初三中考数学 统计与概率
中考数学概率与统计问题的解题思路综述与应用
中考数学概率与统计问题的解题思路综述与应用概率与统计是中考数学中的重要内容,它们都与实际生活息息相关。
本文将为读者综述一些解题思路,并探讨它们在实际问题中的应用。
一、概率问题的解题思路概率问题主要是计算某一事件发生的可能性。
在解题过程中,我们可以采用以下几种常用的解题思路。
1. 列表法列表法是一种直观且有效的解题方法。
通过列出所有可能的情况,我们可以计算出每种情况发生的概率,从而求得所需概率。
例如,有一个装有6个红球和4个蓝球的盒子,从中随机抽取一个球,求抽到红球的概率。
我们可以列出所有可能的情况,即红球和蓝球的组合,然后计算出红球的数量与总球数的比值。
2. 分析法分析法是一种通过分析问题特点进行概率计算的方法。
当问题中出现"至少"、"或"、"且"等关键词时,我们可以通过分析不同情况的概率计算出所需结果。
例如,有一箱子中装有红球、蓝球、绿球三种颜色的球,抽取两个球,求至少一种颜色相同的概率。
我们可以通过分析四种可能的情况:两个红球、两个蓝球、两个绿球以及红球和蓝球混合,然后计算每种情况发生的概率并求和。
3. 条件概率条件概率是指在已知某个条件下,其他事件发生的概率。
解决条件概率问题时,我们需要根据已知条件进行计算。
例如,一批产品由两个工厂生产,其中A工厂的产品有10%的次品率,B工厂的产品有15%的次品率,现从中随机取出一个产品,发现它是次品,求它来自A工厂的概率。
我们可以利用条件概率的公式,计算出所需概率。
二、统计问题的解题思路统计问题主要是通过已知的数据信息,推断出总体特征或进行预测。
在解决统计问题时,我们可以采用以下几种常用的解题思路。
1. 抽样调查抽样调查是统计问题中常用的方法之一。
通过从总体中随机选择一部分样本,并对样本数据进行统计分析,我们可以推断出总体的一些特征。
例如,我们想要知道某一地区的居民平均年龄,我们可以进行抽样调查,然后计算出样本的平均年龄,再根据统计原理进行估计。
中考数学概率与统计问题的解题思路总结与应用
中考数学概率与统计问题的解题思路总结与应用概率与统计是数学中的重要分支,也是中考数学题中常见的考点之一。
对于解题的思路和方法,下面将进行总结与应用。
一、概率问题的解题思路概率问题主要是考察事件发生的可能性大小。
解决概率问题的思路主要包括以下几个步骤:1.明确问题:首先,要仔细阅读题目,理解问题的背景和要求。
明确题目中给出的条件和所求的结果。
2.确定事件:根据题目中的信息,确定相关的事件,例如抛硬币正面朝上、抽到红色扑克牌等。
3.计算可能性:根据所求事件的可能性和总事件的可能性,计算概率。
可能性可以通过等可能原理、频率和样本空间等概念进行计算。
4.化简计算:如果题目复杂,可以通过化简计算简化问题。
例如,可以利用互斥事件、相对补事件等化简问题。
二、统计问题的解题思路统计问题主要是考察一组数据的分布情况和统计性质。
解决统计问题的思路主要包括以下几个步骤:1.整理数据:首先,要对题目中给出的数据进行整理和归类。
可以使用表格、直方图等方式对数据进行展示。
2.提取关键信息:根据题目中的要求,提取所需的关键信息。
例如,计算平均值、中位数、众数等。
3.计算统计性质:根据提取的关键信息,进行计算。
例如,可以计算某个区间的频数、频率、方差等。
4.数据分析:对统计结果进行分析和解释。
可以给出结论,分析数据的特点和规律。
三、概率与统计问题的应用概率与统计的思路和方法不仅可以用于解题,还可以应用到生活实际中。
例如:1.调查问卷:在进行调查问卷时,可以使用统计方法对数据进行整理和分析,得出相关结论。
2.赌博和投资:在赌博和投资中,可以利用概率进行决策,评估风险和可能性。
3.产品质量管理:企业可以利用统计方法对产品质量进行抽样检验,评估产品合格率和不合格率。
4.医学研究:在医学研究中,可以利用统计方法对患者的生存率、治疗效果等进行分析和比较。
综上所述,概率与统计问题的解题思路可以通过明确问题、确定事件、计算可能性、化简计算等步骤进行,而在实际生活中也能够应用到各个领域中。
中考数学概率与统计的重要公式及应用
中考数学概率与统计的重要公式及应用概率与统计是数学的一个重要分支,广泛应用于各个领域。
在中考数学中,概率与统计也是一个重点考察的内容。
本文将介绍一些中考概率与统计中的重要公式及其应用。
一、概率公式1. 事件的概率公式概率是一个事件发生的可能性,通常用P(A)表示。
对于一个随机试验,若事件A有m种情况中的一种,总的可能情况有n种,那么事件A的概率可以用以下公式表示:P(A) = m / n2. 互斥事件的概率公式互斥事件指的是两个事件不能同时发生的情况。
若事件A和事件B 是互斥事件,那么事件A或事件B发生的概率可以用以下公式表示:P(A或B) = P(A) + P(B)3. 独立事件的概率公式独立事件指的是两个事件的发生不会相互影响的情况。
若事件A和事件B是独立事件,那么事件A和事件B同时发生的概率可以用以下公式表示:P(A且B) = P(A) × P(B)二、统计公式1. 众数众数指的是一组数据中出现次数最多的数值。
对于一组数据集合,若某个数值出现的次数最多,那么这个数值就是众数。
2. 中位数中位数指的是一组数据中处于中间位置的数值。
对于一组有序的数据集合,若数据个数为奇数,则中位数为排序后处于中间位置的数值;若数据个数为偶数,则中位数为排序后位于中间的两个数值的平均值。
3. 平均数平均数指的是一组数据的总和除以数据的个数所得到的值。
对于一组数据集合,设数据的个数为n,数据之和为sum,则平均数可以用以下公式表示:平均数 = sum / n三、应用1. 概率应用概率在现实生活中有广泛应用。
例如,在购买彩票时,我们可以利用概率计算中奖的可能性;在赌场游戏中,可以通过概率来决策;在投资时,可以利用概率评估风险和回报等。
2. 统计应用统计在现实生活中也有广泛应用。
例如,在调查民意时,可以利用统计方法对样本数据进行分析,从而推断出整个人群的情况;在质量控制中,可以利用统计方法对生产过程中的数据进行分析,从而进行质量改进;在市场调研中,可以利用统计方法对市场需求进行预测。
中考数学统计与概率基础知识
中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
中考数学总复习概率与统计知识点梳理
中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
中考数学中的概率与统计问题解题方法总结
中考数学中的概率与统计问题解题方法总结概率与统计是中考数学中重要的考点之一,掌握相关解题方法对于获得高分至关重要。
本文将总结中考数学中的概率与统计问题解题方法,帮助同学们更好地备考。
一、概率问题解题方法1.1 随机事件的概率计算在解决概率问题时,首先要明确问题中所涉及的随机事件,然后确定事件的样本空间和事件的可能数。
计算概率时,可采用“有利结果数与总结果数比”或“频率”两种方法。
1.2 事件的排列与组合当问题中涉及的事件是有序排列或无序组合时,可以使用排列组合的方法来计算概率。
对于有序排列的事件,可以使用全排列的方法,对于无序组合的事件,可使用组合数的方法。
1.3 复合事件的概率计算当问题中的事件是复杂的复合事件时,可以使用独立事件的概率乘法原理或互斥事件的概率加法原理来计算概率。
需要注意确定事件之间的独立性或互斥性。
二、统计问题解题方法2.1 数据的整理与描述在解决统计问题时,首先需要对给定的数据进行整理和描述。
可通过制表、绘图等方式对数据进行整理,计算出均值、中位数、众数、极差等统计量,从而有助于进一步分析和解决问题。
2.2 统计规律的探究通过观察和分析给定的统计数据,寻找其中的规律和趋势,可以通过绘制直方图、折线图等来展示数据的变化趋势和分布情况。
这有助于深入理解数据的特点,并根据规律解决问题。
2.3 数据的分析与推理在统计问题中,常常需要根据已经给定的数据进行推理和判断。
这时需要通过归纳、分析,利用已知的统计规律和统计方法来判断未知的事物或问题的解答。
三、应用举例3.1 概率问题的应用例如,某次抽奖活动,参与抽奖的人数为100人,其中60人是女性,40人是男性。
如果从中随机抽取一人,求抽中女性的概率。
解题时,可根据女性人数占总人数的比例,得出概率为60/100=0.6。
3.2 统计问题的应用例如,某班级同学的考试成绩如下:74, 68, 82, 90, 76, 84, 78, 86, 92, 80。
考点06 数据统计与概率 中考数学必背知识手册
考点06 数据统计与概率知识点一:统计的基本要素1. 常用的统计调查方式:全面调查、抽样调查.2. 所要考察的对象的全体称为总体.组成总体的每一个对象称为个体.3. 从总体中抽取的一部分各体叫做总体的一个样本,样本中的个体的数目叫做样本容量.4. 在抽取样本的过程中,总体中的每个个体都以相等的机会被抽到,像这样的抽样方法叫做简单随机抽样. 知识点二:平均数,中位数,众数1. 平均数:x 1,x 2,…,x n的平均数n x 1=(x 1+x 2+…+x n ). 2. 加权平均数:如果n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x R 出现f R 次(这里f 1+f 2+…+f R =n ), 则nx 1=(x 1f 1+x 2f 2+…+x R f R ). 3. 中位数:将一组数据按大小顺序排列,处在最中间位置上的数据叫做这组数据的中位数;如果数据的个数为偶数,中位数就是处在中间位置上的两个数据的平均数.4. 众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.知识点三:方差1. 方差:x 1,x 2,…,x n 的方差s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2. 方差是衡量一组数据波动大小的量,方差越小,数据的波动越小;方差越大,数据的波动越大.知识点四:频数、频率1. 频数:在我们研究的对象中,每个对象出现的次数叫做频数.2. 频率:每个对象出现的次数与总次数的比值叫做频率.知识归纳3. 绘制频数分布直方图的步骤:① 计算最大值与最小值的差;② 决定组距与组数;③ 列频数分布表;④ 画频数分布直方图.知识点五:常见的统计图1. 常见的统计图有条形统计图、扇形统计图、折线统计图.条线统计图能显示每组中的具体数据;扇形统计图能显示部分在总体中所占百分比;折线统计图能显示数据的变化趋势.2. 扇形统计图的制作步骤:①根据有关数据先算出各部分在总体中所占的百分比(即部分数据÷总体数据),再算出各部分圆心角的度数,公式:各部分扇形圆心角的度数=部分占总体的百分比×360;②按比例,取适当半径画一个圆;③按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分比;⑤写出统计图的名称、制作日期.知识点六:事件、概率1. 事件的分类生活中的事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件.2. 概率(1)表示一个事件发生的可能性大小的数叫做该事件的概率.(2)概率的性质① 必然事件发生的概率为1,即P(必然事件)=1;② 不可能事件发生的概率为0,即P(不可能事件)=0;③ 如果A 为不确定事件,那么0<P(A)<1;④ P(A)的范围是0≤P(A)≤1.3.概率的计算方法(1)一步事件的概率:P=nk (k 表示关注结果的次数,n 表示所有可能出现结果的次数).(2)两步事件的概率:① 计算简单事件发生的概率的方法有列举法(包括列表格、画树状图);② 通过大量的重复试验时,频率可视为事件发生概率的估计值.1. 调查方式的选择方法:(1)适合采用全面调查的是:① 调查结果要求非常准确;② 所要调查的个体数量较少调查难度相对不大;③ 调查无破坏性;④ 考查经费和时间都非常有限,全面调查受到限制2. 统计量的计算与应用(1)平均数的计算所涉及的一个重要的量是数据的个数,样本容量与统计图有关的计算,往往要用到方程的思想(2)应用统计量分析问题时要针对题目的要求合理选择,考虑问题要全面,不要顾此失彼,3. 列表法和树形图法适用的范围(1)在一次试验中,如果包括两个步马聚或两个因素,列表法和树形图法都可以用来分析事件发生的可能性(2)在一次试验中如果包括两个以上或两个以上因素,为了直观地分析事件发生的可能性,一般采用树状图法4. 概率的应用(1)用概率知识判断游戏的公平性。
2024中考备考热点03 统计与概率(6大题型+满分技巧+限时分层检测)(原卷版)
热点03 统计与概率中考数学中《统计与概率》部分主要考向分为三类:一、数据的收集与处理(每年1~2道,8~12分)二、数据分析(每年1~2道,3~6分)三、概率(每年1题,3~4分)统计与概率是中考数学中的必考考点,内容包含数据的收集与处理、数据分析、概率三个考点,对应知识点都比较好理解识记,整体难度不大。
但是这部分的分值在中考占比较大。
题型方面则是选择、填空题、解答题都有。
并且,由于其特有的计算类型,易错点也比较的统一,所以需要考生在审题和计算上要特别留心。
整体来说,这个考点的考题属于中考中的中档考题,但要做到越是容易拿分的考点越要细心。
考向一:数据的收集与整理【题型1 调查与样本等概念及其作用】满分技巧1、全面调查和抽样调查的适用范围:调查总数很少的可以全面调查,如一个班的身高情况;调查总数多的选择抽样调查,如一个学校的作业完成情况;比较重要或影响比较大的事情必须全面调查,如疫情期间,某市感染人数、第7次全国人口普查等。
2、理解样本、样本总量、个体、总体间的关系在统计中,要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中抽取一部分个体的集体叫做这个总体的一个样本,样本中个体的数目叫做样本容量。
1.(2023•浙江)在下面的调查中,最适合用全面调查的是()A.了解一批节能灯管的使用寿命B.了解某校803班学生的视力情况C.了解某省初中生每周上网时长情况D.了解京杭大运河中鱼的种类2.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生3.(2023•金昌)据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人【题型2 频数分布直方图和折线图】满分技巧1、频数分布直方图和频数分布折线图可以更直观、更方便的表示出各数据的多少和变化2、各组数量之和=样本容量;各组频率之和=1;数据总数×相应的频率=相应的频数;1.(2023•北京)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.2.(2023•温州)某校学生“亚运知识”竞赛成绩的频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有人.3.(2023•赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是()A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人【题型3 三大统计图的应用】如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量比公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同2.(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°3.(2023•鞍山)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.考向二:数据分析【题型4 四大统计量及其选择】满分技巧四大统计量:平均数、中位数、众数、方差;其中:平均数反应一组数据的平均水平,容易受极端值的影响;中位数反应一组数学的中等水平;众数反应数据的集中水平;方差反应一组数据的波动性,方差越大,数据的波动性越大。
中考数学中的概率与统计实际问题解决方法总结
中考数学中的概率与统计实际问题解决方法总结概率与统计是中考数学中的重要考点之一,也是实际生活中常用的数学知识。
本文将总结中考数学中概率与统计相关知识,并提供解决实际问题的方法。
一、概率的计算方法概率是指事件发生的可能性大小。
在中考数学中,通常以公式的方式计算概率。
以一个简单的例子来说明,假设有一个有10个红球和5个蓝球的袋子,从中任意取一球,求取到红球的概率。
用P表示概率,则P(取到红球) = 红球的个数÷总球数 = 10÷(10+5) = 10/15 = 2/3。
二、统计的基本方法统计是指通过观察、记录和分析数据,对现象进行描述和归纳的过程。
在中考数学中,常用的统计方法有频数统计、频率统计、平均数、中位数、众数等。
其中,平均数是常见的统计指标之一,计算平均数的公式为:平均数 = 总数之和 ÷数据个数。
举例来说,某学生在5次模拟考试中的分数分别为80、85、90、92、95,计算这5次模拟考试的平均分数,即 (80+85+90+92+95) ÷ 5 = 88.4。
三、实际问题解决方法在实际生活中,概率与统计的知识可以帮助我们解决很多问题。
举例来说,我们可以通过统计分析历年中考数学题目的命题方向,分析重点考点,得出备考策略。
又或者我们可以利用概率知识来解决实际问题,如购买彩票的中奖概率、天气预报的准确度等。
除此之外,概率与统计知识还可以应用于商业领域。
比如,在生产过程中,统计产品的不合格率,来评估产品的质量水平;在市场营销中,通过对顾客购买行为的统计分析,预测和满足消费者的需求。
总之,中考数学中的概率与统计知识不仅仅是为了应付考试,更是为了培养我们在实际生活中解决问题的能力。
通过学习概率与统计,我们可以更好地理解和应用数据,提高我们的决策能力和问题解决能力。
希望本文总结的实际问题解决方法能够对您有所帮助。
数学中考统计与概率题型解题方法总结
数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
中考数学统计与概率解题技巧
中考数学统计与概率解题技巧统计与概率是中考数学中的重要内容,也是考生需要重点掌握的解题技巧之一。
下面,本文将介绍几种常见的中考数学统计与概率解题技巧,帮助考生在考试中取得更好的成绩。
一、频数统计法在统计与概率中,经常遇到需要进行数据统计的题目。
频数统计法是一种常见的解题技巧。
该方法通过统计每个数据出现的次数,确定数据的频数,从而解决问题。
例如,某班级40名学生的身高进行统计,记录在下表中:身高(cm)频数140-150 10150-160 15160-170 12170-180 3通过频数统计法,我们可以得到该班级的身高分布情况。
这种方法可以帮助我们更清晰地了解数据的分布特点,从而解决相关问题。
二、频率与概率计算频率与概率是统计与概率中需要计算的重要概念。
频率是指某个事件发生的次数与总次数的比值,概率则是某个事件发生的可能性大小。
频率计算公式为:频率 = 事件发生次数 / 总次数概率计算公式为:概率 = 事件发生次数 / 总次数例如,在某次抽奖活动中,共有50人参与,其中有10人获奖。
那么获奖的频率为10/50=1/5,概率为10/50=0.2。
在解题过程中,通过计算频率与概率,可以更准确地评估事件发生的可能性,从而正确解决问题。
三、样本调查与假设检验样本调查与假设检验是解决统计与概率问题的常用方法。
通过抽取一部分样本数据,进行调查与分析,推断整体数据的特征与规律。
在进行样本调查与假设检验时,需要注意以下几点:1. 样本选择的随机性:确保样本的选择过程是随机的,以确保结果的客观性和代表性。
2. 样本大小的确定:样本大小应该足够大,以减小因随机性引起的误差。
3. 假设的设立:根据实际问题,设立相应的假设,通过样本数据对假设进行检验。
通过样本调查与假设检验,不仅可以推断整体数据的特征与规律,还可以评估推断结果的可信度,为解题提供有力支持。
四、条件概率计算条件概率是指在已知一个事件发生的条件下,另一个事件发生的概率。
中考复习初中数学概率与统计复习重点整理
中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
2023年中考数学--统计与概率练习(解析)
专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数 B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件 C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 【答案】C 【分析】依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论. 【详解】解:A .任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;B .“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;C .了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则乙组数据更稳定,故原说法错误,不合题意;故选:C .2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4C .5D .6【答案】B 【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数. 【详解】把数据从小到大排列为:2,2,4,5,6, 中间的数是4, ∴中位数是4, 故选:B .3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A.27 B.29 C.30 D.31【答案】D【分析】根据众数的定义:一组数据中出现次数最多的一个数或多个数,进行求解即可.【详解】解:由题意可知,这组数据中31出现了4次,出现的次数最多,∴这组数据的众数为31,故选D.4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是()A.16B.13C.12D.56【答案】B【分析】画树状图,共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,∴两指针所指的两个扇形中的数相加,和为6的概率为26=13,故选B.5.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐【答案】B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙的方差的分别为10.9、9.9,∴甲的方差大于乙的方差,∴乙秧苗出苗更整齐.故选:B.6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.13【答案】D【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D.7.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意. 故选:B .8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .35【答案】A 【分析】求出阴影部分的面积占大正方形的份数即可判断. 【详解】解:∵两个小正方形的面积为23cm 和212cm , ∴323 ∴3+23=33∴大正方形的面积为27=, ∴阴影部分的面积为2731212--=, ∴米粒落在图中阴影部分的概率为124=279, 故选:A .9.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( ) A .样本为40名学生 B .众数是11节 C .中位数是6节 D .平均数是5.6节【答案】D 【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可. 【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确. 故选择:D .10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是( ) A .小刚的平均分高 B .小刚的中位数高 C .小刚的方差小 D .小刚最低分高【答案】C利用平均数、中位数及方差的定义进行计算,再根据各统计量特点判断即可.【详解】解:A.平均数:小明的平均数=96+85+89=903,小刚的平均数=90+91+89=903,平均数相同,故此项错误;B.中位数:小明的中位数89,小刚的中位数90,89<90,但中位数不能代表平均水平,故此项错误;C.方差:小明的方差=()()()2229690+8590+899062=33---,小刚的方差=()()()2229090+9190+89902=33---,623>23,小刚的波动较小,故小刚的方差较小,故此项正确;D. 此时不能选择最低分来比较两人的水平,故此项错误.故选C.二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.【答案】3【分析】分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.解:(1)假设袋中红球个数为1,此时袋中由1个黄球、1个红球,搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.(2)假设袋中的红球个数为2,列树状图如下:由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,∴P(摸出一红一黄)=42=63,P(摸出两红)=21=63,不符合题意,(3)假设袋中的红球个数为3,画树状图如下:由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,∴P(摸出一红一黄)=P(摸出两红)=61=122,符合题意,所以放入的红球个数为3,故答案为:3.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.【答案】12【分析】列表得出所有等可能的情况数,找出两球上所标数字之积是正数的情况,即可求出所求的概率.【详解】解:列表如下:所有等可能的情况有12种,其中两球上所标数字之积是正数的情况有6种,则两球所标数字之积是正数的概率为6÷12=12,故答案是:12.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.【答案】4 9【分析】由10条线段中任意取2条,是一个列举法求概率问题,是无放回的问题,共有90种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有40个结果.因而就可以求出概率.【详解】从1~10这10条整数线段中任意取1条,有10种可能结果;再从剩下9条线段中任意取1条,有9种可能结果;所以从1~10这10条整数线段中任意取2条有10×9=90种等可能的情况,三角形两边之和大于第三边,其中能和线段 a 组成三角形,即这2条线段的长度之和大于11的有:(2,10),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,5),(7,6),(7,8),(7,9),(7,10),(8,4),(8,5),(8,6),(8,7),(8,9),(8,10)(9,3),(9,4),(9,5),(9,6),(9,7),(9,8),(9,10),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9)一共有1+2+3+4十4+5+6+7+8=40种等可能的情况;故能和线段 a 组成三角形的概率为:404=909. 故答案为:49.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a 、b ,把a 、b 作为点A 的横、纵坐标;求点A (a ,b )的个数为:__________;点A (a ,b )在函数y x =的图象上的概率为:______.【答案】16 14【分析】(1)根据题意采用列表法,即可求得所有点的个数; (2)求得所有符合条件的情况,求其比值即可求得答案. 【详解】 解:(1)列表得:(1,4)(2,4) (3,4) (4,4)(1,3) (2,3) (3,3) (4,3) (1,2)(2,2) (3,2) (4,2)(1,1)(2,1)(3,1)(4,1)∴点(,)A a b 的个数是16;(2)当a b =时,(,)A a b 在函数y x =的图象上,∴点(,)A a b 在函数y x =的图象上的有4种,分别是:(1,1),(2,2),(3,3),(4,4), ∴点(,)A a b 在函数y x =的图象上的概率是41164=; 故答案是:16,14.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.【答案】(1)14;(2)见解析,12【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有16个等可能的结果,所得分数之和不低于8分的结果有8个,由概率公式即可得出答案.【详解】解:(1)任意摸出一个是黄球的概率为1211++=14;(2)画树状图如图:共有16个等可能的结果,甲、乙摸球所得分数之和不低于8分的结果有8个,∴一次游戏甲、乙摸球所得分数之和不低于8分的概率为816=12.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.【答案】(1)见解析;(2)12【分析】(1)根据题意可以画出相应的树状图;(2)根据(1)中的树状图可以求得摸出的两张卡片中的含有词语“众参与”的概率.【详解】解:(1)树状图如下图所示,(2)由树状图得:共有12个等可能的结果,摸出的两张卡片中含有词语“众参与”的结果有6个,∴摸出的两张卡片中含有词语“众参与”的概率是61 122.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数 5 10 15 20 25 30每回进球次数 3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)【答案】(1)0.6;0.8;0.4;0.8;0.68;0.6;(2)见解析;(3)0.65【分析】(1)根据频率计算方法:频率=每回进球次数÷每回的投球次数,即可求解;(2)利用描点法画图即可;(3)利用样本估计总体即可求解.【详解】(1)∵3÷5=0.6;8÷10=0.8;6÷15=0.4;16÷20=0.8;17÷25=0.68;18÷30=0.6;故将数据表补充如下:第一回投第二回投第三回投第四回投第五回投第六回投球球球球球球每回投球次数5 10 15 20 25 30每回进球次数3 8 6 16 17 18相应频率0.6 0.8 0.4 0.8 0.68 0.6 (2)如图:进球次数的频率分布折线图如下:(3)386161718 51015202530++++++++++≈0.65.答:估计这个概率是0.65.19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m=______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.【答案】(1)50,10;(2)72°;(3)308人【分析】(1)从扇形统计图中获取D 部分的比重,从频数分布直方图中获取D 部分的人数,即可求解;求得C 组人数,即可求解.(2)求得E 组的所占的百分比,即可求解;(3)求得女生身高不低于160cm 所占的百分比,即可求解. 【详解】解:(1)从扇形统计图中获取D 部分的比重为26% 从频数分布直方图中获取D 部分的人数为13 总人数为1326%=50÷人 C 组的人数为5028%=14⨯人50261413510m =-----=故答案为:50,10(2)E 部分所对应的扇形圆心角的大小是103607250⨯︒=︒ 答:E 部分所对应的扇形圆心角的大小是72︒ (3)样本中女生身高不低于160cm 的人数有28人2855030850⨯= 答:估计该校女生身高不低于160cm 的有308人.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm )如下: 甲:172 168 175 169 174 167 166 169 乙:164 175 174 165 162 173 172 175 (1)甲、乙两名运动员跳高的平均成绩分别是多少? (2)分别求出甲、乙跳高成绩的方差; (3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm 以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm 方可获得冠军,又应该选哪位运动员参赛?【答案】(1)都是170cm ;(2)29.5s =甲,225.5s =乙;(3)甲运动员的成绩更为稳定,理由见解析;(4)跳高165cm 以上就很可能获得冠军的情况下,选甲运动员参加;跳高170cm 方可获得冠军的情况下,应选乙运动员参加 【分析】(1)根据平均数的计算方法,先将数据求和,再除以8即可得到甲乙两人各自的平均成绩; (2)根据方差的计算公式分别计算即可,(3)由题(2)的计算结果,根据方差的意义可知,方差越小,即波动越小,数据越稳定即可判断; (4)根据题意分情况分析数据即可判断. 【详解】(1)甲的平均成绩为:1(172168175169174167166169)170(cm)8⨯+++++++=,乙的平均成绩为:1(164175174165162173172175)170(cm)8⨯+++++++=,(2)()()()()()()22222221[1721701681701751701691701741701671708s =⨯-+-+-+-+-+-甲221(166170)(169170)769.58⎤+-+-=⨯=⎦22222221(164170)(175170)(174170)(165170)(162170)(173170)8s ⎡=⨯-+-+-+-+-+-⎣乙221(172170)(175170)20425.58⎤+-+-=⨯=⎦;(3)∵9.525.5<, ∴22s s<甲乙,∴甲运动员的成绩更为稳定;(4)若跳过165cm 以上就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参加;若跳过170cm 才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参加.21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中“篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)180,126°;(2)画图见解析;(3)1 6【分析】(1)根据跳水的人数及其百分比求得总人数;然后出田径及游泳的人数,再用总人数减去田径人数、游泳人数、跳水人数即可得到篮球人数,求出其所占总数的百分比,最后乘以360°即可得到结果;(2)根据(1)的计算结果补全统计图即可;(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解..【详解】(1)54÷30%=180(人)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:360°63= 180126°,故答案为:180,126°;(2)补全统计图如下所示:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种. 所以P (恰好选中甲、乙两位同学)=21=126. 22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表:(1)计算、直接填表:表中投篮150次、200次相应的命中率. (2)这个运动员投篮命中的概率约是_____. (3)估计这个运动员3分球投篮15次能得多少分? 【答案】(1)0.6,0.6;(2)0.6;(3)27分 【分析】(1)由命中次数除以投篮次数即可得到相应的命中率; (2)由大量实验是前提下,利用频率估计概率即可得到答案; (3)先计算15次投篮的命中数,从而可得答案. 【详解】解:(1)投篮150次、200次的命中率分别为:90120=0.6,=0.6.150200(2)随着投篮次数的增加,这个运动员投篮命中率稳定在0.6附近, 所以这个运动员投篮命中的概率约是0.6. 故答案为:0.6.(3)这个运动员3分球投篮15次大约投中150.6=9⨯次, 所以这个运动员3分球投篮15次的得分大约为:39=27⨯分.23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级平均分 中位数 众数 方差七年级 91 a 89 45.2 八年级 9192.5b39.2八年级抽取的学生竞赛成绩频数分布直方图请根据相关信息,回答以下问题:(1)直接写出表格中a ,b 的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀(90x ≥)的学生人数是多少.【答案】(1)89.5;93;见解析;(2)八年级,见解析;(3)1100人 【分析】(1)根据中位数、众数的意义求解即可,求出“C 组”的频数才能补全频数分布直方图; (2)从中位数、众数、方差的角度比较得出结论; (3)分别计算七年级、八年级优秀人数即可. 【详解】解:(1)将七年级10名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为: 899089.52+=, 因此中位数是89.5,即89.5a =;八年级10名学生成绩出现次数最多的是93,共出现2次,因此众数是93,即b =93, 八年级10名学生成绩处在“C 组”的有10-2-3-1=4(人), 补全频数分布直方图如下:(2)八年级学生掌握防火安全知识较好.因为七、八年级平均分相等,八年级中位数92.5大于七年级中位数89.5,所以八年级学生掌握防火安全知识较好.(3)17 80010001100210⨯+⨯=(人);答:参加此次竞赛活动成绩优秀的学生人数是1100人.。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
中考数学解题技巧概率与统计
中考数学解题技巧概率与统计中考数学解题技巧——概率与统计概率与统计是数学中考试中的重点内容之一,掌握解题技巧对于取得优异成绩至关重要。
本文将介绍一些常见的概率与统计解题技巧,帮助同学们在中考中取得好成绩。
一、概率解题技巧概率解题主要涉及到事件的发生可能性计算和概率的相加相乘规则。
下面将介绍几种常见的情况及其解题技巧。
1. 抽奖问题抽奖问题是概率解题中常见的一类问题。
其中包括有放回和无放回两种情况。
在有放回的情况下,每次抽取后将所抽取的物品放回,下次抽取时物品的种类和数量都不会发生改变;而在无放回的情况下,每次抽取后所抽取的物品不会放回,下次抽取物品的种类和数量都会发生改变。
解决抽奖问题的关键在于确定抽取每个物品的概率。
通过计算每个物品被选中的次数占总次数的比例,即可得到概率。
2. 事件的互斥与独立在概率解题中,我们经常会遇到事件的互斥与独立问题。
互斥指的是两个事件不可能同时发生,而独立指的是一个事件的发生不影响另一个事件的发生。
解决互斥问题的关键是利用概率的相加规则,即将各个互斥事件发生的概率相加即可。
解决独立问题的关键是利用概率的相乘规则,即将各个独立事件发生的概率相乘即可。
二、统计解题技巧统计解题主要涉及到数据的收集、整理和分析。
下面将介绍几种常见的统计解题技巧。
1. 数据的整理与分组在统计解题中,经常需要整理和分组数据。
整理数据包括去掉重复数据、列出各个数据的频数等。
分组数据则是将数据按照一定的范围进行分组,并计算出每组数据的频数。
对于大量数据的整理与分组,可以使用表格或直方图等形式进行展示,以便更好地分析和理解数据的规律。
2. 数据的分析与推理在统计解题中,我们常常需要根据给定的数据进行一些分析和推理。
比如判断数据的分布趋势、找出数据中的异常值等。
在进行数据分析与推理时,应该注重观察数据的规律,运用一些统计方法和技巧,如算术平均数、中位数、众数等,以便更好地理解数据。
三、实例分析为了更好地理解和应用上述的概率与统计解题技巧,下面我们将通过一个实例进行分析。
中考数学中的概率与统计实际问题解决实例总结
中考数学中的概率与统计实际问题解决实例总结概率与统计是数学中的重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计,我们可以应用数学知识解决实际问题,下面将通过实例总结几种常见的中考数学概率与统计实际问题的解决方法。
一、抽签问题抽签问题是概率与统计中常见的问题之一。
考生在中考数学中经常会遇到类似的问题,例如:某班有30个学生,其中有10名男生、20名女生,现在从中随机抽取一位学生,求抽到男生的概率。
解决这类问题的方法是先计算男生和女生的人数比例,然后利用概率的定义,男生的数量除以总人数,即可得到抽到男生的概率。
二、频率与统计问题频率与统计问题是指根据已有的数据进行分析与描述。
例如:某班有40名学生,学校要了解学生住校的比例,并调查了其中20名学生的住校情况,得知住校学生有14名,那么班上住校学生的估计人数是多少?解决这类问题的方法是利用已知数据进行比例估计。
已知住校学生与非住校学生的比值是14:6,可得比值为7:3,因此班上住校学生的估计人数为总人数乘以比值,即40 ×(7/10)= 28人。
三、骰子问题骰子问题是概率与统计中较为常见的问题之一。
例如:某游戏中,玩家需要掷两个骰子,求两个骰子的点数之和为7的概率。
解决这类问题的方法是可以列出所有掷骰子的可能数,然后计算出点数之和为7的情况数量,再利用概率的定义,点数之和为7的次数除以总次数,即可得到所求的概率。
四、问卷调查问题问卷调查问题是概率与统计中常见的实际问题之一。
例如:某班有50名学生,学校要了解学生是否有养宠物,并进行问卷调查,问卷结果显示有30名学生有养宠物,那么班上养宠物学生的估计人数是多少?解决这类问题的方法是利用问卷调查结果进行比例估计。
已知养宠物学生与非养宠物学生的比值是30:20,可得比值为3:2,因此班上养宠物学生的估计人数为总人数乘以比值,即50 ×(3/5)= 30人。
通过以上实例的总结,我们可以看到概率与统计在中考数学中具有重要作用。
2023中考九年级数学分类讲解 - 第十四讲 统计与概率(含答案)(全国通用版)
第十四讲统计与概率专项一数据的收集知识清单1. 调查方式总体:所要考察的对象的叫做总体.个体:组成总体的考察对象叫做个体.样本:从总体中抽取的叫做总体的样本.样本容量:样本中所包括的叫做样本容量.考点例析例1以下调查中,最适合采用全面调查的是()A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D.调查春节联欢晚会收视率分析:当调查范围小或准确性要求高时适宜用全面调查,据此逐项判断即可.归纳:选择全面调查还是抽样调查要根据所要考察的对象的特征灵活选用.一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,选择抽样调查.对于精确度要求高的调查,事关重大的调查往往选用全面调查.例2某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A. 总体是该校4000名学生的体重B. 个体是每一个学生C. 样本是抽取的400名学生的体重D. 样本容量是400分析:根据总体、个体、样本、样本容量的定义,首先找出考察的对象,找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.归纳:总体、个体、样本,考察的对象是相同的,不同的是考察范围的大小,样本容量是样本中包含个体的数目,没有单位.跟踪训练1.下列调查中,适宜采用抽样调查的是()A. 调查某班学生的身高情况B. 调查亚运会100 m游泳决赛运动员兴奋剂的使用情况C. 调查某批汽车的抗撞击能力D. 调查一架“歼10”隐形战斗机各零部件的质量2.要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是.专项二统计图(表)知识清单常用统计图的特点考点例析例1 自疫情暴发以来,中共中央文明办发布了关于“文明用餐”的倡议,为积极响应,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们的家庭用餐使用公筷情况进行统计,统计分类为以下四种:A. 完全使用;B. 多数时间使用;C. 偶尔使用;D. 完全不使用.将数据进行整理后,绘制了两幅不完整的统计图(如图1).图1根据以上信息,解答下列问题:(1)本次抽取的学生总人数共有人;(2)补全条形统计图;(3)求扇形统计图中A对应的扇形的圆心角度数.分析:(1)根据B类的人数和所占的百分比,可以求得总人数;(2)根据(1)中的结果,可以计算出D类的人数,从而将条形统计图补充完整;(3)利用360°乘以A类所占百分比可得A类对应扇形的圆心角度数.解:跟踪训练1.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是()A. 样本容量为400B. 类型D所对应的扇形的圆心角为36°C. 类型C所占百分比为30%D. 类型B的人数为120人第1题图第3题图2.某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是.3.为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021-2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成如下不完整的统计图表.课程篮球足球排球乒乓球人数m2130n根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数. 第4题图专项三数据的分析知识清单名称定义意义应用(nx x+-考点例析例1 为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4∶3∶3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为分.分析:利用加权平均数计算公式计算总成绩即可.归纳:数据的权能够反映数据的相对重要程度.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等).在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.加权平均数权的表现形式通常有三种:整数、百分数、比.本题权是以比的形式出现.例2 学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A. 16,15B. 11,15C. 8,8.5D. 8,9分析:根据中位数和众数的定义即可得解.归纳:确定中位数之前要将该组数据按照从小到大或从大到小的顺序排列,若数据个数为奇数,则位于最中间的数即为中位数;若数据个数为偶数,则位于最中间的两个数的平均数即为该组数据的中位数.需注意,一组数据的众数有时不止一个.例3 有甲、乙两组数据,如下表所示:甲、乙两组数据的方差分别为2s甲,2s乙,则2s甲2s乙.(填“>”,“<”或“=”)分析:根据方差的定义求解.归纳:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.跟踪训练1.为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A. 众数是82B. 中位数是84C. 方差是84D. 平均数是852.一组数据:1,3,3,2,若添加一个数据3,则不发生变化的统计量是()A. 平均数B. 中位数C. 众数D. 方差3.某中学规定学生的学期体育成绩满分为100分,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80,则小彤这学期的体育成绩是分.4.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是__________班.专项四事件的分类知识清单1. 确定事件事先能肯定它一定的事件称为必然事件,必然事件发生的概率是.事先能肯定它一定的事件是不可能事件,不可能事件发生的概率是. 事件和事件都是确定事件.2. 随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.如果A为不确定事件(随机事件),那么< P (A )< .考点例析例 下列事件是必然事件的是( ) A. 没有水分,种子发芽B. 如果a ,b 都是实数,那么a+b=b+aC. 打开电视,正在播广告D. 投掷一枚质地均匀的硬币,正面向上分析:事先能肯定它一定会发生的事件称为必然事件,根据概念得到结论.跟踪训练1. 不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是( )A. 摸出的2个球中至少有1个红球B. 摸出的2个球都是白球C. 摸出的2个球中有1个红球、1个白球D. 摸出的2个球都是红球2.“成语”是中华文化的瑰宝,是中华文化的微缩景观. 下列成语:①“水中捞月”,①“守株待兔”,①“百步穿杨”,①“瓮中捉鳖”.其中,描述的事件是不可能事件的是( ) A. ①B. ①C. ①D. ①3.“一个不透明的袋中装有三个球,分别标有1,2,x 这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x 的值可能是( ) A. 7B. 6C. 5D. 44.“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则( ) A. P=0B. 0<P<1C. P=1D. P>1专项五 概率的计算知识清单1. 一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=nm . 2. 在几何图形中求概率时,P (A )=积(长度、体积)全部结果构成的区域面积)的区域面积(长度、体构成事件A .3. 用列表法或画树状图法求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性相等,那么我们可以通过列举试验结果的方法,求出随机事件的概率.(1)列表法:当一次试验涉及两次操作,且可能出现的结果数目较多时,可以采用列表法表示出所有等可能的结果,再根据概率公式计算.(2)画树状图法:当一次试验涉及两次或两次以上操作时,可以采用画树状图法表示出所有等可能的结果,再根据概率公式计算.考点例析例1 如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( ) A.2720 B.278 C. 92 D. 274分析:将正方体分割后共可得27个小正方体. 将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的有8个,利用概率公式计算即可.归纳:求一个简单随机事件的概率,大致分为以下步骤:①分析该事件所有等可能的结果数,记作n ;①在其中找出包含A 的结果数,记作m ;①利用概率公式P (A )=nm计算. 需要注意的是计算结果是一个最简分数或小数.例2 某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A ,B ,C 依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.分析:(1)根据概率公式直接得出答案;(2)根据题意先列表或画树状图列出所有等可能的结果,小辰和小安选择同一种型号免洗洗手液的结果为3,然后根据概率公式求解可得. 解:归纳:列表法或画树状图法可以清晰地表示出随机事件的所有可能出现的结果,解题时可以以事件中的操作次数为依据,选择适当的方法求概率.例1和例2中都涉及两次操作,选列表法或画树状图法均可.若题目中涉及三次操作,为了不重不漏地列出所有可能的结果,宜采用画树状图法.跟踪训练1.骰子各面上的点数分别是1,2,3,4,5,6. 投掷一枚骰子,朝上一面的点数是偶数的概率是( ) A.61 B.41 C. 21D. 12.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 .第2题图3.从-2,4,5这3个数中,任取两个数作为点P 的坐标,则点P 在第四象限的概率是 .4.随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”)第4题图请你根据统计图中所提供的信息解答下列问题: (1)获奖总人数为 人,m= ; (2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有1名男生,3名女生)中随机抽取2名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有1名男生和1名女生的概率.5.现有A ,B 两个不透明的袋子,A 袋的4个小球分别标有数字1,2,3,4;B 袋的3个小球分别标有数字1,2,3.(每个袋中的小球除数字外,其余完全相同)(1)从A ,B 两个袋中各随机摸出一个小球,则两个小球上数字相同的概率是 ______;(2)甲、乙两人玩摸球游戏,规则是:甲从A 袋中随机摸出一个小球,乙从B 袋中随机摸出一个小球,若甲、乙两人摸到小球的数字之和为奇数时,则甲胜;否则乙胜,用列表或树状图的方法说明这个规则对甲、乙两人是否公平.专项六 用频率估计概率知识清单一般地,在大量重复试验中,如果事件A 发生的频率nm稳定于某个常数p ,那么可以用这个常数p 估计事件A 发生的概率. 试验次数越多,得到概率的估计值越精确.例“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60 000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15 000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?分析:(1)利用免费发放的景点吉祥物数量除以参与这种游戏的游客人数即可得;(2)设纸箱中白球的数量为x个,先利用频率估计概率可得随机摸出一个球是红球的概率,再利用概率公式列出方程,解方程即可得.解:跟踪训练1.某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A. 0.90B. 0.82C. 0.85D. 0.842.动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有只,现年20岁的这种动物活到25岁的概率是.专项一 数据的收集例1 C 例2 D 1. C 2. ①②③④专项二 统计图(表)例 (1)50(2)D 类人数为50-10-20-16=4(人),补图略. (3)A 对应的扇形的圆心角度数为1050×360°=72°. 1. C 2. 0.33. 解:(1)参加这次调查的学生人数为30÷25%=120(人),则篮球人数m=120×30%=36(人),乒乓球人数n=120-(36+21+30)=33(人). (2)“足球”对应的扇形圆心角度数为360°×21120=63°. 专项三 数据的分析例1 89 例2 C 例3 > 1. C 2. C 3. 83 4. 甲专项四 事件的分类例 B 1. A2. A3. D4. C专项五 概率的计算例1 B 例2 (1)13(2)列表如下:由表可得,共有9种等可能的结果,小辰和小安选择同一种型号免洗洗手液的结果有3种,所以P (小辰和小安选择同一种型号免洗洗手液)=39=31. 1. C2.92 3. 31第11页4. 解:(1)40 30(2)C 等级12人,补图略.(3)画树状图如图所示:由图可得,共有12种等可能的结果,抽取同学中恰有1名男生和1名女生的结果有6种,所以P (抽取同学中恰有1名男生和112. 5. 解:(1)41 (2)画树状图如图所示:由图可得,共有12种等可能的结果,两人摸到小球的数字之和为奇数有6种,两人摸到小球的数字之和为偶数的有6种,所以P (甲获胜)=P (乙获胜)=612=12.所以游戏规则公平. 专项六 用频率估计概率例 (1)15 000÷6000=0.25.(2)设纸箱中白球的数量为x 个.根据题意,得1212x=0.25,解得x=36. 经检验,x=36是所列分式方程的解,且符合题意.答:估计纸箱中白球的数量接近36个.1. B2. 0.8a85。
新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 统计与概率第1讲 抽样与数据分析A 级 基础题1.(2014年广东佛山)下列调查中,适合用普查方式的是( )A .调查佛山市市民的吸烟情况B .调查佛山市电视台某节目的收视率C .调查佛山市市民家庭日常生活支出情况D .调查佛山市某校某班学生对“文明佛山”的知晓率2.(2015年广西玉林)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,如图6-1-10,则30名学生参加活动的平均次数是( )图6-1-10 A .2 B .2.8 C .3 D .3.33.(2015年广东茂名)为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表: 捐款的数额/元 20 50 80 100人数/名 6 7 4 3对于这20A .20元 B .50元 C .80元 D .100元4.(2015年广东广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的( )A .众数B .中位数C .方差D .以上都不对5.(2015年湖北孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是4436.(2015省广西玉林)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,如图6-1-11,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是________.图6-1-117.(2015年山东济宁)甲乙两地9月上旬的日平均气温如图6-1-12,则甲乙两地这10天日平均气温方差大小关系为S2甲________S2乙.(填“>”或“<”)图6-1-128.(2014年四川巴中)今年我市有4万名学生参加中考,为了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有________.甲组173172174174173173172173172174 乙组173172174171173175175173171173 根据以上数据填表;项目众数平均数方差甲组乙组(2)10.(2015年浙江温州)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体项目笔试面试体能甲837990乙858075丙809073(1)(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.B级中等题11.(2015年内蒙古呼和浩特)如图6-1-13,以下是某手机店1~4月份的统计图,分析统计图,对3,4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()图6-1-13A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额12.(2015年广东佛山)某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如图6-1-14两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.图6-1-14C级拔尖题13.(2014年江西南昌)某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表(如图6-1-15),请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数/人占总人数比例重视 a 0.3一般570.38不重视 b c说不清楚90.06图6-1-15(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?第2讲 事件的概率A 级 基础题1.(2014年广东梅州)下列事件中是必然事件的是( )A .明天太阳从西边升起B .篮球队员在罚球线投篮一次,未投中C .实心铁球投入水中会沉入水底D .抛出一枚硬币,落地后正面向上2.(2015年贵州六盘水)袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率为( ) A.14 B.13 C.512 D.7123.(2014年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,则抽取的两个球数字之和大于6的概率是( )A.12B.712C.58D.344.(2015年贵州黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( )A .两正面都朝上B .两背面都朝上C .一个正面朝上,另一个背面朝上D .三种情况发生的概率一样大5.(2015年辽宁铁岭)一只蚂蚁在如图6-2-3所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( )A.13B.12C.34D.23图6-2-3 图6-2-46.(2015年山东东营)如图6-2-4,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形,投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是( )A .1 B.14 C.34 D.127.(2015年广东梅州)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是________.8.(2015年广东深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是________.9.(2015年吉林)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.10.(2015年广东广州)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回, 多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?B 级 中等题11.(2015年四川自贡)如图6-2-5,随机闭合开关S 1,S 2,S 3中的两个,则能让灯泡⊗发光的概率是( )图6-2-5A.12B.13C.23D.1412.(2014年广东广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,自选项目 人数/人 频率立定跳远 9 0.18三级蛙跳 12 a一分钟跳绳 8 0.16投掷实心球 b 0.32推铅球 5 0.10合计 50 1(1)求a ,b 的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了解学生的训练效果,从这5 名学生中随机抽取2名学生进行推铅球测试,求所抽取的2名学生中至多有一名女生的概率.C级拔尖题13.(2015年辽宁朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2,3,4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)第六章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A .2400名学生B .100名学生C .所抽取的100名学生对“民族英雄范筑先”的知晓情况D .每一名学生对“民族英雄范筑先”的知晓情况2.下列说法属于不可能事件的是( )A .四边形的内角和为360°B .梯形的对角线不相等C .内错角相等D .存在实数x 满足x 2+1=03.如图J6-1是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是( )A .音乐组B .美术组C .体育组D .科技组图J6-1 图J6-24.为加快新农村试点示范建设,某省开展了“美丽乡村”的评选活动,下表是某省六个州(市)州(市) A B C D E F推荐数/个 36 27 31 56 48 54A .42,43.5B .42,42C .31,42D .36,545.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为( )A .4B .6C .8D .126.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( )A.19B.29C.49D.59二、填空题(本大题共4小题,每小题5分,共20分)7.九年级(3)班共有50名同学,如图J6-2是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.8.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是__________.9.在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3,9.5,8.9,9.3,9.5,9.5,9.7,9.4,9.5,这组数据的众数是__________.10.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是__________.三、解答题(本大题共5小题,共50分)11.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球” 记为事件A 事件A 必然事件 随机事件m 的值(2)先从袋子中取出m 1个黑球的概率等于45,求m 的值.12.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图J6-3所示的圆形转盘平均分成四个扇形, 分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?图J6-313.某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中项目 教学能力 科研能力 组织能力甲 86 93 73乙 81 95 79(1)5∶3∶2的比例确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图J6-4所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.图J6-414.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图J6-5是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s2甲,s2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.图J6-515.某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图J6-6两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?图J6-6第六章 统计与概率 第1讲 抽样与数据分析【演练·巩固提升】1.D 2.C 3.B 4.C 5.C 6.40% 7.> 8.①④ 9.解:(1)填表:众数 平均数 方差 甲组 173 173 0.6 乙组 173 173 1.8(2)10.解:(1)x -甲=(83+79+90)÷3=84, x -乙=(85+80+75)÷3=80, x -丙=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙.(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5, 丙成绩=80×60%+90×30%+73×10%=82.3, 答:乙将被录取. 11.B12.解:(1)由扇形统计图和条形统计图可得 参加这次跳绳测试的共有20÷40%=50(人). 故答案为50.(2)由(1)可知:优秀的人数为50-3-7-10-20=10(人), 如图D93:图D93(3)“中等”部分所对应的圆心角的度数是1050×360°=72°,故答案为72°.(4)该校初二年级跳绳成绩为“优秀”的人数为480×1050=96(人).答:该校初二年级跳绳成绩为“优秀”的人数为96人. 13.解:(1)由统计表可知,样本容量为57÷0.38=150(人). ∴a =150×0.3=45,c =1-0.3-0.38-0.06=0.26, b =150×0.26=39. 补全统计图如图D94.图D94(2)2300×0.26=598(人).答:可估计该校“不重视阅读数学教科书”的初中生人数约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教材在数学学习过程中的作用;②考虑到样本具有的随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.第2讲 事件的概率【演练·巩固提升】1.C 2.B 3.C 4.C 5.B 6.D 7.25 8.139.解:画树状图(如图D98)得图D98∵共有6种情况,取出的2个小球上的数字之和为6的有2种情况,∴取出的2个小球上的数字之和为6的概率为26=13.10.解:(1)∵从4件产品中随机抽取1件进行检测,∴抽到的是不合格品的概率是11+3=14.(2)记不合格品为B ,合格品为A 1,A 2,A 3,画树状图(如图D99)如下:图D99∵随机抽取2件进行检测的所有等可能结果有12种,抽到的都是合格品的情况有6种,∴抽到的都是合格品的概率为612=12.(3)根据题意,得3+x4+x=0.95,解得x =16,经检验,合适.答:x 的值大约是16. 11.C12.解:(1)a =1-(0.18+0.16+0.32+0.10)=0.24, b =50-(9+12+8+5)=16.(2)“一分钟跳绳”所占圆心角为0.16×360°=57.6°.(3)“至多有一名女生”包括两种情况:即“有1个女生”或者“有0个女生”. 男A 男B 男C 女D 女E 男A — (A ,B ) (A ,C ) (A ,D ) (A ,E ) 男B (B ,A ) — (B ,C ) (B ,D ) (B ,E ) 男C (C ,A ) (C ,B ) — (C ,D ) (C ,E ) 女D (D ,A ) (D ,B ) (D ,C ) — (D ,E ) 女E (E ,A ) (E ,B ) (E ,C ) (E ,D ) — 因此,至多有一名女生包括两种情况,共18种.故P (至多有一名女生)=1820=910=0.90.13.解:(1)甲同学的方案不公平.理由如下:小刚小明2 3 4 52 — (2,3) (2,4) (2,5)3 (3,2) — (3,4) (3,5)4 (4,2) (4,3) — (4,5)5 (5,2) (5,3) (5,4) —8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.(2)不公平.第六章基础题强化提高测试1.C 2.D 3.C 4.B 5.C 6.D7.92% 8.5 9.9.5 10.1311.解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4 2或3.(2)根据题意,得6+m 10=45.解得m =2.所以m 的值为2.12.解:(1)画树状图(如图D100)得图D100则共有16种等可能的结果.(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是616=38.13.解:(1)甲的成绩86×0.5+93×0.3+73×0.2=85.5(分). 乙的成绩81×0.5+95×0.3+79×0.2=84.8(分). ∴甲将被录用.(2)由频数分布直方图可知,85分及以上的共有7人, ∴甲能被录用,乙可能被录用,有可能不被录用.14.解:(1)乙的平均成绩是(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知甲的波动大于乙的波动,则s 2甲>s 2乙. (3)乙 甲15.解:(1)本次抽样的人数5÷10%=50(人). (2)喜欢篮球的人数50×40%=20(人). 如图D101.图D101(3)九年级最喜欢跳绳项目的学生有600×1550=180(人).。