汽轮机高压调门关闭原因分析
汽机调门突关-伺服阀部分原因分析

汽机调门突关 -伺服阀部分原因分析摘要:某厂亚临界机组主汽门、高中压调节门采用伺服阀控制。
阀门的驱动均使用EH油。
机组运行中,经常出现高调门突关现象,本文选取两次连续的调门突关事件,针对伺服阀原理,对阀门突关的原因进行探讨。
关键词:高压调节阀、EH油、伺服阀1.EH油系统的组成及工作原理某厂汽轮机由哈尔滨汽轮机厂制造,型号:N630-16.7/537/537,型式:为单轴、四缸、四排汽、一次中间再热、冷凝式汽轮机,包括1个反向单流的高压缸,1个分流的中压缸,2个分流的低压缸。
EH油用于汽轮机的电业控制系统,为汽轮机高中压主汽门、调门的调节提供驱动,同时也是汽轮机在危机遮断系统的安全油。
某厂汽轮机高调门易发生阀门突关现象,对机组的安全运行产生严重威胁。
1.事件过程2.1 #1高调门(GV1)关闭2021年9月14日18:40:00,机组负荷550MW,总燃料量266.43t/h,总风量1897.87t/h,主蒸汽压力16.88Mpa,A~F磨运行,AGC、CCS正常投入。
阀门控制状态为顺序阀,阀门开顺序为2314,GV1开度15.80%,液压油压力14.52Mpa。
18:40:24,机组EH油压力开始下降。
18:41:15,机组EH油压力下降至13.87Mpa,GV1突然关闭,之后EH油压力继续下降,最低下降至12.93Mpa。
隔离GV1进油阀,EH油压力由13Mpa恢复至14.55Mpa。
19:07强制GV1指令至0,机务专业对卸荷阀进行检查,检查后恢复措施,22:00恢复阀门指令,阀门正常动作。
2021年9月15日13:40:00,机组负荷540MW,GV1指令19%,EH油压14.54Mpa。
13:39:29,机组EH油压开始下降。
13:40:50,EH油压下降至13.73Mpa,GV1突然全关,EH油压下降至最低12.86MPA。
就地隔离GV1进油阀后EH油压由12.9MPA恢复至14.55MPA。
高中压调门瞬间关闭故障的分析与处理

高中压调门瞬间关闭故障的分析与处理0 引言某厂有2台660 MW 超超临界燃煤汽轮发电机组。
锅炉采用上海锅炉厂生产的超超临界参数直流炉,为单炉膛切圆燃烧、固态风冷干式排渣、一次再热、平衡通风、露天布置、全钢构架、全悬吊结构、Π型锅炉。
烟气处理采用同步脱硝、脱硫,三分仓回转式空气预热器、SCR 脱硝装置。
锅炉点火采用等离子点火装置,取消常规油系统,每台炉设置2层8套。
汽轮机采用上海电气电站设备有限公司上海汽轮机厂生产的超超临界、一次中间再热、单轴、四缸四排汽、双背压、凝汽式汽轮机。
1 故障简介该厂2号机组自投产以来曾出现过几次高、中压调门瞬时关闭故障。
1.1 第1次故障2016-05-19该厂2号机组发生第1次故障,右侧高、中压调门关闭2次,每次约2 s。
故障前,机组负荷200 MW,主汽压力16 MPa,初压模式,高调门开度16.5 %,中调门开度21 %,阀限105 %未变化,EH 油压无明显波动,高排温度及机前压力稳定,机组工况已稳定(稳定工况约7 h )。
第1次调门瞬间关闭后切限压模式,开度曲线如图1所示。
1.2 第2次故障2016-05-26,该机组右侧高、中压调门同时关闭2次,每次约2 s。
故障前机组负荷200 MW,主汽压力14 MPa,限压模式,高调门开度18 %,中调门开度29.3 %,阀限105 %未变化,EH 油压无明显波动,高排温度及机前压力稳定,机组工况已稳定(稳定工况约1 h ),此时的调门开度曲线如图2所示。
图1 2016-05-19第1次调门瞬间关闭开度曲线图2 2016-05-26机组工况稳定后调门开度曲线2 故障原因分析根据所在电厂的实际情况及咨询生产厂家得到的答复,可得出以下结论。
(1) 因左、右侧调门指令为同一个指令,上述调门同时关闭时,左侧高、中压调门未受影响,〔摘 要〕 针对某发电厂2台660 MW 机组存在的高、中压调门瞬时关闭故障,指出其是由运行中阀门L VDT 抖动造成的;提出并实施一系列对高、中压调门伺服阀和L VDT 的改进措施,以提高机组运行安全性。
汽轮机高压调门关闭原因分析

汽轮机高压调门关闭原因分析摘要:本文对汽轮机高调门因电缆过于靠近高温缸体超温造成绝缘老化通讯中断调门关闭,运行中突然关闭的原因进行分析,阐明了电缆处于高温环境发生故障的原因。
对于汽轮机周边电缆涉及和改造具有广泛的借鉴意义。
关键词:控制电缆;调门;DEH一、前言大唐某公司一期两台机组为上海汽轮机厂制造的350MW亚临界机组。
汽轮机控制系统采用OVATIAN型数字式电液控制系统,其设计为分散布置、双路供电,系统DPU主模件采用冗余配置。
液压系统采用上海汽轮机厂成套的高压抗燃油EH装置。
汽轮机主蒸汽阀门TV和调门GV连接电缆布置在高中压缸体阀门两侧(详见图3),缸体保温与电缆线槽距离30至50cm。
热工人员定期检查发现汽轮机高压调门控制电缆有老化现象,利用检修机会将单侧的调门电缆进行了更换。
机组在控制电缆更换后启动一天突发汽轮机高压调门关闭故障,严重影响机组的安全生产运行。
二、故障及处理经过某年某月某日,2号机组负荷指令250MW,启动B制粉系统(B、C、D、E磨运行)增加机组出力。
在加负荷过程中突然机组出力快速下降,检查2号机高压GV3调门实际已经关闭,DEH画面显示指令和反馈均为100%。
汽轮机组调门开启顺序见图1所示。
图1 汽轮机高压截止阀和调节阀位置顺序图检查DEH机柜GV3伺服卡LVDT指示灯不亮,分析反馈LVDT控制回路存在问题,对GV3进行处理,缓慢将GV3指令逐渐强制为0,并对GV3进油隔离确保故障期间该调门不发生误动,对GV3控制回路进行排查发现GV3调门油动机端子箱至地面端子箱的LVDT反馈中间电缆线间阻值3Ω,由于GV3指令和反馈电缆通过同一段电缆桥架接入同一端子箱,为防止指令电缆存在同样问题,将GV3指令电缆和反馈电缆全部更换,更换后对GV3调门试验,动作正常。
三、阀门关闭原因分析(一)阀门外观机械检查和分析检修人员现场检查关闭调门门杆和反馈杆实际位置均在关闭状态,和DEH控制画面中阀门状态有相反的情况。
某电厂4号机组DEH系统主汽门和高压调门突然关闭原因分析与整改措施

某电厂4号机组DEH系统主汽门和高压调门突然关闭原因分析与整改措施一. 概述某厂4号机组为300MW燃煤发电机组,DEH系统采用ABB公司的SYMPHONEY 系统。
2013年1月22日机组正常运行过程中,DEH突然发出快关左侧中压主汽门(LSV)和3号高调门(CV3)的1s脉冲指令,导致这2个阀门突然全关,然后又自动恢复。
事件发生后,电厂组织相关技术人员进行分析,认为发生此现象是因为DEH 的信号在柜内通讯发生翻转所致,这也是该类DEH常见的异常故障。
机组正常运行过程中突然关闭汽轮机调门,扰动和冲击都比较大,将严重威胁机组安全运行。
二. 原因分析该事件的发生,DEH和DCS都没有任何记录,为原因分析增加了很大的难度。
我们以机组的DEH逻辑为切入口,结合本次事件的现象和以往的一些经验,来逐步剖析事件的原因。
首先,在机组正常运行的情况下,只有通过阀门活动试验电磁阀,DEH才能让中压主汽门关闭。
LSV的活动试验电磁阀为22YV,该电磁阀的驱动设计在DEH 系统的M2控制单元,但阀门活动试验的逻辑设计在M4控制单元。
阀门活动试验时,动作指令信号在M4控制单元内产生,然后以通信方式送到M2控制单元,从而驱动电磁阀22YV带电。
根据以往的经验,ABB这种DCS系统的柜内不同控制单元通讯,经常会发生通信信号翻转的现象。
该DEH试验电磁阀的这种设计,极其容易由于通讯信号的翻转而导致电磁阀动作。
再来看CV3,除了正常的伺服阀控制外,还有活动电磁阀16YV控制。
16YV 带电也会关闭CV3。
与LSV的22YV电磁阀控制一样,16YV也设计在DEH的M2控制单元,而CV3活动试验逻辑同样设计在M4控制单元。
阀门活动试验时,电磁阀的驱动控制与LSV的完全一样,同样极有可能发生通信信号的翻转而导致电磁阀动作。
若CV3由伺服阀控制来关闭,则指令来源于同一个阀门流量指令,其他高压调门如CV1,CV2,CV4等也会动作,但本次只有CV3动作,因此可排除伺服阀指令动作的可能性。
浅谈高压调门常用部件故障原因及维护

浅谈高压调门常用部件故障原因及维护摘要:汽轮机调节保安系统是控制汽轮机启动、停机、带负荷运行和防止严重事故的自动控制装置。
能适应各种运行工况的要求,及时调节汽轮机功率,满足外部负荷变化的需求,维持电网频率在50Hz左右,并在机组异常或故障时自动改变运行工况直至停机,防止事故扩大。
关键词:调门;摆动;分析;排除;汽轮机高压调门是保证汽轮机调速及安全运行的重要设备,其调节品质的好坏直接影响汽轮机组转速和负荷的稳定控制,同时对机组的安全运行也起着至关重要的作用。
一、汽轮机调门摆动的分析与处理引起汽轮机组调门摆动的主要原因有:油质不良、油压波动、调速系统迟缓率太大等等,1.油质不良。
汽轮机长期运行过程中,机械部件会发生磨损,如果油中水分过大或者酸度过高,加之汽轮机运行环境温度高,会使机械部件腐蚀,并产生机械杂质,导致调速部件卡涩,尤其是油动机滑阀与套筒卡涩,会引起调门的较大摆动。
因此,在机组长期的运行过程中,应定期对油质进行检验,如果油质不合格,需加强滤油或者更换新油消除。
2.油压波动。
EH高压油泵出口油压波动,会直接影响到调门油动机波动,从而引起调节阀摆动,而油压波动的原因有可能是油泵本身故障的原因,也有可能是高压蓄能器皮囊破损造成的。
应先将蓄能器隔离,然后测量蓄能器皮囊压力,如果压力低于规定值,应进行补充氮气,若不能将压力充到规定值,则可能是皮囊损坏,需要解体蓄能器,检查皮囊,如果皮囊损坏,更换新皮囊。
如果蓄能器无故障,需要解体检查油泵,若油泵故障,进行处理。
3.调速系统迟缓率太大。
调速系统迟缓率大主要是由于调节部件中机械连接件的松旷和调节部件的卡涩或者是伺服阀过封度过大引起的。
迟缓率过大会使油动机反应迟缓,从而造成调门摆动,需要对各调节部件、伺服阀进行测量检修、返厂维修或更换新部件。
4.伺服阀故障。
当伺服阀接收指令信号后,因其内部故障产生振荡,使油动机摆动造成调门摆动,伺服阀故障分为热控故障和机械故障,热控故障可能是由于线路、端子或是程序故障引起的,此类故障会导致油动机误动或拒动,误动时,会使调门摆动,需联系热控相关人员处理;如果是机械故障,可能是由于滑阀磨损、过封度过大、滤网堵塞,需要返厂检修或者更换新件处理。
影响汽轮机汽门关闭时间测量因素的分析

影响汽轮机汽门关闭时间测量因素的分析摘要:本文通过对火电机组汽轮机主汽阀、调节汽阀关闭时间测定试验过程中常见主要影响因素的逐一分析,通过经验及理解认识的分享和交流,提出优化试验条件,改进试验手段和方法,使试验数据更准确、可靠。
关键词:火电机组;主汽阀;调节汽阀;关闭时间;OPC;AST随着火电机组向超超临界高参数、大容量方向发展,机组对安全稳定运行的要求越来越高,作为保障机组启停安全、运行稳定的关键设备,主汽阀及调速汽阀,对其性能尤其是安全方面的性能的要求愈加提高,更加严格。
《电力建设施工技术规范第3部分:汽轮发电机组》规定“各汽门的关闭时间应小于制造厂的要求,制造厂无明确要求时,关断汽门和调节汽门的关闭时间应小于0.3s,其中延迟时间小于0.1s”;《汽轮机调节控制系统试验导则》规定超超临界以上机组主汽门和调速汽门其总关闭时间建议值均应小于0.3s;《发电厂汽轮机水轮机技术监督导则》规定超超临界以上机组汽轮机主汽门、调节汽门关闭时间合格值均应小于0.3s;《汽轮机电液调节系统性能验收导则》规定200MW以上大容量机组主汽门和调节汽门油动机动作过程时间建议值均应小于0.3s。
对新建机组、调节保安系统大修或技术改造前后的在役机组汽轮机主汽门、调节汽门关闭时间进行测取,判断是否符合标准规范要求,这即是火电行业的普遍要求,也是各大发电集团系统技术监督的必备项目,更是机组进行甩负荷试验的先决条件。
由于汽门关闭时间的测定具有一定的精度和响应灵敏度的要求,在我们实地进行测试时,往往会遇到不少问题,影响试验准确性,甚至导致测试无效,正所谓“失之毫厘,差之千里”。
下面就汽门关闭时间测定试验中常见的主要影响因素进行分析,希望通过经验及理解认识的分享和交流,能对优化试验条件,改进试验手段和方法有所帮助。
油动机排油速度的影响。
大容量汽轮机主汽门、调节汽门油动机一般采用单侧进油,关闭力主要由操纵座中的弹簧提供,机组静态试验情况下主汽门、调节汽门快速关闭时的阻力主要来自油动机活塞下腔室需推挤出去的回油,显而易见回油排出的速度就决定了阀杆下行的速度;为了适应快速排油的需求,汽轮机主汽门、调节汽门油动机均配有卸荷阀,此卸荷阀为杯状滑阀结构,其开启关闭受OPC或AST油路控制,当OPC或AST油路油压泄去时,卸荷阀迅速打开,油动机活塞下腔室与有压回油及上腔室的排油路径迅速导通,从而迅速排油;一般来说,卸荷阀为模块化产品,其选型确定,开启动作排油速度就基本确定了,OPC或AST油压均起源于压力油经过主汽门、调节汽门油动机或高压遮断控制块内部装设的节流孔节流后形成。
主汽门关闭的原因及处理

汽轮机单侧高压主汽门异常关闭的处理1概述近年来,丰城2×700MW超临界机组、国华太仓2×600MW超临界机组、华能巢湖电厂2×600MW超临界机组、华能瑞金电厂2×350MW超临界机组在正常运行过程中均出现过汽轮机某个主汽门或调节汽门异常关闭的情况。
汽轮机单个汽门异常关闭情况中,单侧高压主汽门异常关闭处理最为复杂,对机组安全经济运行也影响最大,甚至可能导致机组非计划停运事件发生。
2010年8月,国华太仓电厂某台机组曾因汽轮机单侧高压主汽门异常关闭,锅炉蒸汽压力急剧上升,导致给水泵出力不足,锅炉给水流量低触发锅炉MFT动作,联跳汽轮机及发电机。
2010年7月6日,丰城电厂#6汽轮机左侧高压主汽门卸荷阀O型圈泄漏,导致左侧高压主汽门异常关闭,由于缺乏相关处理经验,如果不是因为当时机组负荷较低,很可能导致机组非计划停运事故的发生。
2汽轮机单侧高压主汽门关闭的现象及原因分析汽轮机主汽门或调节汽门异常关闭的原因主要有调节系统故障、汽门阀芯脱落以及卸荷阀O型圈老化漏EH油等,其中,由于卸荷阀一直处于高温环境,卸荷阀O型圈老化漏油导致主汽门异常关闭最为常见。
汽轮机高压主汽门异常关闭时,DCS报警画面将出现声光报警,机组协调控制方式自动切为手动控制,DEH由遥控切至手动方式,汽机调节阀由顺序阀自动切至单阀控制。
汽轮机高压进汽由两侧进汽突然变为单侧进汽,在某种极端工况下(高压调节汽门顺序阀控制,未故障侧高压调节汽门只有一个在开位),汽轮机高压缸进汽面积可能只有异常关闭前的三分之一。
在此情况下,汽轮发电机的负荷将急剧下降,机、炉侧的主汽压力将急剧上升,额定工况下锅炉超压导致锅炉安全门动作。
因给水泵汽轮机由四段抽汽接带,汽轮机负荷下降引起汽轮机抽汽段压力下降导致给水泵的出力下降,给水量的急剧下降必然导致锅炉煤水比失调,螺旋管壁温度、主再热汽温及分离器出口蒸汽温度将快速上升,甚至导致锅炉超温保护触发MFT保护动作。
320MW汽轮机高调门常见故障分析

320MW汽轮机高调门常见故障分析作者:周保杰来源:《海峡科技与产业》2016年第04期摘要:本文介绍了徐州华润彭城电厂使用的上海新华DEH系统在高中压调门运行控制方面出现的故障情况,结合DEH控制原理及现场设备结构特点对故障原因分析研究,总结出相应的解决方法。
通过日常维护、改造等提高汽轮机调门控制的可靠性,为同类故障提供借鉴。
关键词:汽轮机;DEH系统;高调门;伺服阀;LVDT1 引言汽轮机数字电液控制系统(DEH系统)是电站汽轮发电机组不可或缺的重要组成部分,是汽轮机启动、正常运行、事故和停止工况下的调节控制器。
通过控制汽轮机主汽门和调节门的开度,实现对汽轮发电机组的转速、负荷等的控制。
徐州华润(彭城电厂)一期1#、2#机组(2×320MW)使用上海新华DEH—ⅢA型电液调节系统。
汽轮机本体布置有2个主汽门、6个高压调门、2个中压主汽门和2个中压调门,其中2个中压主汽门为开关型阀门,其余10个均为调节型阀门。
所采用的新华DEH系统产品质量成熟、控制性能良好、控制精度高,长期以来运行稳定,但不可避免也出现一些问题和故障。
高调门控制是DEH系统中重要的控制部分,其控制稳定性、可靠性及精度直接影响汽轮机转速、负荷控制,甚至影响汽轮机运行安全。
从新华DEH系统在彭城电厂多年运行情况统计,高调门控制是出现问题和故障比较集中的部位。
本文粗浅分析高调门控制出现的故障和原因以及采取的措施,供大家参考。
2 高调门控制故障现象、分析及解决办法电液伺服阀将计算机运算处理来的指令信号转换成油压信号传送给油动机执行机构,油动机活塞在上、下油压差作用下带动弹簧加载后的阀门上下运动。
同时带动线性位移传感器(LVDT),将油动机的机械位移转换成电信号作为负反馈与指令信号相加形成闭环回路。
当相加后信号为零时,伺服阀的阀芯回到中间位置,不再有高压油向油动机下腔进出,此时阀门停止运动,停留在新的的工作位置。
高调门发生故障主要表现为:调门不动作、调门全关或全开、调门大幅波动、指令与反馈偏差大。
汽轮机四大阀门问题及检修方案总结

上汽、哈汽、东汽30万、60万机组高、中压主汽门、调速汽门出现问题及对应检修方案总结一、高压调速汽门1.1存在问题:高调阀座密封面氧化皮厚,着红丹粉检验出现断线;华能威海电厂#4机组(上汽30万) 阀座密封线右半部断线大唐国际盘山电厂 #2机组(哈汽60万) 阀座密封面氧化严重解决方案:现场阀座密封面精密研磨。
阀座精加工后,表面粗糙度Ra ≤0.8μm ,型面尺寸精度<0.03mm ;红丹粉着色检查,密封线完整、连续均匀、无断线,100%接触,密封面上无凹坑、冲蚀痕迹和其它硬伤,压线宽度≯3mm 。
中电投元宝山电厂现场阀座密封面研磨修复中现场阀座密封面研磨修复后1.2存在问题:高调阀芯密封面氧化皮厚,着红丹粉检验出现断线;预启阀密封面有冲蚀;大唐国际张家口发电厂#5机组(东汽30万)阀芯密封面氧化严重解决方案:返厂数控精密加工阀碟、预启阀阀碟密封面球面;修复后,阀芯、阀杆同轴度、对称度、圆度≤0.03mm,表面粗糙度达到(Ra值)0.4μm数控精密加工阀碟密封面球面返厂阀碟密封面研磨修复后预启阀阀碟密封面研磨修复后预启阀阀座密封面研磨修复后阀杆密封研磨修复后1.3存在问题:高调阀座、阀芯密封面出现沟状冲刷或点状凹坑;国华太仓电厂#8机(上汽60万机组)阀座密封线上12点方向出现凹坑,深度约为1mm中电投白山热电厂#1机(上汽30万机组)阀碟密封面出现压痕(异物落入密封面处) 解决方案:微弧焊接阀座、阀碟密封面缺陷,焊材选用美国进口焊材:Inconel 617(ERNiCrCoMo-1);精密研磨阀座、阀碟密封面;阀碟密封面微弧焊接阀碟密封面研磨修复后1.4存在问题:高调阀座密封面出现大面积冲刷或压痕;大唐国际张家口电厂 #4机(东汽30万机组) 阀座密封面下方出现大面积冲刷,深度达到3mm秦皇岛电厂#3机(上汽30万机组) 阀座密封面左上方1/4处有线,右侧有严重压痕,无密封线解决方案:现场氩弧焊接密封面,焊材选用美国进口焊材:Inconel 617(ERNiCrCoMo-1); 现场镗削粗加工阀座密封面焊接位置;现场精密研磨阀座密封面;阀座密封面精加工后,表面粗糙度Ra0.8μm ,型面尺寸精度<0.03mm ;红丹粉着色检查,密封线应完整、连续均匀、无断线,100%连续接触,密封面上无凹坑、冲蚀痕迹和其它硬伤,压线宽度≯3mm ;阀座密封面焊接加热中阀座密封面整体焊接阀座密封面研磨后二、高压主汽门2.1存在问题:阀芯密封面氧化皮厚、红丹粉检验出现断线;高主阀芯预启阀出现冲刷;高主阀芯卡涩;国电石横电厂#2机(上汽30万机组) 主汽门阀芯密封面氧化严重华电铁岭电厂#2机(哈汽30万机组)高主预启阀出现规则冲刷,判断冲刷原因是汽流从主汽阀芯外部6个均匀分布的小孔进入予启阀腔内造成解决方案:返厂解体高主阀芯,数控加工、精密研磨阀芯密封面、预启阀密封面,去除阀杆氧化皮; 修复后,阀芯、阀杆同轴度、对称度、圆度≤0.03mm ,表面粗糙度达到(Ra 值)0.4μm国电菏泽电厂高压主汽门阀芯研磨后国电菏泽电厂高压主汽门阀芯研磨后国电菏泽电厂高压主汽门预启阀阀芯、弹簧座、衬套修复后2.2存在问题:高主阀座密封面氧皮厚、红丹粉检验出现断线;国电石横电厂#2机(上汽30万机组)主汽门阀座密封线断线解决方案:现场阀座密封面精密研磨;返厂数控加工、精密研磨阀芯密封面若高主密封面出现纵向裂纹,可将裂纹部分打磨掉后,使用微弧焊接修补,然后精密研磨修复;阀座精加工后,表面粗糙度Ra≤0.8μm,型面尺寸精度<0.02mm;红丹粉着色检查,密封线应完整、连续均匀、无断线,100%连续接触,密封面上无凹坑、冲蚀痕迹和其它硬伤,压线宽度≯3mm国电石横电厂(上汽30万机组)高压主汽门现场研磨中中电投元宝山电厂(哈汽60万机组)高压主汽门现场修复后三、中压调速汽门存在问题:中调阀座、阀芯密封面氧皮厚、红丹粉检验出现断线;华能嘉祥电厂#2机(上汽30万机组) 中压调速汽门止动焊道整圈裂纹大唐徐塘电厂#7机(上汽30万机组)中调门阀座密封面氧化层较厚中电投河津电厂#2机(哈汽30万机组)中调门阀芯密封面氧化层较厚解决方案:现场阀座密封面精密研磨;返厂球面数控加工、精密研磨阀芯密封面阀座、阀芯精加工后,表面粗糙度Ra ≤0.8μm ;红丹粉着色检查,密封线应完整、连续均匀、无断线,100%连续接触,密封面上无凹坑、冲蚀痕迹和其它硬伤,压线宽度≯3mm京能岱海电厂#2机(上汽60万机组)中压调速汽门现场研磨中京能岱海电厂#2机(上汽60万机组)中压调速汽门阀芯修复后四、阀杆4.1存在问题:阀杆弯曲度超标;大唐运城电厂#1机组主汽门阀杆弯曲度测量中解决方案:阀杆返厂,精密校直处理阀杆校直后,弯曲度≤0.06mm4.2存在问题:阀杆拉伤华电蒲城电厂#2机组旁路系统阀杆多处拉伤,深度达2mm解决方案:阀杆返厂,确认阀杆材质及硬度,选择相应焊接材料,无渗氮层可直接进行焊接,如阀杆表面有渗氮层,需先进行退氮处理后,进行补焊,补焊半精加工后再进行渗氮处理,精加工阀杆恢复阀杆原设计尺寸,弯曲度≯0.06mm,椭圆度≯0.03mm,表面粗糙度Ra≤0.8μm;补焊后无裂纹、砂眼、夹杂、气孔等焊接缺陷。
汽轮机调门卡涩原因分析及防范改进措施

汽轮机调门卡涩原因分析及防范改进措施新疆华电五彩湾北一发电有限公司 田爱军摘要:技术人员在对汽轮机调门卡涩原因进行分析时,应首先了解故障所在位置,并对其他各组织部件的功能发挥效果与受到的影响进行基本情况摸排,而后保证得到的故障原因更加精确,有助于后期处理操作的开展。
与此同时,在配置解决措施的过程中,应依据实际情况对汽轮机进行全行程活动试验和验证,并在此过程中注意结合各操作要点,预防其他问题的出现。
尤其是对于全行程活动试验过程中的汽门关闭操作,应注意防止顺利关闭后无法开启。
关键词:汽轮机;调门卡涩;暴露问题中图分类号:TK26 文献标识码:A 文章编号:2096-4595(2020)31-0172-0002汽轮机汽门出现的卡塞故障属于火电厂大型设备运行过程中常见的故障,这种故障一旦出现,不仅危险系数较大,同时,还可能阻碍电厂的生产工作高效落实。
在对气门的转速和负荷进行调节时,技术人员主要通过改变气门开度进行精确控制,所以,当汽轮机出现故障的,应立即对调节气门和自动主汽门进行停机处理,并关闭各汽门。
如此,才能保证机组不受卡涩问题的影响而出现任何其他问题。
一、基本情况与故障(一)基本情况为了让汽轮机调门卡涩故障的原因得到有效分析,保证配合的措施更加精确有效,本文以我国某发电厂型号为上汽超超临界660MW机组,汽轮机调速系统为艾默生OVATION控制系统汽轮机为例进行解读。
此系统共由两个主要部分组成,即计算机控制部分和DEH液压执行机构,同时机组上被设置了18个油动机,承担着2个高压主汽门,2个高压调速器门4个中压主汽门以及4个中压调速器门的控制职责,这些汽门的开度需要通过电线转换器与DEH系统计算机进行控制。
DEH系统功能较为强大,能够对高压主汽门进行全行程和其他汽门部分形程进行在线试验。
(二)故障概述#6机减负荷过程中,#3高调门指令由100%减至57%,此时,调门开度在实际调减过程中出现了较为严重的卡塞,无法继续关闭。
125MW 汽轮机高压调门关闭不严密原因分析及处理 燕瑞芬

125MW 汽轮机高压调门关闭不严密原因分析及处理燕瑞芬摘要:介绍了某电厂汽轮机高压调门关闭不严密原因,并介绍了处理措施及处理后的效果。
关键词:汽轮机;高压调门;关闭不严密;处理前言某电厂汽轮机为武汉汽轮机厂制造的C125-8.83/1.0 型高压双缸双排汽、冲动、单轴直接空冷凝汽式汽轮机。
该公司某台汽轮机最近一次大修时间为2016年,大修后启动过程中调门工作正常,转速、负荷控制正常。
2017年5月份开始,该机组启动过程中转速无法控制,且在停机过程中全部关闭四个调门后,仍然有30MW左右负荷,经多次停机检查、整定调门,均未发现实质性问题。
2019年6月停运小修,对#1调门机械部分解体检查,发现该调门阀座下沉约40mm,致使阀芯与阀座无法接触,是造成调门无法关闭的主要原因。
经多次召开专题会议讨后,决定采取现场维修方案,即现场对阀体与阀座配合部位进行镗研、重新加工一个阀座,在现场对调门的阀座进行更换,运行至今调门严密性合格。
1.高压主汽调节阀概况该机组有2个高压主汽调节阀,布置在汽机两侧,每个高压主汽调节阀由1个主汽阀和两个调节阀组成,调节阀和主汽阀在阀壳内呈一字型布置。
主汽阀配合直径为φ245,调节阀的配合直径为φ165,主汽阀和调节阀均设有预启阀。
每个调节阀由阀碟、阀座、阀杆、汽封套、锁紧套等组成,阀碟和阀座的配合部分为球面。
阀座与阀壳采用过盈配合并设有两径向对置的圆柱销固定,确保运行中不会松动。
高压调节阀壳材质为: ZG15Cr2Mol,阀座材质为: 1Cr11MoV-5[1]。
2.高压调门检修情况2017年5月以来该机组停运10余次,通过对调节阀整定、油动机检查、节流孔检查、伺服阀更换均未发现问题。
2019年6月利用中修机会对调门解体检查,发现阀杆行程为78mm,比设计行程增加了40mm,进一步分析行程增加的原因,检查发现阀座和阀壳实际装配位置和图纸不同,阀座实际装配位置比设计要求偏下40mm,阀座可以很轻松被拔出,后发现固定阀座的2个销子已经剪断,阀座和阀壳之间存在明显间隙,配合部分严重磨损,阀壳上部原加工的止口已经全部磨平。
汽轮机中压调门故障分析与处理

汽轮机中压调门故障分析与处理摘要:描述和分析开机过程中的汽轮机ASP油压降低,中压调门无法开启的故障现象与原因,总结分析处理方法,为此类故障的处理提供借鉴。
关键词:汽轮机;再热调节门;ASP油压;单向阀0 序言XX厂#2机组汽轮机是由上海汽轮机厂与美国西屋公司合作,并按照美国西屋公司技术制造的300MW亚临界、中间再热式、高中压合缸、双缸双排汽、单轴、凝汽式汽轮机。
控制系统采用上海新华公司制造的DEH-ⅢA型控制系统。
该汽轮机配有两个高压主汽阀门(TV),六个高压调节阀门(GV),两个中压主汽阀门(RV)和两个中压调节阀门(IV)。
在机组正常运行时,四只AST电磁阀通电关闭,封闭自动停机危急遮断(AST)母管上的抗燃油泄油通道,使所有蒸汽阀执行机构活塞下腔的油压能够建立起来。
当电磁阀失电打开,母管泄油,所有汽阀关闭而使汽轮机停机。
ASP油压用于在线试验AST电磁阀。
ASP油压由AST油压通过节流孔产生,再通过节流孔到有压回油。
运行中ASP油压在8.0MPa左右。
1、故障现象2016年1月4日XX厂#2机组启动,汽轮机冲转前,进行汽轮机危急遮断系统ETS通道试验时,四个AST电磁阀动作正常。
06:14,汽轮机升速至2900rpm进行阀切换,即汽轮机进汽量由高压主汽阀门控制切换为高压调节阀门控制。
切换过程中,中压缸两个调门自关(指令未动),运行人员将汽轮机打闸(见附图1)。
汽轮机重新挂闸,中压缸主汽门打开,中压缸两个调门均无法打开,ASP油压由8.7Mpa降至5.5MPa。
2、处理思路因XX厂汽轮机AST、OPC油母管压力无就地及远方的监视手段,仅能从ASP压力值间接判断AST、OPC母管油压。
经现场检查、验证,EH油系统存在以下两个问题:1、AST母管油压低;2、OPC母管油压低。
1、针对AST母管油压低,对设备、系统的检查情况:(1)更换危机遮断模块AST的#1、2、3、4电磁阀,清理ASP油管前后节流孔,未发现问题。
汽轮机单侧调门瞬间误关故障分析及处理

汽轮机单侧调门瞬间误关故障分析及处理//汽轮机单侧调门瞬间误关故障分析及处理林涛张永军李海永大唐运城发电有限责任公司山西省运城市044602更新时间:2012-3-221.引言火力发电机组容量的增大、蒸汽参数的提高,对机组的安全性、经济性及其自动控制水平的要求也愈来愈高。
作为600MW的大型机组,汽轮机数字电液控制系统(DEH)已被广泛采用。
汽轮机调节汽门作为DEH系统的主要执行机构,主要用来控制机组的转速和功率,其故障将会导致机组转速或者功率波动,直接影响到机组的安全经济运行。
某发电公司#1机组为600MW亚临界直接空冷燃煤发电机组,于2007年9月投产。
汽轮机为哈汽NZK600-16.7/538/538亚临界、一次中间再热、单轴、三缸四排汽、直接空冷凝汽式汽轮机,DCS系统采用了艾默生过程控制公司(原西屋公司)最新一代DCS控制系统OVATION-XP 版。
汽轮机调节系统为高压抗燃油型数字电液调节系统(DEH系统),电子设备采用了上海艾默生公司同版本的OVATION系统,液压系统采用了哈尔滨汽轮机控制工程有限公司成套的高压抗燃油EH装置。
每台机组配有两个高压主汽门(TV)、四个高压调门(GV)、两个中压主汽门(R SV)和两个中压调门(IV)(其中左侧高压主汽门由电磁阀控制开关)。
2.故障现象#1机组2011年7月28日启动,从7月30日开始五次出现部分主汽门及调门突关现象,具体现象描述如下,图1-图3为故障截图。
20011-7-30 3:28 #1机组负荷302.18MW、顺阀控制、CCS方式、AGC投入。
GV4、IV2出现突然关到0位,并自行以2.5%/S的速率打开至原位,AGC工况未解除,负荷波动32MW。
20011-8-6 5:37 #1机组负荷303.29MW、顺阀控制、CCS方式、AGC投入。
RSV2出现突然关到0位,并自行以2.5%/S的速率开启至原位,AGC工况未解除,负荷波动27MW。
汽轮机高压调门突关的分析和处理

汽轮机高压调门突关的分析和处理谢克东(许昌龙岗发电有限责任公司,河南许昌,461690)摘要:对某电厂汽轮机高压调门在运行过程中突然关闭的问题进行了认真分析,并实施了可靠的处理措施,避免了类似情况再次出现,对其他机组具有一定的参考意义。
关键词:高压调门;运行中;突然关闭;原因分析一、概况某电厂1号机组的高压主汽门和调门为上海汽轮机厂生产,设计由四个高压调节阀(高压调节阀简称GV,下同)分别控制高压内缸里相应的4个喷嘴,调节阀分别由各自独立的油动机控制,实现机组的配汽要求。
调节阀油动机位于调节阀上部,直接带动阀杆运动。
高压调节阀的配汽顺序图如下:图1-1高压调节阀动作顺序图如图1-1,高压调节阀设计开启顺序GV4-GV3-GV1-GV2,顺序阀情况下,通往喷嘴上部的GV4、GV3全开,通往喷嘴下部的GV1、GV2调节进汽流量。
二、故障现象:机组在顺序阀工况下正常运行;02月19日04:50分,运行人员发现“GV4阀门伺服卡故障”报警,检查4号高压调门指令100%,反馈0%,就地阀门全关。
立即进行调整,并将4号高压调门指令强制关至0,热工人员做条件防止4号高压调门突然全开。
02月09日13:47分,运行发现“GV3阀门伺服卡故障”报警,检查3号高压调门指令100%,反馈0%,就地阀门全关。
立即进行运行调整,并将3号高压调门指令强制关至0,做条件防止3号高压调门突然全开。
三、原因分析及处理措施3.1原因分析本机组高压调节阀的油动机执行机构原理如下图所示:图3-1高压调节阀油动机执行机构原理图油动机为单侧进油式结构,执行机构靠油压开启,通过弹簧关闭,由伺服阀控制进油量来控制调门开度。
高压调门的EH油系统图如下所示:图3-1高压调节阀EH油路图从故障情况看,引起GV4和GV3调门无法正常开启的可能原因有:伺服阀故障、卸荷阀故障、油动机机械故障(包括机械卡涩和油缸内部窜油)或控制回路故障。
3.2处理方案及现场实施:故障发生后,为不影响机组带负荷,先由热工人员调整阀序,由4、3-1-2更改为1、2-3-4。
汽轮机中调门故障分析与处理

300MW汽轮机中调门故障分析与处理摘要:描述和分析运行中的汽轮机一侧中调门未开启故障现象与原因,介绍了故障的应急处理方法,为些类故障现象的处理提供借鉴。
关键词:汽轮机中调门故障处理1 前言引进型300MW汽轮机,配有两个高压主汽阀门(TV),六个高压调节阀门(GV),两个中压主汽阀门(RV)和两个中压调节阀门(IV)。
各蒸汽阀的位置是由各自的液压执行机构来控制的,通过控制EH油压使汽阀开启,弹簧力使汽阀关闭。
执行机构基本可分为开关型和控制型两种。
其中,高压主汽门、高压调节门和再热调节门执行机构则可以将汽阀控制在需要的位置上,合理地调节进汽量以适应运行工况的要求,控制型执行机构配有伺服阀和阀位线性位移传感器(LVDT)。
本厂采用上海新公司制造的DEH-Ⅲ型控制系统,每个控制型阀门都配有二只LVDT,LVDT输出一个正比于阀位的1-5V模拟量信号,送入DEH的伺服控制板,经过高选后作为反馈。
汽机中压调节门,在机组冷态启动时处于全开状态,热态启动时参与DEH系统的速度与负荷控制,在机组运行中还接受危急遮断系统遮断电磁阀(20/AST)和超速保护控制阀(20/OPC)的控制。
IV与TV 、GV、RV各汽阀协调配合,共同完成汽轮机调节和控制任务。
2 故障现象本厂#1机组在检修后连续运行近一个星期,再热器安全门多次动作,锅炉专业人员现场复核安全门动作整定值符合要求,分析、讨论安全门动作原因不明。
后在就地巡查时发现汽轮机中调门1(IV1)未开启,而DEH控制系统各阀门控制正常。
热控专业人员检查DEH 系统中调门1阀位信号,实测IV1两只LVDT输出信号:LVDT1输出电压为4.85V ,相当于96.3%的开度;LVDT2输出电压为1.05V,相当于1%开度。
就地核查发现IV1的LVDT1 拉杆下端螺帽松脱,不与阀杆联动,造成DEH系统误判断。
3 原因分析汽机中调门1未开启动运行,造成汽轮机中调门单侧进汽,再热蒸汽通流量减小,从而引起再热器堵压超过其安全门整定值而动作。
汽轮机主蒸汽阀门常见问题及原因分析

汽轮机主蒸汽阀门常见问题及原因分析刘彦文(山西京能吕临发电有限公司,山西吕梁033200)摘要:在汽轮机调速系统中,主蒸汽阀门是整个汽轮发电机系统的重要组成部分,在系统中起到“关断”的作用,是机组的关键部件,保障机组的安全启停和运行。
在分析汽轮机主蒸汽阀门2种经典缺陷处理方式的基础上,对主蒸汽阀门的检修工艺进行了探讨,提出了汽轮机主蒸汽阀门的检修建议及检验措施。
关键词:主蒸汽阀门;密封方式;卡涩中图分类号:TK263文献标志码:B文章编号:1671-0320(2022)04-0044-030引言汽轮机主蒸汽阀门(以下简称主汽门)是整个汽机系统的重要保护部套,是防止汽轮机超速的重要设备[1]。
所有的保护均是通过关闭主汽门和调节汽门来实现的,一般情况下调节汽门会因各种原因导致阀门关闭不严,所以最终必须依靠关闭系统的高压主汽门来快速切断汽轮机动力源,以防止汽轮机的超速,保证整个机组的安全。
因此,检修人员在检修过程中,必须执行良好的检修工艺,保证汽轮机的安全、稳定运行。
1主汽门的结构及作用主汽门的形式较多,本文讨论的主汽门为国内引进美国西屋公司技术生产的主汽门,在国内三大汽轮机厂生产的350MW 汽轮机组中运用广泛。
该主汽门阀门采用卧式布置于汽缸的两侧,结构紧凑,壳体与高压调节汽阀的壳体浇铸成一个整体,使主汽门和高压调阀之间不再有管道连接,从而减少了主汽阀阀后至汽缸之间的有害容积。
阀门采用“双碟”式,由主阀和预起阀组成,主阀内有一启动预起阀,在机组启动过程时开启,由左右主汽门来控制转速,以便机组的喷嘴全周进汽。
主汽阀的主阀碟采用非平衡方式,从机组启动至定速过程中,需关小调节汽阀至一定程度才能打开主汽门主阀碟。
主汽门开关方式为弹簧力关闭油动机开启,其目的是当机组发生事故时,主汽门能够快速关闭阻断进汽。
主汽门具有自密封装置,在全开和全关位置时,阀杆轴向密封面具有密封作用,以减少阀杆漏汽。
主汽阀阀盖上焊有一永久性滤网,试运行时,在永久性滤网上要加上细目临时滤网,并在运行一定时间后拆除。
汽轮机高压调门关不上的原因及处理

第11卷 (2009年第3期)电力安全技术40某电厂3号机组为国产引进型300 MW燃煤机组,采用N300-16.7/537/537-2型亚临界、一次中间再热、单轴双缸双排汽、凝汽式汽轮机。
机组调节保安系统由上海汇益液压控制系统工程有限公司生产。
该系统能实现挂闸、驱动阀门、超速限制及遮断机组等功能,使用工质为磷酸脂油,工作压力为14 MPa。
机组的EH油系统油动机由油缸、集成块、伺服阀、卸截阀、位移传感器、行程开关、逆止阀等组成。
从系统安全性考虑,该机组所有油动机均设计为单侧进油,即由油压力开阀门,弹簧力关阀门,一旦系统失压或失电时,阀门朝关闭方向运动,以保证机组的安全。
1 3号高压调门关不上的相关情况1.1 事故的情况及处理2007-12-07T11:35,3号机组为顺序阀运行方式且负荷为300 MW,3号高压调门指令为0、反馈为100 %,现场检查3号高压调门为全开状态。
无论运行人员怎样发开、关指令,阀门总是无反应。
为了机组安全,经领导同意,关闭3号高调进油门使其退出运行,3号机由顺序阀运行切换为单阀运行。
在关闭3号高调进油门后,阀门还是没有在弹簧力的作用下关闭。
初步判断3号高压调门异常可能是伺服阀故障引起的。
此外,通过仔细检查发现,3号高压调门在关闭进油门退出运行的情况下,在一定的行程范围内严韶华(大唐石门发电有限责任公司,大唐 石门 415300)汽轮机高压调门关不上的原因及处理还出现时开时关的现象。
这说明3号高压调门除伺服阀外可能还有其他部件出现异常,因而未能通过关闭进油门来完全隔离油动机高压油源。
如果此时更换伺服阀,极有可能造成机组非正常停机和跑油事故,因此,经研究决定暂缓更换伺服阀。
1.2 针对缺陷制定的临时技术措施(1) 在缺陷未处理前3号机组保留单阀运行方式,并将3号高压调门退出运行。
(2) 3号机3号高压调门松动试验暂不进行,其他阀门松动试验必须定期进行。
在3号机停机之前一定要进行高压主汽门松动试验,在其松动试验正常后,方可进行正常停机。
利港电厂#8机#3高调门运行中突然关闭异常分析处理

利港电厂#8机#3高调门运行中突然关闭异常分析处理摘要:对利港电厂#8机#3高压调门在运行中突然关闭的问题进行分析和处理,并制定防范措施避免类似的情况发生。
关键词:高调门;活塞杆;断裂;事故预防1 简介江阴利港发电股份有限公司三、四期工程(#5-#8机组)汽轮机型号为N600-24.2/538/566,为超临界、单轴、三缸、四排汽、中间再热、凝汽式汽轮机。
机组于2015年9月份开始汽轮机提效增容改造,至2017年6月份4台机组增容改造全部结束,提高机组的安全性与经济性,达到机组额定650MW出力。
每台机组设有4只高压调门,其壳体与高压主汽门壳体焊成一体,布置在高中压缸两侧弹性支架上,每只调节阀由一只油动机控制,实现机组配汽要求。
油动机为单侧进油式结构,机构靠油压开启,通过弹簧关闭,由伺服阀控制进油量来控制调门开度。
2 异常情况经过2021年10月5日21:05:37,机组负荷542MW,#1瓦振动高报警,检查发现GV3已关闭到0位,GV4开出,负荷下降至500MW,主汽压从21.2MPa上升至21.9Mpa,调门指令反馈偏差大切单阀,立即汇报值长,退AGC,切BASE,减煤控制压力,维持工况稳定,因GV3不受控,运行关闭GV3抗燃油进油、回油、安全油隔绝门,保持GV3机械关闭,通知检修处理。
22:20检修开票检查处理GV3:资产管理部集控组检查了高调门控制卡件无异常;检修热控专业检查就地伺服阀指令信号未见异常;机务更换伺服阀2次也未能排除异常,在更换伺服阀后押票恢复油路传动过程中,观察抗燃油泵电流无波动,抗燃油泵出口流量计无波动,就地油管无泄压异音。
处理无果,保持GV3油路隔绝,调整高调门阀序,由GV1-GV2、GV3、GV4改为GV1-GV2、GV4、GV3,将GV3放到最后,减少对机组运行的影响。
2021年10月6日继续查找异常原因,在机务更换快速卸荷阀后能彻底排除油路问题,热控部分也再次通过分析排查判定无异常,初步分析本次异常原因为#3高调门油动机活塞杆断裂,造成阀门突然关闭,且GV3从全开位因活塞杆断裂被弹簧压至0位,活塞盘仍应被油压顶在油缸顶部,若活塞杆未断则活塞盘应连同阀芯一起被弹簧压到0位,此时活塞盘应在油缸底部,为印证分析,提出用超声检测活塞盘的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机高压调门关闭原因分析
发表时间:2018-11-02T17:21:50.623Z 来源:《知识-力量》2018年12月上作者:付红宾[导读] 本文对汽轮机高调门因电缆过于靠近高温缸体超温造成绝缘老化通讯中断调门关闭,运行中突然关闭的原因进行分析,阐明了电缆处于高温环境发生故障的原因。
对于汽轮机周边电缆涉及和改造具有广泛的借鉴意义。
关键词(大唐许昌龙岗发电有限责任公司,河南省禹州市 461690)
摘要:本文对汽轮机高调门因电缆过于靠近高温缸体超温造成绝缘老化通讯中断调门关闭,运行中突然关闭的原因进行分析,阐明了电缆处于高温环境发生故障的原因。
对于汽轮机周边电缆涉及和改造具有广泛的借鉴意义。
关键词:控制电缆;调门;DEH
一、前言
大唐某公司一期两台机组为上海汽轮机厂制造的350MW亚临界机组。
汽轮机控制系统采用OV ATIAN型数字式电液控制系统,其设计为分散布置、双路供电,系统DPU主模件采用冗余配置。
液压系统采用上海汽轮机厂成套的高压抗燃油EH装置。
汽轮机主蒸汽阀门TV和调门GV连接电缆布置在高中压缸体阀门两侧(详见图3),缸体保温与电缆线槽距离30至50cm。
热工人员定期检查发现汽轮机高压调门控制电缆有老化现象,利用检修机会将单侧的调门电缆进行了更换。
机组在控制电缆更换后启动一天突发汽轮机高压调门关闭故障,严重影响机组的安全生产运行。
二、故障及处理经过
某年某月某日,2号机组负荷指令250MW,启动B制粉系统(B、C、D、E磨运行)增加机组出力。
在加负荷过程中突然机组出力快速下降,检查2号机高压GV3调门实际已经关闭,DEH画面显示指令和反馈均为100%。
汽轮机组调门开启顺序见图1所示。
图1 汽轮机高压截止阀和调节阀位置顺序图
检查DEH机柜GV3伺服卡LVDT指示灯不亮,分析反馈LVDT控制回路存在问题,对GV3进行处理,缓慢将GV3指令逐渐强制为0,并对GV3进油隔离确保故障期间该调门不发生误动,对GV3控制回路进行排查发现GV3调门油动机端子箱至地面端子箱的LVDT反馈中间电缆线间阻值3Ω,由于GV3指令和反馈电缆通过同一段电缆桥架接入同一端子箱,为防止指令电缆存在同样问题,将GV3指令电缆和反馈电缆全部更换,更换后对GV3调门试验,动作正常。
三、阀门关闭原因分析
(一)阀门外观机械检查和分析
检修人员现场检查关闭调门门杆和反馈杆实际位置均在关闭状态,和DEH控制画面中阀门状态有相反的情况。
初步分析应为阀门和远端状态不对应,怀疑通讯中断,需热工人员检查GV阀门控制回路。
(二)GV阀控制回路检查分析
GV阀控制回路由两部分组成,第一部分为正常投运回路,第二部分未试验回路。
控制指令接受GV总给定。
DEH自动方式下,GV总给定经单阀或顺序阀的阀门流量特性曲线函数转换为GV阀门指令开度。
从实际阀门动作和就地现场阀门状态分析,应为远端和就地信号传输中断造成阀门指令与就地不对应现象。
GV阀门动作逻辑见图2所示。
图2 GV阀指令回路逻辑原理图
(三)连接电缆检查分析
对汽轮机高压调门GV3电缆走向排查发现,竖直电缆桥架紧贴的保温处温度较高,最高至196℃,存在高温电缆受损情况。
高压阀门控制电缆见图3,红外测温见图4。
图3 阀门控制电缆(水平和垂直线槽)
图4 控制电缆红外测温
由于机组运行期间竖向电缆桥架区域最高温度196℃,电缆老化绝缘降低导致GV阀异常动作。
对电缆(型号:ZR-DJYPVP,阻燃屏蔽,国标耐温:100℃)高温老化试验,将电缆逐步加热至150℃时,电缆外观绝缘正常,进一步加热至180℃,电缆绝缘开始降低。
四、防范措施
(1)对故障中GV阀门所加的临时电缆区域用硬质格栅进行物理隔离,悬挂警示标牌,防止人员进入该区域误碰电缆导致调门再次误动作。
(2)由于该电缆桥架区域温度较高,电缆老化较快,为防止该电缆桥架内其他调门电缆老化导致调门误动作,采取安全措施将中压调门关闭后对中压调门控制电缆进行了更换和隔离。
(3)利用停机机会对横跨汽缸上部的该电缆桥架进行改造,将电缆桥架移至外侧,避开汽缸保温的高温区,防止电缆高温老化。
(4)利用停机机会临机电缆桥架内的电缆进行检查,如发现电缆老化绝缘降低,及时进行改造。
五、结束语
目前大型汽轮发电机组优化设计机房间隔愈来愈小,特别是高温设备控制电缆又离高温部件距离较近,良好的设计、安装工艺和材料质量是保证设备安全可靠的本质安全;日常的检修和维护是否到位,技改是否合理可靠,隐患排查是否到位等日常技术管理工作是保证机组安全稳定运行的基础。
只有设计合理、安装可靠、技改合理、管理到位,才能真正保证机组的安全稳定运行。