f(1)=a-1<0,由(1)得1+ln x≥1,即ln1≥1-x,所以ln x<x,ln <,ln x<2,当x>1时,f(x)=ax-1-(a+1)ln x>ax-1-2(a+1)>ax-(2a+3),则存在m=(3+2)2>1,使得f(m)>0,所以f(x)仅在(1,+∞)上有唯一零点,符合题意;当a=1时,f'(x)=(K1)22≥0,所以f(x)单调递增,又f(1)=a-1=0,所以f(x)有唯一零点,符合题意;当a>1时,1<1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;此时f(1)=a-1>0,由(1)得当0<x<1时,ln x>1-1,ln >1-1,所以ln x>2(1-1),此时f(x)=ax-1-(a+1)ln x<ax-1-2(a+1) (1-1)<-1+2(r1),存在n=14(r1)2<1,使得f(n)<0,所以f(x)在(0,1)上有一个零点,在(1,+∞)上无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【方法提炼】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围;(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法;(3)含参数的函数的零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,得到不含参数的具体函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(2021·全国甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解析】(1)a =2时,f (x )=22,f'(x )=2b2−2ln2·2(2)2=o2−En2)2=ln2· 2ln2−g2,当x ∈ 0,2ln2 时,f'(x )>0,f (x )单调递增;当x ∈2ln2,+∞ 时,f'(x )<0,f (x )单调递减;(2)由题知f (x )=1在(0,+∞)上有两个不等实根,f (x )=1⇔x a =a x ⇔a ln x =x ln a ⇔ln=ln,令g (x )=ln,g'(x )=1−ln 2,g (x )在(0,e)上单调递增,在(e,+∞)上单调递减,又g (e)=1e,g (1)=0,lim m+∞g (x )=0,所以0<ln<1e⇒a >1且a ≠e .所以a 的取值范围为(1,e)∪(e,+∞).【加练备选】 (2020·全国卷Ⅰ)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)·2+2 -a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a的取值范围是1题型三 与函数零点有关的证明[典例3](2022·新高考Ⅰ卷)已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)f(x)=e x-ax的定义域为R,而f'(x)=e x-a,若a≤0,则f'(x)>0,此时f(x)无最小值,故a>0.g(x)=ax-ln x的定义域为(0,+∞),而g'(x)=a-1=B−1.当x<ln a时,f'(x)<0,故f(x)在(-∞,ln a)上单调递减,当x>ln a时,f'(x)>0,故f(x)在(ln a,+∞)上单调递增,故f(x)min=f(ln a)=a-a ln a.当0<x<1时,g'(x)<0,故g(x)在 0,1上单调递减,当x>1时,g'(x)>0,故g(x)在1,+∞ 上单调递增,故g(x)min=g1=1-ln1.因为f(x)=e x-ax和g(x)=ax-ln x有相同的最小值,故1-ln1=a-a ln a,整理得到K11+=ln a,其中a>0,设t(a)=K11+-ln a,a>0,则t'(a)=2(1+p2-1=−2−1o1+p2<0,故t(a)在(0,+∞)上单调递减,而t(1)=0,故t(a)=0的唯一解为a=1,故K11+=ln a的解为a=1.综上,a=1;(2)由(1)可得f(x)=e x-x和g(x)=x-ln x的最小值为1-ln 1=1-ln11=1.当b>1时,考虑e x-x=b的解的个数,x-ln x=b的解的个数.设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点,即e x-x=b的解的个数为2.设T(x)=x-ln x-b,T'(x)=K1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,T(x)=x-ln x-b有两个不同的零点,即x-ln x=b的解的个数为2.当b=1,由(1)讨论可得x-ln x=b,e x-x=b仅有一个零点,当b<1时,由(1)讨论可得x-ln x=b,e x-x=b均无零点,故若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b>1.设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2,设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,1e3<x0<1且:当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),因此若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,故b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的零点x1,x0(x1<0<x0),此时x-ln x=b有两个不同的零点x0,x4(0<x0<1<x4),故e1-x1=b,e0-x0=b,x4-ln x4-b=0,x0-ln x0-b=0,所以x4-b=ln x4,即e4−=x4,即e4−-(x4-b)-b=0,故x4-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,又e1-x1=b可化为e1=x1+b,即x1-ln(x1+b)=0,即(x1+b)-ln(x1+b)-b=0,故x1+b为方程x-ln x=b的解,同理x0+b也为方程x-ln x=b的解,所以{x1,x0}={x0-b,x4-b},而b>1,故0=4−s1=0−s即x1+x4=2x0.所以x1,x0,x4成等差数列.所以,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法提炼】(1)证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;(2)证明的思路一般是对条件进行等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】 (2019·全国Ⅰ卷)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间 −1,π2上存在唯一极大值点;(2)f(x)有且仅有2个零点.【证明】(1)设g(x)=f'(x),则g(x)=cos x-11+,g'(x)=-sin x+1(1+p2,当x∈ −1,π2时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在 −1,π2上有唯一零点,设g'(x)的零点为α.则当x∈(-1,α)时,g'(x)>0;当x∈ sπ2时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在 sπ2上单调递减,故g(x)在 −1,π2上存在唯一极大值点,即f'(x)在 −1,π2上存在唯一极大值点;(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f'(x)在(-1,0)上单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在(-1,0)上单调递减,又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.②当x∈ 0,π2时,由(1)知,f'(x)在(0,α)上单调递增,在 sπ2上单调递减,而f'(0)=0, f'π2<0,所以存在β∈ sπ2,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x∈ sπ2时,f'(x)<0.故f(x)在(0,β)上单调递增,在 sπ2上单调递减.又f(0)=0,fπ2=1-ln 1+π2>0,所以当x∈ 0,π2时,f(x)>0.所以f(x)在 0,π2上没有零点.③当x∈π2,π 时,f'(x)<0,所以f(x)在π2,π 上单调递减.而fπ2>0,f(π)<0,所以f(x)在π2,π 上有唯一零点.④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.【加练备选】 (2023·菏泽模拟)已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(π3,π2)上有唯一的零点;(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,π)时,x∈(0,α)时,f'(x)>0,f(x)单调递增;x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一极大值点α.所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=ln π-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个零点.。

用导数解决函数的零点问题

用导数解决函数的零点问题

用导数解决函数的零点问题[典例] (理)(2015·全国卷Ⅰ)已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.[思路演示]解:(1)设曲线y =f (x )与x 轴相切于点(x 0,0), 则f (x 0)=0,f ′(x 0)=0,即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得⎩⎨⎧x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0, 从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0, 所以只需考虑f (x )在(0,1)上的零点个数.①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调. 而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎫0, -a 3上单调递减,在⎝⎛⎭⎫-a 3,1上单调递增,故在(0,1)上,当x =-a 3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫ -a 3=2a 3 -a 3+14. 若f ⎝⎛⎭⎫-a 3>0,即-34<a <0,则f (x )在(0,1)上无零点. 若f ⎝⎛⎭⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点. 若f ⎝⎛⎭⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.[解题师说]对于已知参数的取值范围,讨论零点个数的情况,借助导数解决的办法有两个: [典例] (文)设函数f (x )=ln x +mx ,m ∈R.(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.[方法演示]解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex 2, ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x ) 的图象(如图),可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.[解题师说]对于已知参数的取值范围,讨论零点个数的情况,借助导数解决的办法有两个:1.已知函数f (x )=-x 3+ax -14,g (x )=e x -e(e 为自然对数的底数).(1)若曲线y =f (x )在(0,f (0))处的切线与曲线y =g (x )在(0,g (0))处的切线互相垂直,求实数a 的值;(2)设函数h (x )=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ),试讨论函数h (x )零点的个数.解:(1)f ′(x )=-3x 2+a ,g ′(x )=e x , 所以f ′(0)=a ,g ′(0)=1, 由题意,知a =-1.(2)易知函数g (x )=e x -e 在R 上单调递增,仅在x =1处有一个零点,且x <1时,g (x )<0,又f ′(x )=-3x 2+a ,①当a ≤0时,f ′(x )≤0,f (x )在R 上单调递减,且过点⎝⎛⎭⎫0,-14,f (-1)=34-a >0, 即f (x )在x ≤0时必有一个零点, 此时y =h (x )有两个零点;②当a >0时,令f ′(x )=-3x 2+a =0, 得两根为x 1=-a3<0,x 2= a3>0, 则- a3是函数f (x )的一个极小值点, a3是函数f (x )的一个极大值点, 而f ⎝⎛⎭⎫-a 3=-⎝⎛⎭⎫- a 33+a ⎝⎛⎭⎫- a 3-14=-2a 3a 3-14<0. 现在讨论极大值的情况: f a3=-a 33+a a 3-14=2a 3a 3-14, 当fa 3<0,即a <34时,函数y =f (x )在(0,+∞)上恒小于零, 此时y =h (x )有两个零点; 当fa 3=0,即a =34时, 函数y =f (x )在(0,+∞)上有一个零点x 0= a 3=12, 此时y =h (x )有三个零点; 当fa 3>0,即a >34时, 函数y =f (x )在(0,+∞)上有两个零点,一个零点小于a3,一个零点大于a 3, 若f (1)=a -54<0,即a <54时,y =h (x )有四个零点;若f (1)=a -54=0,即a =54时,y =h (x )有三个零点;若f (1)=a -54>0,即a >54时,y =h (x )有两个零点.综上所述:当a <34或a >54时,y =h (x )有两个零点;当a =34或a =54时,y =h (x )有三个零点;当34<a <54时,y =h (x )有四个零点.[典例](1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. [思路演示]解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0, 即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0. 又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝⎛⎭⎫3a -1>-ln a , 因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1). [解题师说]本题是已知区间上有零点,求参数的范围问题.由于含有超越函数式的函数图象较为复杂,也没有固定的形状特点,所以在研究此类问题时,可以从两个方面去思考:(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足的条件;(2)也可以先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.[应用体验]2.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x +a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. ②设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增. 若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减. 若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减. (2)①设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=ab 2-32b >0,所以f (x )有两个零点.②设a =0,则f (x )=(x -2)e x ,所以f (x )只有一个零点.③设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).[典例] (理)(2018·长春质检)已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R.(1)若f (x )存在极值点1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2. [思路演示]解:(1)由已知得f ′(x )=x +1-a -ax ,因为f (x )存在极值点1,所以f ′(1)=0,即2-2a =0,a =1,经检验符合题意,所以a =1.(2)证明:f ′(x )=x +1-a -ax=(x +1)⎝⎛⎭⎫1-a x (x >0), ①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意; ②当a >0时,由f ′(x )=0,得x =a , 当x >a 时,f ′(x )>0,所以f (x )单调递增, 当0<x <a 时,f ′(x )<0,所以f (x )单调递减, 所以当x =a 时,f (x )取得极小值f (a ).又f (x )存在两个不同的零点x 1,x 2,所以f (a )<0,即12a 2+(1-a )a -a ln a <0,整理得ln a >1-12a , 作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ), 令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -xx ,则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2-(x -a )2+a 2≥0,所以h (x )在(0,2a )上单调递增. 不妨设x 1<a <x 2,则h (x 2)>h (a )=0,即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数, 所以2a -x 2<x 1,即x 1+x 2>2a , 又ln a >1-12a ,易知a >1成立,故x 1+x 2>2.(文)已知函数f (x )=ln x +tx -s (s ,t ∈R).(1)讨论f (x )的单调性及最值;(2)当t =2时,若函数f (x )恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4. [思路演示] 解:(1)f ′(x )=x -tx 2(x >0), 当t ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,f (x )无最值;当t >0时,由f ′(x )<0,得x <t ,由f ′(x )>0,得x >t ,f (x )在(0,t )上单调递减,在(t ,+∞)上单调递增,故f (x )在x =t 处取得极小值也是最小值,最小值为f (t )=ln t +1-s ,无最大值. (2)证明:∵f (x )恰有两个零点x 1,x 2(0<x 1<x 2), ∴f (x 1)=ln x 1+2x 1-s =0,f (x 2)=ln x 2+2x 2-s =0,即s =2x 1+ln x 1=2x 2+ln x 2,∴2(x 2-x 1)x 1x 2=ln x 2x 1, 设t =x 2x 1>1,则ln t =2(t -1)tx 1,x 1=2(t -1)t ln t ,故x 1+x 2=x 1(t +1)=2(t 2-1)t ln t,∴x 1+x 2-4=2⎝⎛⎭⎫t 2-1t -2ln t ln t.令函数h (t )=t 2-1t -2ln t ,∵h ′(t )=(t -1)2t2>0,∴h (t )在(1,+∞)上单调递增, ∵t >1,∴h (t )>h (1)=0,又t =x 2x 1>1,ln t >0,故x 1+x 2>4成立.[解题师说]已知函数存在零点,需要证明零点满足某项性质时,实际上是需要对函数零点在数值上进行精确求解或估计,需要对零点进行更高要求的研究,为此,不妨结合已知条件和未知要求,构造新的函数,再次通过导数的相关知识对函数进行更进一步的分析研究,其中,需要灵活运用函数思想、化归思想等,同时也需要我们有较强的抽象概括能力、综合分析问题和解决问题的能力.[应用体验]3.已知函数f (x )=ln x -12ax 2+x ,a ∈R.(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值;(3)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,证明:x 1+x 2≥5-12. 解:(1)当a =0时,f (x )=ln x +x ,则f (1)=1, 又f ′(x )=1x +1,∴切线斜率为f ′(1)=2, 故切线方程为y -1=2(x -1),即2x -y -1=0. (2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x (x >0),当a ≤0时,∵x >0,∴g ′(x )>0.∴g (x )在(0,+∞)上是增函数,函数g (x )无极值点. 当a >0时,g ′(x )=-ax 2+(1-a )x +1x =-a ⎝⎛⎭⎫x -1a (x +1)x, 令g ′(x )=0,得x =1a . ∴当x ∈⎝⎛⎭⎫0,1a 时,g ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,g ′(x )<0.∴g (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,+∞上是减函数. ∴x =1a 时,g (x )有极大值g ⎝⎛⎭⎫1a =ln 1a -a 2×1a 2+(1-a )·1a +1=12a -ln a . 综上,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a-ln a ,无极小值. (3)证明:当a =-2时,f (x )=ln x +x 2+x ,x >0. f (x 1)+f (x 2)+x 1x 2=0,即ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),φ(t )=t -ln t ,则φ′(t )=1-1t =t -1t ,由φ′(t )>0,得t >1;由φ′(t )<0,得0<t <1,所以φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增. ∴φ(t )≥φ(1)=1, ∴(x 1+x 2)2+(x 1+x 2)≥1, ∵x 1>0,x 2>0,∴x 1+x 2≥5-12.1.已知函数f (x )=x 2a +bx -ln x . (1)若a =b =1,求f (x )的极值;(2)若b =-1,函数f (x )有且只有一个零点,求实数a 的取值范围. 解:(1)a =b =1时,f (x )=x 2+x -ln x (x >0), 则f ′(x )=2x +1-1x =(x +1)(2x -1)x . 当0<x <12时,f ′(x )<0,f (x )单调递减;当x >12时,f ′(x )>0,f (x )单调递增,所以f (x )的极小值为f ⎝⎛⎭⎫12=34+ln 2,无极大值.(2)若f (x )有且只有一个零点,即方程x 2a -x -ln x =0在(0,+∞)上有且只有一个实数根,即1a =1x +ln x x2.令h (x )=1x +ln xx 2,则h ′(x )=1-x -2ln x x 3.再令φ(x )=1-x -2ln x ,则φ′(x )=-1-2x <0,又φ(1)=0,因而当x ∈(0,1)时,φ(x )>φ(1)=0;当x ∈(1,+∞)时,φ(x )<φ(1)=0.所以当x ∈(0,1)时,h ′(x )>0,h (x )单调递增; 当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减, 故h (x )≤h (1)=1,又当x →+∞时,h (x )→0且h (x )>0,而当x →0时,h (x )→-∞, 所以1a <0或1a =1,即a <0或a =1时函数f (x )有且只有一个零点.故实数a 的取值范围为(-∞,0)∪{1}. 2.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求实数c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要不充分条件. 解:(1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得x =-2或x =-23.于是,当x 变化时,f ′(x )与f (x )变化情况如下表:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎝⎭⎫-2,-23,x 3∈⎝⎭-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝⎛⎭⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点,故实数c 的取值范围为⎝⎛⎭⎫0,3227. (3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0恒成立, 此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0.当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增. 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要不充分条件. 3.(理)设函数f (x )=1-m -xe x. (1)求函数f (x )在[0,2]上的单调区间;(2)当m =0,k ∈R 时,求函数g (x )=f (x )-kx 2在R 上零点个数. 解:(1)f ′(x )=x +m -2e x,令f ′(x )=0,得x =2-m . 当2-m ≤0,即m ≥2时,f ′(x )≥0,f (x )在[0,2]上单调递增.当0<m <2时,由f ′(x )<0,得0<x <2-m ;由f ′(x )>0,得2-m <x <2, 所以f (x )在[0,2-m ]上单调递减,在[2-m,2]上单调递增. 当m ≤0时,f ′(x )≤0,f (x )在[0,2]上单调递减. 综上,当m ≥2时,f (x )的单调递增区间为[0,2];当0<m <2时,f (x )的单调递减区间为[0,2-m ],单调递增区间为[2-m,2]; 当m ≤0时,f (x )的单调递减区间为[0,2]. (2)当m =0时,由g (x )=f (x )-kx 2=0,得1-x ex =kx 2, 即k =1-xx 2ex (x ≠0).令h (x )=1-x x 2e x ,则h ′(x )=x 2-2x 3e x .由h ′(x )>0,得-2<x <0或x >2; 由h ′(x )<0,得x <-2或0<x <2,∴h (x )在(-∞,-2),(0,2)上单调递减,在(-2,0),(2,+∞)上单调递增. 在x <0时,当x =-2时,h (x )取得极小值h (-2)=1+22e 2,当x →-∞时,h (x )→+∞;x →0时,h (x )→+∞. 在x >0时,当x =2时,h (x )取得极小值h (2)=1-22e 2<0, 当x →0时,h (x )→+∞,x →+∞时,h (x )→0.画出函数h (x )的大致图象如图所示,当k <1-22e 2时,g (x )没有零点,当k =1-22e 2或0≤k <1+22e2时,g (x )有1个零点,当1-22e 2<k <0或k =1+22e2时,g (x )有2个零点,当k >1+22e2时,g (x )有3个零点.(文)已知函数f (x )=x 3+x 2+ax +b .(1)当a =-1时,求函数f (x )的单调递增区间;(2)若函数f (x )的图象与直线y =ax 恰有两个不同的交点,求实数b 的值. 解:(1)当a =-1时,f (x )=x 3+x 2-x +b , 所以f ′(x )=3x 2+2x -1,由f ′(x )>0,得x <-1或x >13,所以函数f (x )的单调递增区间为(-∞,-1)和⎝⎛⎭⎫13,+∞. (2)函数f (x )的图象与直线y =ax 恰有两个不同的交点,等价于f (x )-ax =0有两个不等的实根.令g (x )=f (x )-ax =x 3+x 2+b ,则g ′(x )=3x 2+2x . 由g ′(x )>0,得x <-23或x >0;由g ′(x )<0,得-23<x <0.所以函数g (x )在⎝⎛⎭⎫-∞,-23和(0,+∞)上单调递增,在⎝⎛⎭⎫-23,0上单调递减. 所以当x =-23时,函数g (x )取得极大值g ⎝⎛⎭⎫-23=427+b ,当x =0,时函数g (x )取得极小值为g (0)=b .要满足题意,则需g ⎝⎛⎭⎫-23=427+b =0或g (0)=b =0, 所以b =-427或b =0.4.(2018·广西三市第一次联考)已知函数f (x )=2a 2ln x -x 2(a >0). (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间;(3)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解:(1)当a =1时,f (x )=2ln x -x 2,∴f ′(x )=2x -2x ,∴f ′(1)=0,又f (1)=-1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y +1=0. (2)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x, ∵x >0,a >0,∴当0<x <a 时,f ′(x )>0,当x >a 时,f ′(x )<0. ∴f (x )在(0,a )上是增函数,在(a ,+∞)上是减函数. (3)由(2)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点.②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2, ∴f (x )在(1,e 2)上有一个零点. ③当a 2(2ln a -1)>0,即a >e 时, 由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0, f (e 2)=2a 2ln e 2-e 4=4a 2-e 4=(2a -e 2)(2a +e 2), 当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数的单调性可知,函数f (x )在(1,a )上有唯一零点x 1,在(a ,e 2)上有唯一零点x 2,∴f (x )在(1,e 2)上有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,由函数的单调性可知,f (x )在(1,e)上有唯一的一个零点,在(e ,e 2)上没有零点,从而f (x )在(1,e 2)上只有一个零点.综上所述,当0<a <e 时,函数f (x )无零点;当a =e 或a ≥e 22时,函数f (x )有一个零点;当e<a <e 22时,函数f (x )有两个零点.。

利用导数研究函数零点问题

利用导数研究函数零点问题

利用导数研究函数零点问题f(0)=0,所以切线方程为y=-3+4x;2)将g(x)=2exf(x)化为g(x)-2exf(x)=0,即(-x2+ax-3)ex-2xlnx=0。

令φ(x)=(-x2+ax-3)ex,ψ(x)=2xlnx,所以φ′(x)=ex(2-2x+a),ψ′(x)=2lnx+2。

由φ′(x)=0,得x=1,由ψ′(x)=0,得x=e-1。

当x<1时,φ(x)单调递减,当x>1时,φ(x)单调递增,所以φ(x)在[0,1)和(1,+∞)上单调递减。

在(-∞,1]和[1,+∞)上单调递增,ψ(x)在(0,+∞)上单调递增。

所以当x<1时,φ(x)>ψ(x),当x>e-1时,φ(x)<ψ(x)。

所以方程g(x)=2exf(x)在(0,1)和(e-1,+∞)上无解,在(1,e-1)上有两个解。

所以a的取值范围为[2,6]。

当$m>1$时,当$0m$时,$F'(x)0$。

因此,函数$F(x)$在区间$(0,1)$和$(m,+\infty)$上单调递减,在区间$(1,m)$上单调递增。

注意到$F(1)=m$,$F(2m+2)=-m\ln(2m+2)$,因此$F(x)$有唯一零点。

综上,函数$F(x)$有唯一零点,即两函数图像只有一个交点。

1) 针对函数的零点问题,我们可以利用导数确定函数的单调区间和极值点,通过求解函数在给定区间的极值和端点的函数值,来确定参数的取值范围。

2) 解决这类问题的关键在于将函数零点、方程的根、曲线交点相互转化,突出导数的作用,运用转化和化归的思想方法。

1) 确定零点的个数问题:我们可以利用数形结合的方法来判断交点个数。

如果函数比较复杂,可以结合导数知识确定极值点和单调区间,从而确定其大致图像。

2) 方程是否有解问题就是判断是否存在零点的问题。

我们可以通过分离变量,将其转化为求函数值域的问题来处理。

可以通过构造函数$g(x)$的方法,将问题转化为研究构造的函数$g(x)$的零点问题。

函数与导数重点题型05:零点不可求问题研究(解答题篇)

函数与导数重点题型05:零点不可求问题研究(解答题篇)

重点题型五:导函数“零点不可求”问题【问题分析】近年来,导函数零点不可求逐渐成为高考命题的热点,导函数零点不可求是命题人故意为之,主要是考查学生对于函数零点的处理是否掌握到位,所以在学习过程中,函数零点处理技巧,处理策略就非常重要了。

导函数的变号零点就是函数的极值点,也是函数单调性的分界点,如果导函数零点“不可求”,我们就无法透彻的研究函数,就是是问题的解决陷入困境。

解决导函数零点不可求问题的依据其实就是函数零点存在性定理。

在解题过程中经常判断导函数f ′(x)的单调性(通过二次求导判断),然后再根据零点存在性定理判断导函数f ′(x)零点所在的区间。

【知识回顾】 函数的零点:零点存在性定理如果函数y =f(x)满足:①在区间[a ,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0; 则函数y =f(x)在(a ,b)上存在零点,即存在c ∈(a ,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.【注】1.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.函数的零点不是一个“点”,而是方程f (x )=0的实根.2.由函数y =f(x)(图象是连续不断的)在闭区间[a ,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,函数零点 函数图像的交点 方程的根 与x 轴交点横坐标所以f(a)·f(b)<0是y =f(x)在闭区间[a ,b]上有零点的充分不必要条件.【解题策略】(1)观察法:对于导函数为常见的超越函数,我们无法求出其零点,但可以根据我们的直觉判断出常见超越函数的零点,如:①y ′=e ,x −x −1,其零点无法求出,通过我们观察当x =0时,y =0,即x =0是导函数y ′的一个零点。

对于导函数y ′=e nx −∑a i m i x i −1,(m,n ∈R )的形式, x =0是导函数y ′的一个零点。

_虚设零点_巧解导数的两类问题(长沙市南雅中学石向阳)

_虚设零点_巧解导数的两类问题(长沙市南雅中学石向阳)

这也要归功于问题(2)的虚设零点及降次留参。
回避复杂的运算,摆脱解决问题过程中的一些技术
二、导函数零点存在但无法求出的问题
难点,在求解比较复杂的含参函数的综合问题中具
如果 f 忆(x)=0 是超越形式(对字母进行了有限次 有很好的应用价值,值得我们关注。
初 等超越运 算包括 无理数次 乘方、指 数、对 数、三
[
2 3
(a-1)x1-
a 3
]·[
2 3
(a-1)x2-
a 3
]=
4 9
(a-1)2x1x2-
2a(a9-1)(x1
+x2)+
a2 9
<0,因 为
x1,x2
为方程
f 忆(x)
=x2+2x+a=0 的两个根,由韦达定理有 x1+x2=-2,x1x2
=a,代入化简得
a92(4a-3)<0,得
a<
3 4
:(1)略。
求一种整体的转换和过渡。这就是本文的第三个策
(2)f 忆(x)=x2+2x+a,由题设知,x1,x2 为方程 f (忆 x) 略。
=0 的两个根,故有 a<1,x12=-2x1-a,x22=-2x2-a。因
此 f(x1)=
1 3
x13+x12+ax1=
1 3
x(1 -2x1-a)+x12+ax1=
一、导函数零点可求,但极值计算偏繁或无法化
简的问题 这种情况,f 忆(x)=0 一般可转化为二次方程,很
容 易 想 当 然 ,用 求 根 公 式 把 零 点 求 出 来 ,代 入 极 值 中。但接下来要么计算偏繁,要么无法化简,复杂的 算式让人无处下手,导致后继工作无法开展。正所谓 “思路简单,过程烦人”,这时可以运用以下两个策略 化繁为简。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数中的零点问题解决方法
解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。

一、能直接分离参数的零点题目
此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。

例1.已知函数(),()ln a f x x g x x x =+
=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。

解析:22()ln ()22g x x f x e a x ex x x =-⇒=-+,令2ln ()2x h x x ex x
=-+,'21ln ()22x h x x e x
-=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e
==+ 注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是
如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x
=
=-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。

所以21a e e
=+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题)
这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。

在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间
的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。

例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是
2()31f x x =-+有两个零点,不符合题意
当0a >时,'2()363(2)f x ax x x ax =-=-,若'()0f x >,则20x x a >
<或 若'()0f x <,则20x a <<,此时函数在(,0)-∞上单增,(1)20f a -=--< 此时在(,0)-∞上存在零点,不符合题意。

当0a <时,若'()0f x >,则20x a <<,若'()0f x <,则2x a
<或0x > 此时要保证函数存在唯一的正零点,则2()0f a >,解得(,2)a ∈-∞-
注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可
例3.已知函数2()ln 2f x x x b x =
++--在区间1[,]e e
上有两个不同零点,求实数b 的取值范围。

解析:2'
222(2)(1)()x x x x f x x x +-+-==,可知函数()f x 在(0,1)上递减,在(1,)+∞上
递增,要保证函数()f x 在1
[,]e e
上有两个不同的零点,根据函数的趋势图像可 得必须满足1()0
2(1)011()0f e f b e e f e ⎧≥⎪⎪<⇒<≤+-⎨⎪≥⎪⎩
例4.已知函数32()f x x ax b =++
(1)讨论()f x 的单调性;
(2)若b c a =-,当函数()f x 有三个不同的零点时,a 的取值范围恰好是
33(,3)(1,)(,)22
-∞-⋃⋃+∞,求c 的值。

解析:(1)当0a =时,()f x 在R 上单调递增
当0a >时,()f x 在2(,),(0,)3a -∞-
+∞上单调递增,在2(,0)3a -上单调递减;
当0a <时,()f x 在2(,0),(,)3a -∞-
+∞上单调递增,在2(0,)3a -上单调递减;
(2)只有当0a ≠时才有可能满足()f x 有三个零点
因为()f x 有两个极值点324(0),()327a f b f a b =-
=+,要满足有三个零点必须满足2(0)()03
a f f ⋅-<,结合
b
c a =-可得330044002727
a a a a c a a c ><⎧⎧⎪⎪⎨⎨-+>-+<⎪⎪⎩⎩或,因为()f x 恰有三个零点时,a 的取值范围是3
3(,3)(1,)(,)22-∞-⋃⋃+∞
所以题目可以转化为34027a a c -+>在33(1,)(,)22
a ∈⋃+∞上恒成立,且34027
a a c -+<在(,3)a ∈-∞-上恒成立 设34()27h a a a c =-+,对其求导可得()h a 在33(,),(,)22
-∞-+∞递增,在33(,)22
-递减,因此()h a 图像必须满足以下趋势: 所以(3)0101311()02
f c c c f -≤⎧-≤⎧⎪⇒⇒=⎨⎨-≥≥⎩⎪⎩ 验证:当1c =时,322()1(1)[(1)1]f x x ax a x x a x a =++-=++-+-
函数有三个不等的实数根,所以2()(1)10h x x a x a =+-+-=有两个不相
等且不等于-1的实数根,所以必须满足
033(,3)(1,)(,)(1)0
22a h ∆>⎧⇒∈-∞-⋃⋃+∞⎨-≠⎩ 综上,1c =
第一问很简单,但是是解决第二问必要的前提,第二问题目中函数有三个不同的零点,但是题目中有两个参数,类似于双参数问题解决方法,最后将两个参数中已知的那个作为自变量,然后转化为恒成立问题即可,三个零点意味着两个极值的积为负值,然后再根据不同的a 的取值转化为函数恒成立问题,通过函数的趋势图像即可解出符合题意的条件。

但是很多同学缺省最后检验的步骤,同时也不理解为什么需要验证,如果不验证,则即便满足有三个零点,此时的a 的取值范围也可以不是题目中给出的范围,注意这个恰字就说明了必须要进行最后的验证。

例6.已知函数2()1x f x e ax bx =---
(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;
(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围。

解析:(1)'()2,()2x x g x e ax b g x e a =--=-
当0a ≤时,'()0g x >,()g x 在[0,1]递增,min ()(0)1g x g b ==-
当0a >时,令'()0g x =,ln 2x a =,此时0,1,ln 2a 位置不确定因此需要
讨论
Case1:当ln21a ≥时,2e a ≥
,此时()g x 在[0,1]递减, Case1:当ln 20a ≤时,12
a ≤,此时()g x 在[0,1]上递增, Case3:当0ln 21a <<时,即
122e a <<,此时 综上所述min 11()21()22ln 2()222()2b a e g x a a a b a e e a b a ⎧-≤⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩
(2)本题目隐藏一个条件即(0)0f =,又知(1)0f =,所以如果()f x 在区间(0,1)内
有零点,则()f x 在(0,1)内至少有两个极值点或者至少有三个单调区间或者说()g x 在(0,1)内不可以恒正也不可以恒负。

(要好好理解这句话)
题目中有两个参数,根据(1)0f =可得1b e a =--,若当12a ≤或2
e a ≥时,函数()g x 为单调函数,不符合题意,故a 只能在1(,)22e 内取值,此时
min ()32ln 21g x a a a e =--+,且要满足32ln 210a a a e --+<才可
令'()32ln 21,()12ln 2h x x x x e h x x =--+=-,根据单调性可知
min ()10h x e =+<,此时min g()0x <成立,因此要保证()f x 在(0,1)上至少有三个单调区间,则需要满足条件
题目第二问的关键是理解原函数单调区间的个数和导函数零点个数之间的关系,建议同学们在做第二问的时候把相应的图作出来就明白了。

总结:处理零点问题不管是处在函数的题目里面还是导数的题目里面,方法都是一样
的,都是需要用到数形结合思想,通过判断单调性,既可以大致的将函数的趋势图像都作出来,然后根据题目的要求作出合适的函数图像以及列出不等式即可。

相关文档
最新文档