高二数学参考答案
高二数学函数试题答案及解析
高二数学函数试题答案及解析1.若定义在R上的函数满足:,且对任意满足,则不等式的解集为().A.B.C.D.【答案】C【解析】构造,则;因为对任意满足,所以恒成立,即在上为减函数;又因为,所以的解集为.【考点】抽象不等式的解集.2.设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上为“凸函数”.已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为()A.4B.3C.2D.1【答案】C【解析】由题意,得,.令对上恒成立,∴,解得,∴,故选C【考点】1、利用导数求最值;2、二次函数的图象应用.3.已知函数在与时都取得极值.(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围.【答案】(1),函数的递增区间是与,递减区间是;(2)或.【解析】(1)先求出,进而得到,从中解方程组即可得到的值,然后再通过求出函数的增区间,通过求出函数的减区间; (2)要使对,不等式恒成立问题,则只需,从而目标转向函数的最大值,根据(1)中所得的值,确定函数在区间的最大值,进而求解不等式即可. 试题解析:(1)由,得,函数的单调区间如下表:-极大值¯极小值-所以函数的递增区间是与,递减区间是(2),当时,为极大值,而,则为最大值,要使恒成立,则只需要,得或.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.函数的最值与导数.4.已知函数的导函数的图象如图所示,则关于函数,下列说法正确的是 ( )A.在处取得最大值B.在区间上是增函数C.在区间上函数值均小于0D.在处取得极大值【答案】D【解析】因为函数的导函数的图象如图所示,导函数在,的值小于零,所以函数在,上递减;导函数在的值大于零,所以函数在递增.所以A,B,C选项都错了,所以选D.【考点】1.导函数的图像.2.导函数的几何意义.3.利用导数解决函数的性质.5.已知函数.(1)解关于的不等式;(2)若在区间上恒成立,求实数的取值范围.【答案】(1)当时,原不等式的解集为或;当时,解集为且;当时,解集为或;(2)的取值范围是.【解析】(1)本小题是含参数的一元二次不等式问题,求解时先考虑因式分解,后针对根的大小进行分类讨论,分别写出不等式的解集即可;(2)不等式的恒成立问题,一般转化为函数的最值问题,不等式即在上恒成立可转化为(),而函数的最小值可通过均值不等式进行求解,从而可求得的取值范围.试题解析:(1)由得,即 1分当,即时,原不等式的解为或 3分当,即时,原不等式的解为且 4分当,即时,原不等式的解为或综上,当时,原不等式的解集为或;当时,解集为且;当时,解集为或 6分(2)由得在上恒成立,即在上恒成立,所以() 8 分令,则 10分当且仅当等号成立,即故实数的取值范围是 12分.【考点】1.一元二次含参不等式;2.分类讨论的思想;3.分离参数法;4.均值不等式.6.设F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(1)>0.求证:a>0,且—2<<—1.【答案】主要求出F(0)和F(1)【解析】证明:由题意,又,所以.注意到,又,所以,即,又,,所以,即.综上:,且【考点】不等关系与不等式.点评:本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.7.若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为.【答案】【解析】根据题意,由于函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”,则可知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”则在给定区间是递减函数,则利用对称轴x=,开口向上,利用定义域和对称轴的关系可知,b的值为1,故可知答案为1.【考点】函数的单调性点评:主要是考查了函数的单调性的运用,属于基础题。
福建龙岩市一级校联盟2024年高二4月期中联考数学答案
龙岩市一级校联盟2023—2024学年第二学期半期考联考高二数学参考答案1.B (改编自《湘教版高中数学选择性必修》P3例2【详解】因为()2f x x x =−,所以()21101f =−=,()23336f =−=,故函数()f x 从1x =到3x =的平均变化率为()()31603312f f y x−∆−===∆−. 故选B . 2.D【分析】利用空间的坐标运算求解.【详解】由题可得BC 的中点坐标为()0,2,1,所以BC 故选D . 3.C【详解】由函数()()2'1ln f x xf x =+,可得()()1'2'1f x f x=+, 令1x =,可得()()12'11f f =+,解得()1'1f =−,所以()2ln f x x x =−+,()1'2f x x=−+,()3'22f =−.故选C . 4.A【详解】设事件A 为“李华拿到的两个青团子为同一种馅”,事件B 为“两个青团子都为肉馅”,则事件A 包含的基本事件的个数为()2314n A C =+=,事件AB 包含的基本事件的个数为()1n AB =,所以()P B A =()()14n AB n A =.故选A .5.B (改编自《湘教版高中数学选择性必修》P83第9题) 【详解】∵()1,1,2OP =,点Q 在直线OP 上运动, ∴可设(),,2OQ OPλλλλ== .又向量()1,2,3OA = ,()2,1,2OB =,∴()1,2,32QA λλλ=−−−,()2,1,22QB λλλ=−−− ,则()()()()()()21221322261610QA QB λλλλλλλλ⋅=−×−+−×−+−×−=−+ .易得当43λ=时,QA QB ⋅ 取得最小值23−.故选B .6.A (改编自《湘教版高中数学选择性必修二》P32练习第1题)【分析】根据给定函数()f x 的图象,确定函数()f x 的单调性,再探讨()f x 的正负及零点个数. 【详解】观察图象知,当0x <时,()f x 单调递减,()'0f x <,选项BD 不满足. 当0x >时,函数()f x 先递增,再递减,然后又递增,有一个极大值点和一个极小值点, 则()'f x 的值先为正,再为负,然后又为正,有两个不同的零点,A 满足,C 错误. 故选A .7.B (改编自《湘教版高中数学选择性必修二》P66例3)【详解】设AB a = ,AD b = ,1AA c = ,则11A B AB AA a c =−=−.又112A M MB =,所以()111133A a c M =− , ()()111111333D D A A b a c a M b M c =+=−+−=−−.因为11A A B BC a c A C D a c b =+=−+=−+ ,113A N NC =,所以()111144A A a b NC c ==−+ , 所以()()111111344D D A A b a c b a b c N N =+=−+−+=−−,所以1143D D M N = ,可知11D M N D ∥.又1D 是直线1D M 和1D N 的公共点,所以1D M 和1D N 共线,即M ,N ,1D 三点在一条直线上.又易知由M ,N ,1D 共线无法确定112A M MB = 且113A N NC =.故选B . 8.D【分析】A 选项,建立以A 为原点的空间直角坐标系,利用向量知识可知平面α可为与1AC 垂直的平面,即可判断选项正误;B 选项,由A 选项分析及线面角计算公式可判断选项正误;C 选项,由A 选项分析可表示出两种情况下M 的面积表达式,即可判断选项正误;D 选项,问题等价于判断M 内部最大圆直径的最大值是否大于1.2m .【详解】A 选项,如图,以A 为原点建立空间直角坐标系, 则()0,0,0A ,()1,0,0B ,()10,0,1A ,()0,1,0D ,()1,0,0AB =,()10,0,1AA = ,()0,1,0AD = .设平面α的法向量为(),,n x y z =,因为平面α与正方体的每条棱所成的角均相等, 所以1sin cos ,cos ,cos ,n AB n AA n AD θ=<>=<>=<>由对称性,不妨取1x y z ===,则法向量n可为()1,1,1,又()11,1,1A C = ,所以平面α可为与1AC 如图1,连接1A B ,BD ,1DA ,AC .图1因为1CC ⊥平面ABCD ,BD ⊂平面ABCD ,所以1BD CC ⊥,又BD AC ⊥,1AC CC C = ,AC ,1CC ⊂平面1ACC ,所以BD ⊥平面1ACC , 又1AC ⊂平面1ACC ,所以1AC BD ⊥,同理可得11AC A B ⊥.又BD ,1A B ⊂平面1A BD ,1A B BD B = ,所以1AC ⊥平面1A BD , 即平面α可为与平面1A BD 平行的平面.当平面α与1AA (不含A )相交时,M 为与1A BD ∆相似的正三角形; 当平面α与11A B (不含1A ,1B )相交时,M 为如图2所示的六边形;图2当平面α与11B C (不含1C )相交时,M 为与1A BD ∆相似的正三角形. 所以M 可能为三角形或六边形,故A 错误.B 选项,由A 选项分析可知,sin cos θθ⇒,故B 错误. 选项,由A 选项分析可知,当平面α过1A ,B ,D 或1B ,1D ,C 时,所得正三角形的面积最大,由题可得其边长为2. 当M 为六边形时,如图3所示,11RS B D ∥,1RT D C ∥,1160B D C ∠=°,图3结合图形可知120SRT ∠=°,且由题可知六边形RSUVWT 为中心对称图形. 设其对称中心为O ,则四边形RSOT ≌四边形WTOV ≌四边形UVOS , 则六边形的面积为相应四边形面积的3倍.设RS ,RT 的中点分别为F ,E ,连接EF ,OE ,OF . 因为OS OR OT ==,所以90OER OFR ==°∠∠,四边形RSOT 的面积为四边形REOF 面积的2倍,则六边形的面积为四边形REOF 面积的6倍. 设1A R x =,11B R x =−,()0,1x ∈,由题结合图形可知,RS =,)1RT x =−,RF =RE =. 在△EFR中,由余弦定理得EF=注意到90REO RFO ∠=∠=°,180REO RFO °∠+∠=,则R ,E ,O ,F 四点共圆,则△REF 外接圆的直径等于OR ,由正弦定理可得sin120EFOR ==°,)1OE x +,)2OF x −.六边形的面积)221113622122222S OE RE OF FR x x x =×⋅+⋅−++−−+当且仅当12x =时,等号成立.>,所以M2,故C 错误. D 选项,先判断M 内部的最大圆直径的最大值是否超过1.2m . 当M 为正三角形时,M 内部的最大圆为三角形的内切圆.易知当平面α过1A ,B ,D 或1B ,1D ,C 时,所得内切圆半径最大. 设此时内切圆的半径为r ,三角形的面积为S ',周长为C ,则内切圆的直径42'S rC==. 当M 为六边形时,M 内部的最大圆半径1r 满足{}1min ,r OE OF =,由C选项分析,可知,))111,212,2r x x x x +=−>≤,则当12x =时,1r此时M因为22.4 5.766=<,1.2>,即正方体1111ABCD A B C D −内可以放下直径为1.2m 的圆,故D 正确. 故选D .图4【点睛】本题首先需要通过向量方法,得到满足题意的平面α的具体特征,后利用几何知识,结合正余弦定理可得图形M 的面积的最大值及其内部最大圆的直径. 9.AC【详解】由题知()231'f x x =−,令()0'f x >,得x >或x <,令()0'f x <,得x <<所以()f x 在 上单调递减,在, −∞ , +∞上单调递增,所以x =是极值点,故A 正确.因为10f +>,10f −>,()250f −=−<,所以()f x 在, −∞ 上有一个零点.当x ()0f x f >≥,即()f x 在 +∞ 上无零点. 综上,()f x 有一个零点,故B 错误. 令()3h x x x =−,该函数的定义域为R ,()()()()33h x x x x x h x −=−−−=−+=−, 则()h x 是奇函数,点()0,0是()h x 图象的对称中心, 将()h x 的图象向上移动一个单位长度得到()f x 的图象,所以点()0,1是曲线()y f x =的对称中心,故C 正确. 令()22'31x f x =−=,可得1x =±,又()()111f f =−=,所以当切点为()1,1时,切线方程为21y x =−,当切点为()1,1−时,切线方程为23y x =+,故D 错误. 故选AC . 10.CD【分析】根据已知条件,结合互斥事件的概念和条件概率公式,即可求解. 【详解】由题意可知1A ,2A ,3A 是两两互斥的事件,故A 正确. ∵()1310P A =,()221105P A ==,()312P A =, ∴()()()2211335111115P BA P B A P A ×===,故B 正确. 由()()()111344101131110P BA P B A P A ×===, 得()()()()1234313133111051121110P B P BA P BA P BA =++=×+×+×=, ()()1P B A P B ≠,则事件1A 与事件B 不独立,故CD 错误.故选CD .11.ACD (改编自《湘教版高中数学选择性必修二》P83练习第12题)【详解】以点E 为坐标原点,EF ,EH ,EA 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则()0,0,2A ,()2,0,2B ,()2,2,2C ,()0,2,2D ,()0,0,0E ,()2,0,0F ,()2,2,0G ,()0,2,0H ,()1,1,2K ,()2,0,1M ,()1,0,0N .A :()2,0,0AB = ,()0,2,0AD =,()0,0,2AE=− ,()1111,1,1222KM AB AD AE −−−+,∴A 正确.B :2KM AB ⋅=,∴B 错误. C :KM =C 正确.D :因为()1,0,1MN =−− ,则1010KM MN ⋅=−++=,所以KM MN⊥,KM =MN =KMN的面积12KMN S KM MN ∆=⋅=D 正确. 故选ACD . 12.724【分析】根据题意分别求出()P B A ,()P A ,进而利用()()()P B P AB P AB =+即可求出结果.【详解】因为()()113P B A P B A =−=,()()112P A P A =−=,所以()()()()()()()11117242324P B P AB P AB P A P B A P A P B A =+=⋅+⋅=×+×=. 13.2023!(改编自《湘教版高中数学选择性必修二》P51第15题【详解】设()()()()()1232023g x x x x x =−−−− ,则()()()2024f x g x x =−, ()()()()()20242024'''f g x g x x x =−+−,()()()()'2024'20242024202420242023!f g g =−+=.14.2【分析】根据题意结合圆柱以及球的体积公式表示出l ,r 的关系式,确定r 的取值范围,利用面积确定总建造费用与半径的函数关系式,再利用导数确定总建造费用最少时r 的值. 【详解】设该建筑的容积为3m V ,由题意知2323Vr l r ππ=+,又803V π=,所以322228022403333V r r l r r r r ππ− ==−=−. 由于83l r ≥,即2240833r r r − ≥,因此02r <≤. 设该建筑的总建造费用为y 万元,则()2222222401602323623213y rl r c r r r r c r c r r r ππππππππ =×++×=×−++=−+,(]0,2r ∈,于是()()32222116080'22121c y c r r r r c πππ−=−−=− −,由于1114c <≤,所以1608080921c <−≤. 当(]0,2r ∈时,'0y <,所以y 在(]0,2上单调递减, 故当2r =时,建筑的总建造费用y 取得最小值.【点睛】解答本题的关键是由题意求出建筑的总建造费用的表达式,进而利用导数求解其最值问题. 15.解:(1)因为2BD DC =,所以()1133BD BC OC OB ==− , 所以()121333OD OB BD OB OC OB OB OC =+=+−=+.因为点E 为AD 的中点,所以11112111112222332362OE OA OD OA OB OC OA OB OC =+=++=++=1136a b c ++.(2)因为BC OC OB =− ,111236OE OA OB OC =++ ,所以()111236OE BC OA OB OC OC OB ⋅=++⋅−221111126623OC OA OC OB OC OB OA OB =⋅+⋅+−⋅−2211111111122222222226262233=×××+×××+×−×××−×=−. 16.解:(1)从甲箱中任取2个产品的事件数为2887282C ×==,这2个产品都是次品的事件数为233C =. ∴这2个产品都是次品的概率为328. (2)设事件A 为“从乙箱中取出的1个产品是正品”事件1B 为“从甲箱中取出的2个产品都是正品”事件2B 为“从甲箱中取出1个正品和1个次品”,事件3B 为“从甲箱中取出的2个产品都是次品”,则事件1B ,事件2B ,事件3B 两两互斥.()25128514C P B C ==,()11532281528C C P B C ==,()23328328C P B C ==, ()123P A B =,()259P A B =,()349P A B =, ∴()()()()()()()1122335215534714328928912P A P B P A B P B P A B P B P A B =++=×+×+×=. 17.(1)解:由函数()21x ax f x e=−,可得()()2'x ax f x e x −=,所以()1'1a f e =−=,可得a e =−,所以()112af e=−=,即切点为()1,2, 所以切线方程为21y x −=−,即1y x =+.(2)证明:当1a =时,()21x x f x e=−,可得()()2'xx x f e x −=. 当()0,2x ∈时,()'0f x <,()f x 单调递减; 当()2,x ∈+∞时,()0'f x >,()f x 单调递增.所以()f x 的最小值为()24102f e=−>, 所以当0x >时,()0f x >成立.(3)解:对于函数()21x x f x e =−,a R ∈,可得()()2'xax f x e x −=, ①若0a =,可得()1f x =,此时()f x 无极值点,不符合题意(舍去).令()'0f x =,解得0x =或2x =.②若0a >,则当(),0x ∈−∞时,()0'f x >,()f x 单调递增, 当()0,2x ∈时,()'0f x <,()f x 单调递减,当()2,x ∈+∞时,()0'f x >,()f x 单调递增,所以当2x =时,()f x 取得极小值()2421a f e=−, 令2413a e−=−,解得2a e =. ③若0a <,则当(),0x ∈−∞时,()'0f x <,()f x 单调递减,当()0,2x ∈时,()0'f x >,()f x 单调递增,当()2,x ∈+∞时,()'0f x <,()f x 单调递减,所以当0x =时,()f x 取得极小值()103f ≠−,不符合题意(舍去). 综上,实数a 的值为2e .18.(改编自《湘教版高中数学选择性必修二》P112第19题)(1)证明:以D 为坐标原点,直线DA ,DC ,1DD 分别为x ,y ,z 轴,建立空间直角坐标系.设AE x =,02x <<,则()11,0,1A ,()10,0,1D ,()1,,0E x ,()1,0,0A ,()0,2,0C .因为()()111,0,11,,10DA D x E ⋅=⋅−= ,所以11DA D E ⊥ , 所以11D E A D ⊥.(2)解:因为E 为AB 的中点,所以()1,1,0E ,从而()11,1,1D E =− ,()1,2,0AC =− ,()11,0,1AD =− .设平面1ACD 的法向量为(),,n a b c = ,则100n AC n AD ⋅= ⋅=, 即200a b a c −+= −+=,得2a b a c = = , 从而()2,1,2n = ,所以点E 到平面1ACD 的距离1212133D E n d n⋅+−== . (3)解:设这样的点M 存在,且AM x =,02x <<,平面1D MC 与平面AMC 所成的角为6π,则()1,,0M x ,()10,0,1D ,()0,2,0C ,()1,2,0CM x =− ,()10,2,1CD =− .设平面1D MC 的法向量为()',','m a b c = ,则()1'2'02''0m CM a x b m CD b c ⋅=+−= ⋅=−+= , 取'1b =,得()2,1,2mx =− . 平面AMC 的一个法向量(0,0,1p =, 所以cos 6m p m p π⋅== , 由02x <<,解得2x =.所以满足题意的点M 存在,此时2AM =. 19.解:(1)如图,设1AA ,1BB ,1CD ,1EF 都与MN 垂直,1A ,1B ,1D ,1F 是相应垂足.由条件知, 当'40O B =时,31140640160800BB =−×+×=,则1160AA =. 由21'16040O A =,得'80O A =.所以''8040120AB O A O B =+=+=(米).(2)以O 为原点,OO '为y 轴建立平面直角坐标系xOy ,如图所示.设()2,F x y ,()0,40x ∈,则3216800y x x =−+, 3211601606800EF y x x =−=+−. 因为80CE =,所以'80O C x =−.设()180,D x y −,则()2118040y x =−, 所以()221111601608044040CD y x x x −−−−+. 记桥墩CD 和EF 的总造价为()f x 万元,则()3213116064800240f x k x x k x x=+−+−+ 321316080080k x x =−+(040x <<). ()()233320800800'40f k k x x x x x =−=−, 令()0'f x =,得20x =. 当x 变化时,()f x ,()'f x 的变化情况如下:x ()0,2020 ()20,40 ()'f x− 0 +()f x 单调递减 极小值 单调递增 所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O 'E 为20米时,桥墩CD 和EF 的总造价最低.。
高二数学(上)参考答案
2
) (3) a = 2 1, b = 2 2 (4)两次取等号的条件不相同(5)不充足,应研究
方程 ya 2 + (1 y ) a + 1 = 0 何时至少有一根在 (0,1) 内 20.(1)由 12 + 2 5n + 12n > 30 n > 3 (2)由 12 + 2 5n + 12n 4n ≤ 30
30 o 16.A 17.D 18.
1)C 9)
2)A
3)B
5 y +1 x 3 , y + 1 = ( x 3) = 2 2 2
1 3 或 2,-1,2 2
11)3x+2y-12=0 16) y =
12) 3x-4y-11=0 13) 4x-y+6=0 14) (0,0)或(10,24) 15) x+y=0
1.令 a = 10. (1) 由 A + B >
π
π
2
2
> A>
π
2
B>0
练测(5) 练测
1.D 2.D 3.C 4.D 5.A 6.A 7.B 8.C 9. (∞,0) U (1,+∞) 10. 6;1 11. ( ,2) U ( 2,3) 12.
2 2
a 3 ≤ n ≤ 27 21.(1) y = s ( + bv), v ∈ (0, c] (2) 当 v
ab ≤c 时,行驶速度应为 b
v=
ab ;当 b
ab > c 时 , 行 驶 速 度 应 为 v = c 22.(1) 当 0 < a < 1 时 , 解 集 为 b
高二数学课后习题答案
本题满分12分一块形状为直角三角形的铁皮直角边长分别为40cm与60cm现将它剪成一个矩形并以此三角形的直角为矩形的一个角问怎样剪法才能使剩下的残料最少
1.3.1.1 单调性 x2-4x+6,x≥0, 9.(09·天津文)设函数f(x)= 则不等式f(x)>f(1)的解集是( ) x+6,x<0, A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 2[答案] A [解析] ∵f(1)=3,∴当x≥0时,由f(x)>f(1) 得x-4x+6>3, ∴x>3或x<1.又x≥0,∴x∈[0,1)∪(3,+∞).当x<0时,由f(x)>f(1)得x+6>3∴x>-3, ∴x∈(-3,0).综上可得x∈(-3,1)∪(3,+∞),故选A. 10.设(c,d)、(a,b)都是函数y=f(x)的单调减区间,且x1∈(a,b),x2∈(c,d),x1f(x1)与f(x2)的大小关系是( ) A.f(x1)f(x2) C.f(x1)=f(x2) D.不能确定 [答案] D [解析] 函数f(x)在区间D和E上都是减函数(或都是增函数),但在D∪E上不一定单调减(或增). 如图,f(x)在[-1,0)和 [0,1]上都是增函数,但在区间[-1,1]上不单调. 16.讨论函数y1-x在[-1,1]上的单调性. [解析] 设x1、x2∈[-1,1]且x1x1≥0,1≥x2>0,x1f(x2),∴f(x)在[0,1]上为减函数, 1-x11-x2 当-1≤x1<0,-1a2 17.求证:函数f(x)=x+a>0),在区间(0,a]上是减函数. x a2(x-x)(x-x)(xx-a2)a2a2 [解析] 设0<x1<x2≤a,f(x2)-f(x1)=(x2+-(x1+)=(x2-x1)+x2x1x1x2x1x2 (x-x)(xx-a2)a22∵0<x1<x2≤a,∴0<x1x2<a,∴0,∴f(x2)<f(x1),∴f(x)=x+a>0)在(0,a]上是减函数. x1x2x 1.3.1.2 最值 2.函数y=x|x|的图象大致是( ) 2 x x≥0[答案] A [解析] y= 2,故选A. -x x<0 4.已知f(x)在R上是增函数,对实数a、b若a+b>0,则有( ) A.f(a)+f(b)>f(-a)+f(-b) B.f(a)+f(b)<f(-a)+f(-b) C.f(a)-f(b)>f(-a)-f(-b) D.f(a)-f(b)<f(-a)+f(-b) [答案] A [解析] ∵a+b>0 ∴a>-b且b>-a,又y=f(x)是增函数 ∴f(a)>f(-b) 且f(b)>f(-a)故选A. 8.函数y=|x-3|-|x+1|有( ) A.值4,最小值0 B.值0,最小值-4 C.值4,最小值-4 D.值、最小值都不存在 -4 (x≥3) [答案] C [解析] y=|x-3|-|x+1| = 2-2x (-1<x<3) 4 (x≤-1) m10.(08·重庆理)已知函数y=1-x+x+3的值为M,最小值为m,则的值为( ) M 1123A. C. 4222 [答案] C [解析] ∵y≥0,∴y=1-x+x+3 4+2(x+3)(1-x) (-3≤x≤1), m2∴当x=-3或1时,ymin=2,当x=-1时,ymax=22,即m=2,M=2,∴M2 12.已知函数f(x)在R上单调递增,经过A(0,-1)和B(3,1)两点,那么使不等式|f(x+1)|<1成立的x的集合为________. [答案] {x|-113.如果函数f(x)=-x2+2x的定义域为[m,n],值域为[-3,1],则|m-n|的最小值为________. [答案] 2 [解析] ∵f(x)=-x2+2x=-(x-1)2+1,当m≤x≤n时,-3≤y≤1,∴1∈[m,n], 又令-x2+2x=-3得,x=-1或x=3,∴-1∈[m,n]或3∈[m,n], 要使|m-n|最小,应取[m,n]为
高二数学试题答案及解析
高二数学试题答案及解析1.在求由及围成的曲边梯形的面积时,在区间上等间隔地插入个分点,分别过这些分点作x轴的垂线,把曲边梯形分成个小曲边梯形,下列说法中正确的是( )A.个小曲边梯形的面积和等于B.个小曲边梯形的面积和小于C.个小曲边梯形的面积和大于D.个小曲边梯形的面积和与之间的大小关系无法确定【答案】A【解析】个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为,∴A正确,B,C,D错误,故选A.【考点】积分求曲边梯形的面积.2.汽车以速度v做匀速直线运动时,经过时间t所行驶的路程s=vt.如果汽车做变速直线运动,在时刻t的速度为v(t)=t2+2(单位:km/h),那么它在1≤t≤2(单位:h)这段时间行驶的路程是多少?【答案】【解析】将区间[1,2]等分成n个小区间,第i个小区间为,∴si=,sn==3n+[02+12+22+…+(n-1)2]+[0+2+4+6+…+2(n-1)]=3+.∴s=sn==.∴这段时间行驶的路程为.【考点】定积分的概念.3.若函数,则等于()A.1B.0C.D.【答案】C【解析】 ,所以选C.4.已知复数,则( )A.B.的实部为1C.的虚部为-1D.的共轭复数为1+i【答案】C【解析】, 的模为 ,的实部为 ,的虚部为,的共轭复数为,故选C. 5.已知复数满足,则A.B.C.D.【答案】A【解析】根据题意,由于复数满足,则可知,故可知答案为A.【考点】复数的运算点评:主要是考查了复数的计算,属于基础题。
6.用数学归纳法证明,则当时左端应在的基础上增加(). A.B.C.D.【答案】D【解析】当时,等式左端,当时,等式左端,增加了项,故选D.【考点】数学归纳法.7.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.8.若函数,当时,函数有极值.(1)求函数的解析式;(2)若方程有3个不同的根,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】先根据题目条件求出的值,然后再利用导数的几何意义即可求得曲线在点处的切线方程;(2)先求出函数单调区间以及各个极值,再采用数形结合的方法就可求出方程有个不同的根时,实数的取值范围.试题解析:解(1),由题意得,解得故所求函数的解析式为.,,在点处的切线方程为:,即.(2)由(1)可得,令,得或.当变化时,,的变化情况如下表:因此,当时,有极大值,当时,有极小值,所以函数的图象大致如图所示.若有个不同的根,则直线与函数的图象有个交点,所以.【考点】1、导数在函数研究中的应用;2、极值,单调区间,函数的零点.9.______________【答案】【解析】由定积分公式,应填答案。
重庆市育才中学2024-2025学年度高2026届高二上学期10月月考数学试题答案
重庆市育才中学校高2026届高二(上)十月月考数学试题参考答案一、选择题:本题共8个小题,每小题5分,共40分.1-4:ADBB5-8:CCBD8【解析】:如图所示,取PA 中点为O ,由于PB AB ⊥,PC AC ⊥,则OB OC OP OA ===,故O 是三棱锥的外接球的球心,易知4PA =,PB PC ==.过点P 作PH ABC ⊥平面,连接AH ,易知AH 过BC 中点M ,连接PM .因为AM =PM =,4PA =,则直线PA 与平面ABC 所成角PAM ∠,由余弦定理可得22243cos3PAM +-∠==,故选D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.三、填空题:本题共3个小题,每小题5分,共15分.2121==+OP d d ;9)8()8(88221,82,82222122212221=-+-≤--=⨯=-=-=d d d d BD AC S d BD d AC ABCD 当且仅当21d d =时取得等号.四、解答题:本题共5小题,15题13分,16、17题15分,18、19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.15.(1)过点(5,1)A -,点(3,7)B 的直线的两点式方程为:157135y x -+=-+,......................................................................................(2分)整理得:34190x y -+=∴直线l 的方程为34190x y -+=..........................................................................................(4分)(2)设线段MN 的中点为P ,则由(1,0)M ,(3,2)N 有(2,1)P ,且直线MN 的斜率为20131MN k -==-,因此线段MN 的垂直平分线l '的方程为:1(2)y x -=--,即30x y +-=,.........................(7分)由垂径定理可知,圆心C 也在线段MN 的垂直平分线上,则有301341904x y x x y y +-==-⎧⎧⇒⎨⎨-+==⎩⎩∴圆C 的坐标是(1,4)-;..................................................(9分)圆的半径22(11)(40)25r MC ==--+-=,................................................................(11分)∴圆C 的标准方程是22(1)(4)20x y ++-=.....................................................................(13分)16.(1)连接1BC ,设11BC B C O = ,连接OD ,由三棱柱的性质可知,侧面11BCC B 为平行四边形,∴O 为1BC 的中点,........................................(2分)又∵D 为AB 中点,∴在1ABC 中,1//OD AC ,又∵OD ⊂平面1CDB ,1AC ⊄平面1CDB ,..................................................(5分)∴1//AC 平面1CDB ................................................................................(7分)(2)由题意可知1,,CA CB CC 两两垂直故以1,,CA CB CC 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()0,0,0C ,()6,0,0A ,()16,0,8A ,()3,4,0D ,()10,8,8B .所以()10,0,8AA = ,()3,4,0CD = ,()10,8,8CB =,...................................(9分)设平面1CDB 的法向量为n(),,x y z =,则1340880C y CBD n x n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 令4x =,得()4,3,3n =- ;........................................................................(12分)设1AA 与平面1CDB 所成角为θ,则sin θ=111cos ,n AA n AA n AA ⋅===所以1AA 与平面1CDB 所成角的正弦值为33434..........................................................................(15分)17.(1)由BC BA ==90CBA ∠=︒,所以2AC =.取AC 的中点O ,连接PO ,BO ,由题意,得112PO BO AC ===,再由PB 222PO BO PB +=,即PO BO ⊥........(3分)由题易知PO AC ⊥,又AC BO O ⋂=,,BO AC ⊂面ABC ,所以⊥PO 平面ABC ,............(5分)又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC ..........................................................(6分)(2)由(1)可知PO OB ⊥,PO OC ⊥,又OB AC ⊥,故以OC ,OB ,OP 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()1,0,0C ,()0,1,0B ,()1,0,0A -,0,0,1.所以()1,0,1AP = ,()1,1,0BC =- ,()1,0,1PC =- ,...........................(8分)令(),0,AM AP λλλ==,()01λ<<所以()1,0,M λλ-.所以()2,0,MC λλ=--.设平面MBC 的法向量为m()111,,x y z =,则()1111020BC m x y MC m x z λλ⎧⋅=-=⎪⎨⋅=--=⎪⎩ 令11x =,得m 21,1,λλ-⎛⎫= ⎪⎝⎭;..................................................(10分)设平面PBC 的法向量为()222,,n x y z =,222200BC n x y PC n x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令21x =,得()1,1,1n = ;...................................................................(12分)则cos ,n m n m n m⋅=79=,设2t λλ-=,()1,t ∞∈+,则上式可化为2115450t t --=,..................................................(14分)即()()51110t t -+=,所以5t =(111t =-舍去),所以25λλ-=,解得13λ=.....................(15分)18.解:(1)设动点M 坐标为),(y x ,由MA MO 21=,即2222)3(21y x y x ++=+,.....................................................................................(4分)整理得4)1(22=+-y x ......................................................................................(6分)(2)设直线l 的方程为2-=kx y ,Q P ,两点的坐标分别为),(),(2211y x y x ,联立⎩⎨⎧-==+-24)1(22kx y y x ,整理得01)24()1(22=++-+x k x k (*)..........................................(9分)因为(*)式的两根为21,x x ,所以121222421,11k x x x x k k ++==++,........................................(10分)0)1(4)24(22>+-+=∆k k ,即34-<k 或0>k .........................................(11分)则2121212121212(2)(2)(1)2()43OP OQ x x y y x x kx kx k x x k x x ⋅=+=+--=+-++=-,..............(13分)将121222421,11k x x x x k k ++==++代入上式,化简解得2=k .........................................(15分)而2=k 满足0>∆,故直线l 的方程为)1(2-=x y .因为圆心)0,1(M 在直线l 上,所以4=PQ ...................................................................(17分)19.解:(1)在EB D '∆中,易得4B E '=,33B D '=,7DE =,由余弦定理可得2223cos 22B E B D DE DB E B E B D ''+-'∠=='',从而6DB E π'∠=..............(4分)提示:可建立空间坐标系利用向量求夹角的余弦值为32,从而得出6DB E π'∠=.(2)(i )曲线Γ是椭圆...............................................................................................(6分)因为二面角B AC D --为直二面角,且90ACB ︒∠=,所以B C α'⊥,如图1,不妨取AC 的中点为O ,以OD 为x 轴,OC 为y 轴,过点O 作B C '的平行线为z 轴建立空间直角坐标系.则点(0,3,23)B ',(0,1,0)E ,设(,,0)P x y ,(0,2,23)B E '=-- ,(,3,23)B P x y '=--,...........(8分)图1由(1)可知6PB E DB E π''∠=∠=,从而222183cos 24(3)12B E B P y PB E B E B P x y ''⋅-+'∠===''+-+ ,...............(10分)化简可得:22169x y +=,即为Γ的方程.......................................................(12分)说明:不同的建系可能得到不同的方程,只要得出椭圆的方程即可得分.(ii )将立体几何平面化,只需研究平面α上几何关系.不防将(i )中椭圆所在坐标系逆时针旋转90︒得到图2,在新坐标系下椭圆方程为22196x y +=,直线l 的方程为3530x y +-=,引理:点11(,)M x y 与直线0mx ny c ++=上一动点22(,)N x y 的最小曼哈顿距离为{}11min (,)max ,mx ny cd M N m n ++=.证明:如图3,当m n >,即12MM MM <时,由于111111(,)d M N MN N N MN N M MM =+≥+=,当点N 在点1M 处取得等号成立,即111min 1(,)mx ny c ny cd M N x m m+++=+=,同理可以得出m n ≤时的最小曼哈顿距离,综上{}11min (,)max ,mx ny cd M N m n ++=得证.设点(3cos ,6sin )M θθ.由引理可知:{}min 35333cos 6sin 53(,)5113max3,1M M x y d M N θθ+-+-==≥-,所以(,)d M N 的最小值为511-.........................................................(17分)图2图3。
天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)
天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
浙江名校协作体2024年高二上学期开学考试数学试题参考答案
2024学年第一学期浙江省名校协作体联考参考答案高二年级数学学科首命题:学军中学 次命题兼审校:温岭中学 审核:春晖中学15.(Ⅰ)∵0a <,()()+20a x a x +> 所以()()20x a x ++<,解得2x a −<<− 所以{}2A x x a =−<<−.............5分 (Ⅱ){}12B x x =≤<①当0a <时,B A ⊆因为,所以2a −≥,得2a ≤−;............ 7分 ②当0a =时A =Φ不合;.............9分③当02a <≤时,{}2A x x x a =<−>−或成立,所以B A ⊆成立;.............11分 ④当2a ≥时时,{}2A x x a x =<−>−或成立,所以B A ⊆成立; 20a a ≤−>综合得或 ...............................13分16.解析:(Ⅰ)由已知,志愿者服务时间不低于18小时的概率为1(0.020.06)40.68−+⨯=. ------4分(Ⅱ)由频率分布直方图可看出最高矩形底边上的中点值为20,故众数是20;--------7分 由(0.020.060.0750.025)41a ++++⨯=,解得0.07a =, ∵(0.020.06)40.32+⨯=,且(0.020.060.075)40.62++⨯=,平均数为(0.02120.06160.075200.07240.02528)420.32⨯+⨯+⨯+⨯+⨯⨯=;--------11分 (Ⅲ)又∵(0.020.060.075)40.62++⨯=,(0.020.060.0750.07)40.9+++⨯=, ∴第75%位数位于22~26之间,设第75%位数为y , 则220.750.6226220.90.62y −−=−−,解得132223.867y =+≈.----------------15分17.(Ⅰ)解析:()2sin()6f x x π=+,----------------------------3分32,2622x k k πππ⎡⎤+∈π+π+⎢⎥⎣⎦令得42233k x k ππππ+≤≤+, ()f x 的单调减区间为4[2,2],33k k k Z π+ππ+π∈-----------------6分(Ⅱ)解析:由题意得()2sin(2)6g x x π=−,则6()2sin(2)65g παα=−=−--------8分3sin(2)65πα−=−,又因为5(,)612ππα∈−,则22(,)623πππα−∈−所以4cos(2)65πα−=------------------------------------------------11分cos 2cos(2)663cos(2)cos sin(2)sin 666610ππααππππαα=−++=−−−=----------------------15分18.(Ⅰ)解析:由题意,在三角形PAB 与三角形PAD 中用余弦定理可得:AB AD ==分取BD 中点M ,连,AM PM ,由AB AD =,PB PD =,可得BD AM ⊥,BD PM ⊥,故BD ⊥平面APM ,因为AP APM ⊂平面,所以BD PA ⊥-----------4分(Ⅱ)因为BD ⊥平面APM ,所以平面PAM ⊥平面ABCD ,故点P 在平面ABCD 上的投影在两平面的交线AM 上,所以PAM ∠为所求线面角,-----------5分在Rt PBD ∆中,有BM DM PM ===;在Rt ADM ∆中,可得AM =分故在三角形PAM中:222cos 2PA AM PM PAM PA AM +−∠==⋅sin PAM ∠=,分(Ⅲ)解析:因为平面PAM ⊥平面ABCD ,故点,,,P A M C 四点共面,所以点,,A M C 三点共线,-------------------------------------------------10分所以在PAC ∆中,cos PAC ∠=,所以2222cos 9PC PA AC PA AC PAC =+−⋅⋅∠=,即2369AC AC +=,解得AC =或AC =分若AC =,则四边形ABCD为凹四边形,矛盾. 所以AC =---------------13分 因为,所以12ABCD S AC BD =⋅=四边形分所以1sin 3P ABCD ABCD V S PA PAM −=⋅⋅⋅∠=四棱锥四边形分19.(Ⅰ)解析:是.理由如下:------------------------------------1分281616lnln16ln ln log log ln 2ln 8l 160,0,16()2l ()n n 8x x x x xf f x x x x x ∀>=⋅=⋅=>=⋅-----------------------3分 故()2816log log f x x x=⋅是“反比例对称函数”.--------------- -------4分 (Ⅱ)解析:()()(),(0,)h x f x g x x =−∈+∞设, 由(Ⅰ)知16()()f f x x =,验证知16()()g g x x= 故16()()h x h x=.--------------------------------------------------------6分 由题意函数()f x 与()g x 的图像恰有一个交点,即()h x 恰有一个零点,故由对称性零点只能为4.-----------------------------------------------7分 由(4)0h =,得203m =.----------------------------------------8分 下检验此时()h x 恰有一个零点.由对勾函数性质知,()g x 在(]0,4上单调递减,[)4,+∞上单调递增.()ln (ln16ln )ln 2ln 8x x f x −=,设ln u x =,()(ln16)ln 2ln 8u u f x −=,()f x 关于u 在(]0,ln 4上单调递增,[)ln 4,+∞上单调递减,因此()f x 在(]0,4上单调递增,[)4,+∞上单调递减. 故()h x 在(]0,4上单调递增,[)4,+∞上单调递减.故此时()h x 恰有一个零点4.----------------------------10分注:充分必要性步骤交换亦可。
山西省运城市20232024学年高二下学期期末考试数学含答案(可编辑)
运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。
答案一律写在答题卡上。
注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4 保持卡面清洁,不折叠,不破损。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。
高二数学课后练习题及答案
高二数学课后练习题及答案高二数学课后练习题及答案选修2-2 1.1 第3课时导数的几何意义一、选择题1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()A.f(x0)0B.f(x0)0C.f(x0)=0D.f(x0)不存在[答案] B[解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-120.故应选B.2.曲线y=12x2-2在点1,-32处切线的倾斜角为()A.1B.4C.544[答案] B[解析] ∵y=limx0 [12(x+x)2-2]-(12x2-2)x=limx0 (x+12x)=x切线的斜率k=y|x=1=1.切线的倾斜角为4,故应选B.3.在曲线y=x2上切线的倾斜角为4的点是()A.(0,0)B.(2,4)C.14,116D.12,14[答案] D[解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14.4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为()A.y=3x-4B.y=-3x+2C.y=-4x+3D.y=4x-5[答案] B[解析] y=3x2-6x,y|x=1=-3.由点斜式有y+1=-3(x-1).即y=-3x+2.5.设f(x)为可导函数,且满足limx0 f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为()A.2B.-1C.1D.-2[答案] B[解析] limx0 f(1)-f(1-2x)2x=limx0 f(1-2x)-f(1)-2x=-1,即y|x=1=-1,则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线()A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交[答案] B[解析] 由导数的几何意义知B正确,故应选B.7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f(5)分别为()A.3,3B.3,-1C.-1,3D.-1,-1[答案] B[解析] 由题意易得:f(5)=-5+8=3,f(5)=-1,故应选B.8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为()A.(1,0)或(-1,-4)B.(0,1)C.(-1,0)D.(1,4)[答案] A[解析] ∵f(x)=x3+x-2,设xP=x0,y=3x20x+3x0(x)2+(x)3+x,yx=3x20+1+3x0(x)+(x)2,f(x0)=3x20+1,又k=4,3x20+1=4,x20=1.x0=1,故P(1,0)或(-1,-4),故应选A.9.设点P是曲线y=x3-3x+23上的任意一点,P点处的切线倾斜角为,则的取值范围为()A.0,23B.0,56C.23D.2,56[答案] A[解析] 设P(x0,y0),∵f(x)=limx0 (x+x)3-3(x+x)+23-x3+3x-23x=3x2-3,切线的斜率k=3x20-3,tan=3x20-3-3.0,23.故应选A.10.(2016福州高二期末)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,4],则点P横坐标的取值范围为()A.[-1,-12]B.[-1,0]C.[0,1]D.[12,1][答案] A[解析] 考查导数的几何意义.∵y=2x+2,且切线倾斜角[0,4],切线的斜率k满足01,即01,-1-12.二、填空题11.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为________.[答案] 4x-y-1=0[解析] ∵f(x)=x2+3,x0=2f(2)=7,y=f(2+x)-f(2)=4x+(x)2yx=4+x.limx0 yx=4.即f(2)=4.又切线过(2,7)点,所以f(x)在(2,f(2))处的切线方程为y-7=4(x-2) 即4x-y-1=0.12.若函数f(x)=x-1x,则它与x轴交点处的切线的方程为________.[答案] y=2(x-1)或y=2(x+1)[解析] 由f(x)=x-1x=0得x=1,即与x轴交点坐标为(1,0)或(-1,0).∵f(x)=limx0 (x+x)-1x+x-x+1xx=limx0 1+1x(x+x)=1+1x2.切线的斜率k=1+11=2.切线的方程为y=2(x-1)或y=2(x+1).13.曲线C在点P(x0,y0)处有切线l,则直线l与曲线C的公共点有________个.[答案] 至少一[解析] 由切线的定义,直线l与曲线在P(x0,y0)处相切,但也可能与曲线部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为________.[答案] 3x-y-11=0[解析] 设切点P(x0,y0),则过P(x0,y0)的切线斜率为,它是x0的函数,求出其最小值.设切点为P(x0,y0),过点P的切线斜率k= =3x20+6x0+6=3(x0+1)2+3.当x0=-1时k有最小值3,此时P的坐标为(-1,-14),其切线方程为3x-y-11=0.三、解答题15.求曲线y=1x-x上一点P4,-74处的切线方程.[解析] y=limx0 1x+x-1x-(x+x-x)x=limx0 -xx(x+x)-xx+x+xx=limx0 -1x(x+x)-1x+x+x=-1x2-12x .y|x=4=-116-14=-516,曲线在点P4,-74处的切线方程为:y+74=-516(x-4).即5x+16y+8=0.16.已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.(1)求使直线l和y=f(x)相切且以P为切点的'直线方程;(2)求使直线l和y=f(x)相切且切点异于点P的直线方程y=g(x).[解析] (1)y=limx0 (x+x)3-3(x+x)-3x3+3xx=3x2-3.则过点P且以P(1,-2)为切点的直线的斜率k1=f(1)=0,所求直线方程为y=-2.(2)设切点坐标为(x0,x30-3x0),则直线l的斜率k2=f(x0)=3x20-3,直线l的方程为y-(x30-3x0)=(3x20-3)(x-x0)又直线l过点P(1,-2),-2-(x30-3x0)=(3x20-3)(1-x0),x30-3x0+2=(3x20-3)(x0-1),解得x0=1(舍去)或x0=-12.故所求直线斜率k=3x20-3=-94,于是:y-(-2)=-94(x-1),即y=-94x+14.17.求证:函数y=x+1x图象上的各点处的切线斜率小于1.[解析] y=limx0 f(x+x)-f(x)x=limx0 x+x+1x+x-x+1xx=limx0 xx(x+x)-x(x+x)xx=limx0 (x+x)x-1(x+x)x=x2-1x2=1-1x21,y=x+1x图象上的各点处的切线斜率小于1.18.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1l2.(1)求直线l2的方程;(2)求由直线l1、l2和x轴所围成的三角形的面积.[解析] (1)y|x=1=limx0 (1+x)2+(1+x)-2-(12+1-2)x=3,所以l1的方程为:y=3(x-1),即y=3x-3.设l2过曲线y=x2+x-2上的点B(b,b2+b-2),y|x=b=limx0 (b+x)2+(b+x)-2-(b2+b-2)x=2b+1,所以l2的方程为:y-(b2+b-2)=(2b+1)(x-b),即y=(2b+1)x-b2-2.因为l1l2,所以3(2b+1)=-1,所以b=-23,所以l2的方程为:y=-13x-229.(2)由y=3x-3,y=-13x-229,得x=16,y=-52,即l1与l2的交点坐标为16,-52.又l1,l2与x轴交点坐标分别为(1,0),-223,0.所以所求三角形面积S=12-521+223=12512.【高二数学课后练习题及答案】。
高二数学试题答案及解析
高二数学试题答案及解析1.“金导电,银导电,铜导电,铁导电,所以一切金属都导电”.此推理方法是()A.类比推理B.归纳推理C.演绎推理D.以上都不对【答案】B【解析】归纳推理由是部分到整体, 由个别到一般的推理.故选B.【考点】归纳推理特点.2.某公司的组织结构图如图所示,则开发部的直接领导是__________.【答案】总经理【解析】从题设中提供的组织结构图可以看出开发部的直接领导是总经理,应填答案总经理。
3.用反证法证明:如果,那么。
【答案】如下【解析】假设x2+2x-1=0则(x+1)2=2∴x=-1±此时x<与已知x>矛盾,故假设不成立.∴原命题成立4.观察下列等式:,,,,由以上等式推测:对于,若则=______【答案】【解析】由已知中的式了,我们观察后分析:等式右边展开式中的第三项分别为:1,3,6,10,…,即:1,1+2.1+2+3,1+2+3+4,…根据已知可以推断:第n(n∈N*)个等式中为:1+2+3+4+…+n=【考点】归纳推理5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28B.76C.123D.199【答案】C【解析】观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…故a10+b10=123.6.观察下列等式:,,,……,由以上等式推测到一个一般的结论:对于n∈,;【答案】【解析】根据题意,由于下列等式:,,,……,由以上等式推测到一个一般的结论:左边为和式,右边为1减去项数加1乘以2的项数次幂的倒数,故可知对于n∈,【考点】归纳推理点评:主要是考查了归纳推理的运用,属于基础题。
7.观察下列等式:13+23=32, 13+23+33=62, 13+23+33+43=102,…,根据上述规律,第五个等式为_______【答案】13+23+33+43+53+63=212【解析】由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.8.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的()A.小前提错误B.大前提错误C.推理形式错误D.结论正确【答案】B【解析】还必须左增右减或者左减右增才是极值点,所以大前提错误.【考点】合情推理与演绎推理.9.观察下列各式:,,则()A.28B.76C.123D.199【答案】C【解析】观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即【考点】归纳推理10.已知三角形的三边分别为,内切圆的半径为,则三角形的面积为;四面体的四个面的面积分别为,内切球的半径为。
高二数学试题答案及解析
高二数学试题答案及解析1.已知实数,设命题:函数在上单调递减;命题:不等式的解集为,如果为真,为假,求的取值范围.【答案】.【解析】命题:函数在上单调递减,可得:. 命题:不等式的解集为,可得,如果为真,为假,可得只能一真一假,解出即可.试题解析:由函数在上单调递减可得,,解得.设函数,可知的最小值为,要使不等式的解集为,只需,因为或为真,且为假,所以只能一真一假,当真假时,有,无解;当假真时,有,可得,综上,的取值范围为.2.设函数,则()A.2B.-2C.5D.【答案】D【解析】由得:,所以,则,故选D.3.“”是“方程为双曲线的方程”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若方程表示椭圆,则,解得且,所以是方程表示椭圆的必要不充分条件,故选B.【考点】椭圆的标准方程;必要不充分条件的判定.4.函数,则的值为( )A.B.C.D.【答案】B【解析】解答:f ( x)=sin x+e x,∴f′(x)=cos x+e x,∴f′(0)=cos0+e0=1+1=2,故选:B5.“”是“”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题可得,而,故应选择A.【考点】充要条件6.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是A.B.C.D.【答案】D【解析】略7.如图:已知为抛物线上的动点,过分别作轴与直线的垂线,垂足分别为,则的最小值为_____________.【答案】【解析】抛物线的准线方程是,又根据抛物线的几何性质,抛物线上的点到焦点的距离等于其到准线的距离所以,的最小值就是点到直线的距离,所以点到直线的距离,即的最小值是,故填:.【考点】抛物线的几何意义【方法点睛】本题考查了抛物线的几何性质,属于基础题型,当涉及圆锥曲线内线段和的最小或线段差的最大时,经常使用圆锥曲线的定义进行转化,比如本题,抛物线上任一点到焦点的距离和到准线的距离相等,所以将到轴的距离转化为,这样通过几何图形就比较容易得到结果.8.已知椭圆()的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.(1)求椭圆的方程;(2)若与直线交于点,求的值;(3)若,求直线的倾斜角.【答案】(1);(2);(3)或.【解析】(1)根据条件可得,,再结合条件,计算得到,和,求得椭圆的标准方程;(2)首先设,根据点的坐标求出直线的方程,并计算得到点的坐标,并表示,最后根据点在椭圆上,满足椭圆方程,计算得到常数;(3)设直线方程与椭圆方程联立,根据弦长公式,解得直线的斜率,最后得到直线的倾斜角.试题解析:(1)∵∴∴椭圆的方程为(2)由(1)可知点,设,则令,解得,既∴又∵在椭圆上,则,∴(3)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设其为,则由可得,由于,则设可得,,∴∴解得∴直线的倾斜角为或.【考点】1.椭圆方程;2.弦长公式;3.直线与椭圆相交的综合问题.9.已知点是双曲线右支上一点,分别是双曲线的左、右焦点,为的内心,若成立,则双曲线的离心率为()A.4B.C.2D.【解析】如图,设圆I与的三边分别相切于点E、F、G,连接IE、IF、IG,则,它们分别是的高,,其中r是的内切圆的半径.由根据双曲线定义,得,∴2a=c⇒离心率为【考点】双曲线方程及性质10.抛物线的准线与双曲线的两条渐近线所围成的三角形的面积等于.【答案】【解析】抛物线的准线方程为,双曲线的渐近线方程为,所以所要求的三角形的面积为;【考点】1.抛物线的几何性质;2.双曲线的几何性质;11.命题“”的否定是()A.B.C.D.【答案】D【解析】由特称命题的否定为全称命题可知,所求命题的否定为,,故应选.【名师】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.先把存在量词(或全称量词)改为全称量词(或存在量词),再否定结论即可;扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.【考点】含一个量词的命题的否定.12.已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为()A.B.C.D.【解析】依题意有,解得,所以方程为.【考点】双曲线的概念与性质.13.设抛物线的焦点为,直线过且与交于两点,若,则的方程为()A.或B.或C.或D.或【答案】C【解析】设A(x1,y1),B(x2,y2),又F(1,0),则=(1-x1,-y1), =(x2-1,y2),由题意知=3,因此即又由A、B均在抛物线上知解得直线l的斜率为=±,因此直线l的方程为y= (x-1)或y=- (x-1).故选C.14.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)函数关系式为,则使该生产厂家获取最大年利润的年产量为.【答案】9万件【解析】求出函数的导函数,由导函数等于0求出极值点,结合实际意义得到使该生产厂家获取最大年利润的年产量.解:由,得:y′=﹣x2+81,由﹣x2+81=0,得:x1=﹣9(舍),x2=9.当x∈(0,9)时,y′>0,函数为增函数,当x∈(9,+∞)时,y′<0,函数为减函数,所以当x=9时,函数有极大值,也就是最大值,为(万元).所以使该生产厂家获取最大年利润的年产量为9万件.故答案为9万件.点评:本题考查了函数在某点取得极值的条件,考查了运用导函数判断原函数的单调性,此题是基础题.15.求下列函数的导数:(1);(2).【答案】(1);(2).【解析】直接利用导数的乘除法则及基本初等函数的求导公式求解.试题解析:(1)(2).16.已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.(1)求椭圆的方程;(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(Ⅰ);(Ⅱ)(1);(2),.【解析】(1)本问主要考查待定系数法求椭圆标准方程,首先设椭圆方程为,然后根据条件列方程组,求解后即得到椭圆标准方程;(2)本问主要考查直线与椭圆的综合问题,分析可知,内切圆面积最大时即为内切圆半径最大,的面积可以表示为,由椭圆定义可知的周长为定值,这样的面积转化为,然后再根据直线与椭圆的位置关系,的面积表示为,这样可以联立直线方程与椭圆方程,消去未知数,得到关于的一元二次方程,根据韦达定理,表示出,最后转化为关于的函数,即可求出最值.试题解析:(Ⅰ)由题意可设椭圆方程为.则,解得:椭圆方程为,(Ⅱ)设,不妨,设的内切圆的半径,则的周长为因此最大,就最大,由题知,直线的斜率不为零,可设直线的方程为,由得,得 .则,令,可知,则,令,则,当时,,在上单调递增,有,即当时,,这时所求内切圆面积的最大值为.故直线内切圆面积的最大值为.点睛:直线与圆锥曲线问题一直以来都是考查的热点,一方面考查学生数形结合、划归转化思想的能力,另一方面考查学生分析问题及计算的能力.解题时注意到直线的斜率为0以及斜率不存在这两种特殊情况,这就决定我们在设直线方程时是选择用,还是用,这样可以避免讨论.在解决最值问题时,可以通过换元法,转化为函数、导数问题求最值,也可以利用不等式思想求最值,重点考查学生函数方程、不等式思想的应用.17.(本题满分13分)已知椭圆的离心率为,且它的一个焦点的坐标为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过焦点的直线与椭圆相交于两点,是椭圆上不同于的动点,试求的面积的最大值.【答案】(Ⅰ);(Ⅱ)的直线为l,分【解析】(Ⅰ)根据椭圆的离心率和焦距即可求出标准方程;(Ⅱ)设过焦点F1两类,若l的斜率不存在,求出答案,若l的斜率存在,不妨设为k,则l的方程为y=kx+1,根据韦达定理,弦长公式,点到直线的距离公式,得到,构造函数,利用导数求出函数的最值,问题得以解决试题解析:(Ⅰ)设椭圆的半焦距为,则.又由,可解得,所以,所以,椭圆的标准方程为.(Ⅱ)设过焦点的直线为.①若的斜率不存在,则,即,显然当在短轴顶点或时,的面积最大,此时,的最大面积为.②若的斜率存在,不妨设为,则的方程为.设.联立方程:消去整理得:,所以则.因为,当直线与平行且与椭圆相切时,此时切点到直线的距离最大,设切线,联立消去整理得:,由,解得:.又点到直线的距离,所以,所以.将代入得.令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.显然,所以,当的方程为时,的面积最大,最大值为.【考点】直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.18.如图,已知椭圆的上、下顶点分别为A,B,点P在椭圆上,且异于点A,B,直线AP,BP与直线分别交于点M,N,(1)设直线AP,BP的斜率分别为,求证:为定值;(2)求线段MN的长的最小值;(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.【答案】(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】(Ⅰ)随点运动而变化,故设点表示,进而化简整体消去变量;(Ⅱ)点的位置由直线,生成,所以可用两直线方程解出交点坐标,求出,它必是的函数,利用基本不等式求出最小值;(Ⅲ)利用的坐标求出圆的方程,方程必含有参数,消去一个后,利用等式恒成立方法求出圆所过定点坐标.试题解析:(Ⅰ),令,则由题设可知,∴直线的斜率,的斜率,又点在椭圆上,所以,(),从而有.(Ⅱ)由题设可以得到直线的方程为,直线的方程为,由,由,直线与直线的交点,直线与直线的交点.又,等号当且仅当即时取到,故线段长的最小值是.(Ⅲ)设点是以为直径的圆上的任意一点,则,故有,又,所以以为直径的圆的方程为,令解得,以为直径的圆是否经过定点和.【考点】直线的交点,圆的方程,圆过定点问题,基本不等式的应用.19.已知命题,则为()A.B.C.D.【答案】C【解析】命题为全称命题,则命题的否定应该将全称量词改为特称量词,然后否定结论,因此为:,故选D.【考点】全称命题的否定.20.已知命题,命题,若是的充分不必要条件,求的取值范围.【答案】【解析】根据一元二次不等式的解法分别求出命题和,由是的充分不必要条件,可知,从而求出的范围:试题解析::,解得;:,解得.∵,,∴,故有且两个等号不同时成立,解得,因此,所求实数的取值范围是.【考点】充分条件和必要条件的应用21.过抛物线y2=4x的焦点F的直线l与抛物线交于A、B两点,若A、B两点的横坐标之和为,则|AB|=()A. B. C. 5 D.【答案】D【解析】由抛物线定义得,选D.【考点】抛物线定义【方法点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点的坐标.2.若P(x0,y)为抛物线y2=2px(p>0)上一点,由定义易得|PF|=x+;若过焦点的弦AB的端点坐标为A(x1,y1),B(x2,y2),则弦长为|AB|=x1+x2+p,x1+x2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.22.2x2-5x-3<0的一个必要不充分条件是()A.-<x<3B.-<x<0C.-3<x<D.-1<x<6【答案】D【解析】由,解得,所以的一个必要不充分条件是,故选D.【考点】充分条件与必要条件的判定.23.若,则“”是“”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以,或;反之,时,一定可以得到,故“”是“”的必要而不充分条件,选B.【考点】充要条件24.已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q有且只有一个为真,求实数m的取值范围.【答案】m≥3,或1<m≤2【解析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案试题解析:若方程x2+mx+1=0有两不等的负根,则解得m>2,即命题p:m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m+3)<0解得:1<m<3.即q:1<m<3.因“p或q”为真,所以p、q至少有一为真,又“p且q”为假,所以命题p、q至少有一为假,因此,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴解得:m≥3或1<m≤2.【考点】1.复合命题的真假;2.一元二次方程的根的分布与系数的关系25.抛物线的焦点坐标是______【答案】(1,0)【解析】由抛物线方程可知焦点在y轴上,由,所以焦点为【考点】抛物线方程及性质26.设为直线与双曲线左支的交点,是左焦点,垂直于轴,则双曲线的离心率【答案】:【解析】设,则由题意,知.因为垂直于轴,则由双曲线的通径公式知,即,所以.又由,得,所以.【考点】双曲线的性质.【方法点睛】讨论椭圆的性质,离心率问题是重点,求椭圆的离心率的常用方法有两种:(1)求得的值,直接代入求得;(2)列出关于的一个齐次方程(不等式),再结合消去,转化为关于的方程(或不等式)再求解.27.设、分别为双曲线的左右项点,双曲线的实轴长为,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线与双曲线的右支交于、两点,且在双曲线的右支上存在点使,求的值及点的坐标.【答案】(1);(2),点.【解析】(1)由于实轴长为,可得,由双曲线的焦点到渐进线的距离可得,从而得其方程;(2)设,根据向量关系可得,联立直线方程与双曲线方程消去得关于的一元二次方程,由韦达定理可得,代入直线方程可得,从而得,再根据点在双曲线上,满足双曲线方程,解方程组即可得到点的坐标和的值.试题解析:(1)由实轴长为,得,渐近线方程为,即,焦点到渐近线的距离为,,又,双曲线方程为:. (2)设,则,由,,,解得.【考点】双曲线的标准方程及直线与双曲线的位置关系.【方法点晴】本题主要考查了双曲线的标准方程的求解及直线与圆锥曲线的位置关系问题,同时涉及到了向量的线性运算及坐标表示,考查考生分析问题和解决问题的能力,属于中档题.本题第一问解答时,可求出渐近线方程,利用点到直线的距离公式求得,也可以直接利用结论求解,第二问解答的关键是通过向量加法的坐标表示建立点坐标和坐标的关系,通过韦达定理即可求解.28.顶点在原点,且过点的抛物线的标准方程是A.B.C.或D.或【答案】C【解析】当焦点在轴时,设方程为,代入点,所以方程为,同理焦点在轴时方程为【考点】抛物线方程29.命题:“”的否定为________;【答案】【解析】全称命题“”的否定是“”,所以命题“”的否定是“”【考点】含有一个量词命题的否定.30.命题“若,则”的逆命题是A.若,则B.若,则C.若,则D.若,则【答案】C【解析】“若则”的逆命题是“若则”,所以原命题的逆命题是“若,则”,故选C.【考点】四种命题。
高二数学数列试题答案及解析
高二数学数列试题答案及解析1.等比数列的前项和为,且成等差数列.若,则=()A.7B.8C.15D.16【答案】C【解析】∵成等差数列,∴,∴,即,∴,∴.【考点】等差数列的性质、等比数列的前n项和.2.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为.【答案】【解析】一个骰子连续抛掷三次它落地时向上的点数情况共有种, 若落地时向上的点数依次成等差数列时情况有: 可能为连续的三个数组成的递增数列,还可能不连续的三个数组成的递增数列, .同理可得以上两种情况的递减数列,另外还有可能是三个数相同的常数列,所以共有种情况,所以所求概率为.【考点】1排列组合;2概率.3.在等比数列中,对于任意都有,则.【答案】【解析】令,得;由等比数列的性质,得.【考点】1.赋值法;2.等比数列的性质.4.已知数列满足,则= ()A.B.C.D.【答案】【解析】∵,∴,∴,所以数列的奇数项与偶数项分别成等比数列,公比为2,又,故,所以.【考点】递推公式,等比数列,分组求和,等比数列的前项和5.已知为等比数列,,,则()A.B.C.D.【答案】D【解析】因为为等比数列,所以,或.设公比为,当时,,当时,综上可得.故D正确.【考点】1等比数列的通项公式;2等比数列的性质.6.已知数列中,函数.(1)若正项数列满足,试求出,,,由此归纳出通项,并加以证明;,且,求证:(2)若正项数列满足(n∈N*),数列的前项和为Tn.【答案】(1)证明详见解析;(2)证明详见解析.【解析】本题主要考查数列的通项及前n项和等基础知识,考查学生的运算求解能力,注意解题方法的积累,属于中档题.第一问,通过对两边同时取倒数、变形可知数列是以1为首项、为公比的等比数列,进而计算可得结论;第二问,通过(n∈N*)变形可知,进而累乘得:,进而,通过裂项、放缩可知,并项相加即得结论.试题解析:(1)依题意,,,,由此归纳得出:;证明如下:∵,∴,∴,∴数列是以1为首项、为公比的等比数列,∴,∴;(2)∵(n∈N*),∴,∴,累乘得:,∴,即,∴,∵,∴.【考点】数列的求和;归纳推理.7.设数列的前项和为,已知(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,数列的前项和为.求【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由可得,,而,则(Ⅱ)由及可得利用错位相减即可求出结果,即可求出结果.试题解析:(Ⅰ)由可得,而,则(Ⅱ)由及可得..【考点】1.数列的递推公式;2.错位相减法求和.【方法点睛】本题主要考查了利用数列递推公式求出数列的通项公式,在解决此类问题时,一般利用来求数列的通项公式;在数列求和时如果通项公式可换成,其中数列分别是等差数列和等比数列,一般采用错位相减法进行求和.8.(本小题满分12分)已知正项数列的首项为,前项和为满足.(1)求证:为等差数列,并求数列的通项公式;(2)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,由代入已知式分解因式可得,由此可证数列是等差数列,并求出数列的通项公式,再由即可求出数列数列的通项公式;(2)由,即用裂项相消法求出,又可得,解之即可.试题解析:(1)当时,,即,数列是首项为,公差为的等差数列,故,故,当时也成立,(6分)(2), (8分)(10分)又,,解得或,即所求实数的取值范围为(12分)【考点】1.与关系;2.等差数列的定义与性质;3.裂项相消法求和;4.数列与不等式.【名师】本题主要考查数列中与关系、等差数列的定义与性质、裂项相消法求和以及数列与不等式的综合应用等知识.解题时首先利用与关系进行转化,得到数列前后项之间的关系,从而讲明数列是等差数列,进一步求出数列的退项公式;由于数列是等差数列,所以在求数列的前项和为时,可用裂项相消法求解.9.(本小题满分12分)等差数列的前n项和记为,已知,求n.【答案】【解析】本题主要考查等差数列的通项公式及前n项和公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.利用等差数列的通项公式将和展开,列出方程组,解出和d的值,即得到等差数列的通项公式,由,利用等差数列的前n项和得,解方程求得项数n的值.试题解析:由,得方程组,解得,所以.,得,解得或(舍去).【考点】等差数列的通项公式及前n项和公式.10.数列1,,,,,,,,,……的前100项之和为()A.10B.C.11D.【答案】A【解析】观察数列特点可知分母为1的有一项,分母为3的有三项,分母为5的有五项,以此类推分母为的有项,所以,即分母为19的分数写完后刚好100项,因此前100项求和时将分母相同的分组求和可得到和为10【考点】数列求和11.在等比数列{an }中,如果a1+a2=40,a3+a4=60,那么a5+a6=()A.80B.90C.95D.100【答案】B【解析】等比数列中【考点】等比数列性质12.(本题满分13分)设数列和满足:,(1)求数列和的通项公式;(2)当时,不等式恒成立,试求常数的取值范围.【答案】(1);(2).【解析】(1)由已知可得,又因为,所以为首项为,公比为的等比数列,从而可得的通项公式;由可得当时,两式相减得,,当时也满足,.记,又因为,所以,再将其左右两边同时乘以得,然后利用错位相减得,,可化简得即,,.试题解析:(1),为首项为,公比为的等比数列,又①令令②①-②得,,当时,满足此式。
高二数学精炼题集参考答案
高二数学精炼题集参考答案第一部分立体几何第1讲1.B 2.D 3.A 4.平行或相交 5.30°45° 6.③④7.解析:(1)将平面BF折起后,补成长方体AEFD-A1BCD1,则BD恰好是长方体的一条对角线.因为AE、EF、EB两两垂直,所以BD恰好是以AE、EF、EB为长、宽、高的长方体的对角线.所以BD=AE2+EF2+EB2=42+22+12=21.(2)证明:因为AD綊EF,EF綊BC,所以AD綊BC.所以点A、C、B、D在同一平面内,且四边形ABCD为平行四边形.所以AC、BD交于一点且被该点平分.第2讲1.C 2.C 3.B 4.B 5.④ 6.④7.证明:如图所示,连接AC.设AC交BD于O,连接MO.因为四边形ABCD是平行四边形,所以O是AC的中点.又因为M是PC的中点,所以MO∥PA.又因为MO⊂平面BDM,PA⊄平面BDM,所以PA∥平面BDM,平面BDM∩平面APG=GH,所以AP∥GH.第3讲1.A 2.C 3.B 4.B 5.垂直 6.①③④⇒②或②③④⇒①7.证明:(1)因为N为PC的中点,所以ON∥PA.而PA⊥平面ABCD,所以ON⊥平面ABCD.所以ON⊥AB.又四边形ABCD为矩形,M为AB的中点,所以OM⊥AB,所以AB⊥平面OMN,所以AB⊥MN.(2)PA⊥平面ABCD,AD⊥DC,则PD⊥DC.故∠PDA为平面PDC与平面ABCD所成锐二面角的平面角,即∠PDA=45°,所以PA =AD=BC.连接MC,由Rt△BCM≌Rt APM知,MC=MP,所以MN⊥PC.因为AB ⊥MN ,所以MN ⊥CD ,所以MN ⊥平面PCD ,所以平面MNO ⊥平面PCD .第4讲巩固练习1.C2.C3.A4.C 解析:把展开图复原为正方体后示意图如右图所示,∠EGF 为AB 和CD 所成的角,F 为正方体一棱的中点.设棱长为1,则EF =GF =52,EG = 2.所以cos ∠EGF =105.5.2解析:过B 作BE 綊AC ,连接CE 、DE .则∠DBE 即为二面角α-l -β的平面角.易证CE ⊥DE ,所以CD =CE 2+DE 2=AB 2+BE 2+BD 2-2BE ·BD ·cos ∠DBE =1+1+1-2×1×1·cos120°=2.6.14解析:根据这两个视图可以推知折起后二面角C -BD -A 为直二面角,其侧视图是一个两直角边长为22的直角三角形,其面积为14.7.解析:(1)因为AD 与两圆所在的平面均垂直,所以AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.依题意可知,四边形ABFC 是正方形,所以∠BAF =45°,即二面角B -AD -F 的大小为45°.(2)连接OD ,则OD ∥EF ,所以∠ODB 为异面直线BD 与EF 所成的角.在Rt △ABD 中,BD =10,OA =OB =3 2.因为四边形ABFC 是正方形,所以DB ⊥AF .又AD ⊥平面ABFC ,所以OB ⊥平面DAO ,所以OB ⊥OD ,故cos ∠ODB =DO BD =82+(32)210=8210.第5讲1.C2.D3.D4.B5.336.①②③④7.解析:设点M 到截面ABCD 的距离为h .连接AC 、AM ,作CF ⊥AB ,垂足为F ,连接CM .V C —ABM =13S △ABM ·CM=13×14×1=112.又V M —ABC =13·12·AB ·CF ·h=13×12×2×322×h =h4,故由V C —ABM =V M —ABC ,得h 4=112,所以h =13.第六讲简单多面体和旋转体例1.(1)正三棱锥S ABC -的侧棱,,SA SB SC 两两垂直,体积为V ,,,A B C '''分别是,,SA SB SC 上的点,且SC C S SB B S SA A S 41,31,21='='=',则三棱锥S A B C '''-的体积RBAOO'ϕBAROO 1为()(A )V91(B )V121(C )V 241(D )V721(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE BCF ∆∆、均为正三角形,//,2EF AB EF =,则该多面体的体积为()(A)23(B)33(C)43(D)32解:(1)选C;(2)选A。
高二数学试题答案及解析
高二数学试题答案及解析1.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是(用数字作答)。
【答案】40【解析】假设偶数在奇数位.先讨论2 假如2在个位则1不在十位排列就是假如2在百位则1不可以在十位也不可以在千位,则排列是假如2在万位..和个位一样是所以有8+4+4=16种偶数在偶数位和在奇数为一样所以总共是16*2=32种.2.如果的展开式中各项系数之和为128,则展开式中的系数是()A.B.C.D.【答案】C【解析】本题考查二项式定理,二项式展开式的通项,因为的展开式中各项系数之和为128,所以在中令得,则二项式展开式的通项为;令解得则展开式中的系数是故选C3.设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1【答案】B【解析】由二项分布的期望和方差得,解的【考点】二项分布的期望和方差.4.在的展开式中的常数项是()A.B.C.D.【答案】A【解析】由二项式定理可知展开式的通项公式为,令,常数项为【考点】二项式定理5.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为A.2.44B.3.376C.2.376D.2.4【答案】C【解析】由题意知ξ=0,1,2,3,∵当ξ=0时,表示前三次都没射中,第四次还要射击,但结果不计,∴P(ξ=0)=0.43,∵当ξ=1时,表示前两次都没射中,第三次射中∴P(ξ=1)=0.6×0.42,∵当ξ=2时,表示第一次没射中,第二次射中∴P(ξ=2)=0.6×0.4,∵当ξ=3时,表示第一次射中,∴P(ξ=3)=0.6,∴Eξ=2.376.故选C.【考点】本题主要考查离散型随机变量的期望的计算.点评:本题在解题过程中当随机变量为0时,题目容易出错同学们可以想一想,模拟一下当时的情况,四颗子弹都用上说明前三次都没有射中,而第四次无论是否射中,子弹都为0.6.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有()A.35B.70C.210D.105【答案】A【解析】根据题意,由于班级有一个7人小组,现任选其中3人相互调整座位,那么其余的4人的位置不变,则可知从7个中任意选3个,所有的情况有,其余4个人的位置只有一种,那么可知一共有35种,选A.【考点】定序排列点评:解决的关键是根据已知的座位先确定处没有确定顺序的人即可,属于基础题。
高二数学目标答案
理科必选2-1答案参考答案与提示1.3.1 简单的逻辑联结词(一) 一、选择题1.A 2.B 3.D 4.D 二、填空题5.p 或q ;非p ; p 且q 6.0或2是偶数;0和2都是偶数;0不是偶数7.p 或q ,真 三、解答题8. 逆命题:若3,2,0652===+-x x x x 或则.否命题: 若065,3,22≠+-≠≠x x x x 则且. 逆否命题:若 0652≠+-x x , 则3,2≠≠x x 且.9.(1)p :x =2是方程x 2-5x +6=0的根 q :x =3是方程x 2-5x +6=0的根,是p 或q 的形式 (2)p :π大于3 q :π是无理数 是p 且q 的形式 (3)p :直角等于90︒ 是非p 形式(二)一、选择题1.A 2.A 3.B 4.A 二、填空题5.30a -≤≤6.①③7. 若x 2+y 2≠0,则x ≠0或y ≠0 三、解答题8.逆命题:若x,y 全为零,则220x y += 否命题:若220x y +≠,则x,y 不全为零逆否命题:若x,y 不全为零,则220x y +≠(三)一、选择题1.B 2.B 3.B 4.B 二、填空题5.必要不充分 6.①既非充分又非必要条件②必要不充分7.①菱形的对角线互相垂直或互相平分②菱形的对角线互相垂直且互相平分③菱形的对角线不互相垂直 三、解答题8.解:⑴正方形的四边不都相等;⑵平方和为0的两个实数不都为0;9.解:⑴ p 真,q 假, ∴“p ∨q”为真,“p ∧q”为假,“⌝p ”为假。
⑵ p 真,q 真, ∴“p ∨q”为真,“p ∧q”为真,“⌝p ”为假。
⑶ p 假,q 假, ∴“p ∨q”为假,“p ∧q”为假,“⌝p ”为真。
⑷ p 真,q 假, ∴“p ∨q”为真,“p ∧q”为假,“⌝p ”为假。
1.4.1 全称量词、存在量词及其否定(1) 一、选择题1.D 2.C 3.C 4.B 二、填空题5.任意一个三角形都有外接圆 6.2,10x R x x ∃∈-+≤ 7.①0x R,x 2≥∈∀;②1|sin |,≤∈∀ααR三、解答题 8.分析:(1)存在性命题;(2)全称命题;(3)存在性命题;(4)全称命题;(5)全称命题;(6)全称命题; 9.(1)存在正数x ,≤x x -1;(2)存在实数x ,x 2+1≥2x ;(3)已知集合A ⊆B ,如果存在一个元素A x ∈0,那么B x ∉0;(原对,否错) 1.4.1 全称量词、存在量词及其否定(2)一、选择题1.B 2.A 3.D 4.B 二、填空题5.②③6. ①④⑤;②③⑥7.0,x ∃>使得220x x ++≥ 三、解答题8.解:(1)041,:2<+-∈∃⌝x x R x p . 由于对任意的实数0)21(41,22≥-=+-x x x x ,故p 是真命题,p ⌝是假命题;(2)x q ∀⌝:是质数,x 是奇数.由于2是质数,且2不是奇数,故q 是真命题,q ⌝是假命题; (3):r ⌝ 1,2+≤∈∀xx R x .由于对任意的实数1||,22+<=≤x xx x x ,故r 是假命题,r ⌝是真命题;(4):s ⌝有些周期函数没有最小正周期.由于任意实数都是函数()1,f x x R =∈的周期,从而它没有最小正周期,故s 是假命题,s ⌝是真命题. 9.解:(1)的否定:有些自然数的平方不是正数。
2024湖南省天一名校联盟高二入学考试数学试卷答案
B ) 1-
(
所以 P (
B )=
3
1
= , 6 分
4
8
)
1
, 7 分
2
所以乙、丙各自解出该题的概率为
1 3
, . 8 分
2 4
(
2)设“甲、乙、丙 3 人中至少有 1 人解出该题”为事件 D ,
【高二数学试题参考答案 第
3 页(共 5 页)】
=A
B
C
, 9 分
则D
因为 P (
A )=
)=
所以 P (
A
2
1
3
,
P(
B )= ,
5-x)]
+ [(
2-x)- (
2x-1)]
= 14x2 -32x+19
= 14 x-
(
当 x=
8
7
)
2
+
5
, 11 分
7
8
35
时,AB 有最小值
. 13 分
7
7
a+i (
b2 ≥ +2,
a b
b
a b
a
2
a 3
b 2a 3
b
2
a 3
b
=2 6(当且仅当 2a= 3b 时取等号),
∴a2 +b2 ≥3+ + ,又 + ≥2
b a
b a
b a
1 2 1
3 2 2
∴a2 +b2 ≥3+2 6,故 C 正确;∵a≥ + > ,∴a>1,∵b≥ + > ,∴b> 2,故 D 正确,故选 CD.
12
12
12 12 2 2
|ω|
π
2024湖南金太阳高二期中考试数学参考答案
高二数学参考答案!第!! 页共"页
则(*,(''*'%是(*,(&'*&"(('*'的,元子集* 正确! !-!32*!解析本题考查二项分布考查数学运算和逻辑推理的核心素养!
由3$)+4)!得4)! +所以-$)+0!+01+)1+3 正确!
#$)-)#-+4-!%4+)4%!+2正确!
由 -$)+4!%4)1+得4)! +或1+所以 3$)+4)!或1# 错误!
#$)&)#&+4&!%4& )"4+ %&41 '4&设 函 数 54)4+ %&41 '4&4' -!则
564)+41%"4&'&4)&4&4%!4%!!当4'-!&时564#-54单调递增当
因为567+(的 定 义 域 为 且 567+%()88%%((%'88(( ) %88((%'88%%(( ) %567+(所 以
567+(是奇函数3 不正确!567+()88((%'88%%(()!%8(&'88%(%()!%8&(&'!可知567+(是
单调递增函数2 正确!又因为8&('!'!'9所以567+('%!!#* 都不正确!
!1!槡44!解析本题考查平面与平面夹角的余弦值考查直观想
高二数学试题及答案
高二数学试题及答案一、选择题1.2023年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为A.C26C24C22B.A26A24A22C.C26C24C22C33D.A26C24C22A33[答案]A2.从单词“equation”中取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排法共有( )A.120种B.480种C.720种D.840种[答案]B[解析] 先选后排,从除qu外的6个字母中任选3个字母有C36种排法,再将qu看成一个整体(相当于一个元素)与选出的3个字母进行全排列有A44种排法,由分步乘法计数原理得不同排法共有C36A44=480(种).3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有A.24种B.18种C.12种D.96种[答案]B[解析]先选后排C23A33=18,故选B.4.把0、1、2、3、4、5这六个数,每次取三个不同的数字,把其中最大的数放在百位上排成三位数,这样的三位数有A.40个B.120个C.360个D.720个[答案]A[解析]先选取3个不同的数有C36种方法,然后把其中最大的数放在百位上,另两个不同的数放在十位和个位上,有A22种排法,故共有C36A22=40个三位数.5.(2023湖南理,7)在其中一种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.15[答案]B[解析]与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6(个)第二类:与信息0110只有一个对应位置上的数字相同有C14=4(个)第三类:与信息0110没有一个对应位置上的数字相同有C04=1(个)与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个)6.北京《财富》全球论坛开幕期间,高校有14名志愿者参加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A.C414C412C48B.C1214C412C48C.C1214C412C48A33D.C1214C412C48A33[答案]B故选B.解法2:也可先选出12人再排班为:C1214C412C48C44,即选B.7.(2023湖南理5)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为A.85B.56C.49D.28[答案]C[解析]考查有限制条件的组合问题.(1)从甲、乙两人中选1人,有2种选法,从除甲、乙、丙外的7人中选2人,有C27种选法,由分步乘法计数原理知,共有2C27=42种.(2)甲、乙两人全选,再从除丙外的其余7人中选1人共7种选法.由分类计数原理知共有不同选法42+7=49种.8.以一个正三棱柱的顶点为顶点的四面体共有A.6个B.12个C.18个D.30个[答案]B[解析]C46-3=12个,故选B.9.(2023辽宁理,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有A.70种B.80种C.100种D.140种[答案]A[解析]考查排列组合有关知识.解:可分两类,男医生2名,女医生1名或男医生1名,女医生2名∴共有C25C14+C15C24=70,∴选A.10.设集合Ⅰ={1,2,3,4,5}.选择Ⅰ的两个非空子集A和B,要使B 中最小的数大于A中最大的数,则不同的选择方法共有A.50种B.49种C.48种D.47种[答案]B[解析]主要考查集合、排列、组合的基础知识.考查分类讨论的思想方法.因为集合A中的最大元素小于集合B中的最小元素,A中元素从1、2、3、4中取,B中元素从2、3、4、5中取,由于A、B非空,故至少要有一个元素.1°当A={1}时,选B的'方案共有24-1=15种当A={2}时,选B的方案共有23-1=7种当A={3}时,选B的方案共有22-1=3种当A={4}时,选B的方案共有21-1=1种.故A是单元素集时,B有15+7+3+1=26种.2°A为二元素集时A中最大元素是2,有1种,选B的方案有23-1=7种.A中最大元素是3,有C12种,选B的方案有22-1=3种.故共有23=6种.A中最大元素是4,有C13种.选B的方案有21-1=1种,故共有31=3种.故A中有两个元素时共有7+6+3=16种.3°A为三元素集时A中最大元素是3,有1种,选B的方案有22-1=3种.A中最大元素是4,有C23=3种,选B的方案有1种∴共有31=3种.∴A为三元素时共有3+3=6种.4°A为四元素时,只能是A={1、2、3、4},故B只能是{5},只有一种.∴共有26+16+6+1=49种.二、填空题11.北京市中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有______种不同送法.[答案]10[解析]每校先各得一台,再将剩余6台分成3份,用插板法解,共有C25=10种.12.一排7个座位分给3人坐,要求任何两人都不得相邻,所有不同排法的总数有________种.[答案]60[解析]对于任一种坐法,可视4个空位为0,3个人为1,2,3则所有不同坐法的种数可看作4个0和1,2,3的一种编码,要求1,2,3不得相邻故从4个0形成的5个空档中选3个插入1,2,3即可.∴不同排法有A35=60种.13.(09海南宁夏理15)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).[答案]140[解析]本题主要考查排列组合知识.由题意知,若每天安排3人,则不同的安排方案有C37C34=140种.14.2023年上海世博会期间,将5名志愿者分配到3个不同国家的场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数是________种.[答案]150[解析]先分组共有C35+C25C232种,然后进行排列,有A33种,所以共有(C35+C25C232)A33=150种方案.三、解答题15.解方程C2+3+216=C5+516.[解析]因为C2+3+216=C5+516,所以2+3+2=5+5或(2+3+2)+(5+5)=16,即2-2-3=0或2+8-9=0,所以=-1或=3或=-9或=1.经检验=3和=-9不符合题意,舍去,故原方程的解1=-1,2=1.16.在∠MON的边OM上有5个异于O点的点,边ON上有4个异于O点的点,以这10个点(含O点)为顶点,可以得到多少个三角形?[解析]解法1:(直接法)分几种情况考虑:O为顶点的三角形中,必须另外两个顶点分别在OM、ON上,所以有C15C14个,O不为顶点的三角形中,两个顶点在OM上,一个顶点在ON上有C25C14个,一个顶点在OM上,两个顶点在ON上有C15C24个.因为这是分类问题,所以用分类加法计数原理,共有C15C14+C25C14+C15C24=54+104+56=90(个).解法3:也可以这样考虑,把O点看成是OM边上的点,先从OM上的6个点(含O点)中取2点,ON上的4点(不含O点)中取一点,可得C26C14个三角形,再从OM上的5点(不含O点)中取一点,从ON上的4点(不含O点)中取两点,可得C15C24个三角形,所以共有C26C14+C15C24=154+56=90(个).17.次足球比赛共12支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净剩球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;(3)决赛:两个胜队参加决赛一场,决出胜负.问全程赛程共需比赛多少场?[解析](1)小组赛中每组6队进行单循环比赛,就是6支球队的任两支球队都要比赛一次,所需比赛的场次即为从6个元素中任取2个元素的组合数,所以小组赛共要比赛2C26=30(场).(2)半决赛中甲组第一名与乙组第二名(或乙组第一名与甲组第二名)主客场各赛一场,所需比赛的场次即为从2个元素中任取2个元素的排列数,所以半决赛共要比赛2A22=4(场).(3)决赛只需比赛1场,即可决出胜负.所以全部赛程共需比赛30+4+1=35(场).18.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本;(3)甲、乙、丙各得3本.[分析]由题目可获取以下主要信息:①9本不同的课外书分给甲、乙丙三名同学;②题目中的3个问题的条件不同.解答本题先判断是否与顺序有关,然后利用相关的知识去解答.[解析](1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C49种方法;第二步:从余下的5本书中,任取3本给乙,有C35种方法;第三步:把剩下的书给丙有C22种方法∴共有不同的分法有C49C35C22=1260(种).(2)分两步完成:第一步:将4本、3本、2本分成三组有C49C35C22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法∴共有C49C35C22A33=7560(种).(3)用与(1)相同的方法求解得C39C36C33=1680(种).一、选择题1.已知an+1=an-3,则数列{an}是A.递增数列B.递减数列C.常数列D.摆动数列解析:∵an+1-an=-30,由递减数列的定义知B选项正确.故选B.答案:B2.设an=1n+1+1n+2+1n+3++12n+1(nN),则A.an+1anB.an+1=anC.an+1解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.∵nN,an+1-an0.故选C.答案:C3.1,0,1,0,的通项公式为A.2n-1B.1+-1n2C.1--1n2D.n+-1n2解析:解法1:代入验证法.解法2:各项可变形为1+12,1-12,1+12,1-12,偶数项为1-12,奇数项为1+12.故选C.答案:C4.已知数列{an}满足a1=0,an+1=an-33an+1(nN),则a20等于A.0B.-3C.3D.32解析:由a2=-3,a3=3,a4=0,a5=-3,可知此数列的最小正周期为3,a20=a36+2=a2=-3,故选B.答案:B5.已知数列{an}的通项an=n2n2+1,则0.98A.是这个数列的项,且n=6B.不是这个数列的项C.是这个数列的项,且n=7D.是这个数列的项,且n=7解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故选C.答案:C6.若数列{an}的通项公式为an=7(34)2n-2-3(34)n-1,则数列{an}的A.最大项为a5,最小项为a6B.最大项为a6,最小项为a7C.最大项为a1,最小项为a6D.最大项为a7,最小项为a6解析:令t=(34)n-1,nN+,则t(0,1],且(34)2n-2=[(34)n-1]2=t2.从而an=7t2-3t=7(t-314)2-928.函数f(t)=7t2-3t在(0,314]上是减函数,在[314,1]上是增函数,所以a1是最大项,故选C.答案:C7.若数列{an}的前n项和Sn=32an-3,那么这个数列的通项公式为A.an=23n-1B.an=32nC.an=3n+3D.an=23n解析:①-②得anan-1=3.∵a1=S1=32a1-3a1=6,an=23n.故选D.答案:D8.数列{an}中,an=(-1)n+1(4n-3),其前n项和为Sn,则S22-S11等于A.-85B.85C.-65D.65解析:S22=1-5+9-13+17-21+-85=-44S11=1-5+9-13++33-37+41=21S22-S11=-65.或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故选C.答案:C9.在数列{an}中,已知a1=1,a2=5,an+2=an+1-an,则a2023等于A.-4B.-5C.4D.5解析:依次算出前几项为1,5,4,-1,-5,-4,1,5,4,发现周期为6,则a2023=a3=4.故选C.答案:C10.数列{an}中,an=(23)n-1[(23)n-1-1],则下列叙述正确的是A.最大项为a1,最小项为a3B.最大项为a1,最小项不存在C.最大项不存在,最小项为a3D.最大项为a1,最小项为a4解析:令t=(23)n-1,则t=1,23,(23)2,且t(0,1]时,an=t(t-1),an=t(t-1)=(t-12)2-14.故最大项为a1=0.当n=3时,t=(23)n-1=49,a3=-2081;又a3答案:A二、填空题11.已知数列{an}的通项公式an=则它的前8项依次为________.解析:将n=1,2,3,8依次代入通项公式求出即可.答案:1,3,13,7,15,11,17,1512.已知数列{an}的通项公式为an=-2n2+29n+3,则{an}中的最大项是第________项.解析:an=-2(n-294)2+8658.当n=7时,an最大.答案:713.若数列{an}的前n项和公式为Sn=log3(n+1),则a5等于________.解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.答案:log36514.给出下列公式:①an=sinn②an=0,n为偶数,-1n,n为奇数;③an=(-1)n+1.1+-1n+12;④an=12(-1)n+1[1-(-1)n].其中是数列1,0,-1,0,1,0,-1,0,的通项公式的有________.(将所有正确公式的序号全填上)解析:用列举法可得.答案:①三、解答题15.求出数列1,1,2,2,3,3,的一个通项公式.解析:此数列化为1+12,2+02,3+12,4+02,5+12,6+02,由分子的规律知,前项组成正自然数数列,后项组成数列1,0,1,0,1,0,.an=n+1--1n22即an=14[2n+1-(-1)n](nN).也可用分段式表示为16.已知数列{an}的通项公式an=(-1)n12n+1,求a3,a10,a2n-1.解析:分别用3、10、2n-1去替换通项公式中的n,得a3=(-1)3123+1=-17a2n-1=(-1)2n-1122n-1+1=-14n-1.17.在数列{an}中,已知a1=3,a7=15,且{an}的通项公式是关于项数n的一次函数.(1)求此数列的通项公式;(2)将此数列中的偶数项全部取出并按原来的先后顺序组成一个新的数列{bn},求数列{bn}的通项公式.解析:(1)依题意可设通项公式为an=pn+q得p+q=3,7p+q=15.解得p=2,q=1.{an}的通项公式为an=2n+1.(2)依题意bn=a2n=2(2n)+1=4n+1{bn}的通项公式为bn=4n+1.18.已知an=9nn+110n(nN),试问数列中有没有最大项?如果有,求出最大项,如果没有,说明理由.解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9当n7时,an+1-an当n=8时,an+1-an=0;当n9时,an+1-an0.a1。
安徽省合肥市六校联盟2023-2024学年高二下学期期末联考数学答案
合肥市普通高中六校联盟2023-2024学年第二学期期末联考高二年级数学参考答案(考试时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次跳水运动中,某运动员跳水过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t(单位:s )存在函数关系:=−++h t t t 44112().该运动员在=t 1s 时的瞬时速度(单位:m/s )为( )A .-4B .4C .11D .-11【答案】A【分析】根据导数的物理意义,求出=−++h t t t 44112()的导数,即可求得答案.【详解】由=−++h t t t 44112()可得=−+'h t t 84(),故=−'h 14(),即该运动员在=t 1s 时的瞬时速度为−4(m/s ).故选:A 2.已知等差数列a n {}的前n 项和为==+S a S a n ,1,627195,则=S 5( ) A .25 B .27C .30D .35【答案】A【分析】借助等差数列及其前n 项和的性质计算可得公差,结合等差数列求和公式计算即可得. 【详解】设等差数列a n {}的公差为d ,则有++=++⨯a d a a d 6224897111()(),又=a 11,则+++=⨯d d 14914627()(),解得=d 2, 则==++⨯⨯S 225114255().故选:A.3.−+x y x y 3(2)5()的展开式中,x y 33的系数为( ) A .160 B .40 C .120 D .80【答案】B【分析】由题意首先确定+x y (2)5展开式的通项公式,再采用分类讨论法即可确定的系数【详解】+x y (2)5展开式的通项公式为==+−−−T x y x y r r r r r rrrC 22C 515555(),当=r 3时,==−−T x y x y 2C 403545353323,此时只需乘以第一个因式−x y 3()中的x 3,即可得到x y 12033;当=r 2时,==−−T x y x y 2C 802535252232,此时只需乘以第一个因式−x y 3()中的−y ,即可得到−x y 8033;据此可得:x y 33的系数为−=1208040.故选:B.【答案】B【分析】根据奇偶性判断A ;根据奇偶性、单调性判断B ;验证f 1()的值判断C ;根据单调性判断D. 【详解】由图象知,该函数图象关于原点对称,所以函数f x ()为奇函数,且=f 10(), 对于A ,()−++−===−x x f x f x xx11ln ln 2()(),为偶函数,故A 错误; 对于B ,−−==−−−−xxf x x x 1122()(),为奇函数,当>x 0时,==−−x x f x x x 112(), 因为=y x ,=−x y 1在+∞0,()为单调递增函数,所以=−xf x x 1()在+∞0,()单调递增,故B 正确;对于C ,==−≠−−f e1e e e 110211(),故C 错误; 对于D ,当>x 0时,=x f x x ln (),='−x f x x1ln 2(),所以∈x 0,e ()时,0fx ,f x ()单调递增,当∈+∞x e,()时,<'f x 0(),f x ()单调递减,故D 错误, 故选:B.5.疫苗是为预防、控制传染病的发生、流行,用于人体预防接种的预防性生物制品,其前期研发过程中,一般都会进行动物保护测试,为了考察某种疫苗预防效果,在进行动物试验时,得到如下统计数据:附表及公式:()()()()++++=−a b c d a c b d K n ad bc 22(),=+++n a b c d .现从试验动物中任取一只,取得“注射疫苗”的概率为0.5,则下列判断错误的是( )A .注射疫苗发病的动物数为10B .从该试验未注射疫苗的动物中任取一只,发病的概率为52C .能在犯错概率不超过0.05的前提下,认为疫苗有效D .该疫苗的有效率为80% 【答案】D【分析】完善列联表判断A ,利用古典概型概率判断B ,计算卡方利用独立性检验判断C ,利用题目数据判断D.【详解】从试验动物中任取一只,取得“注射疫苗”的概率为0.5, 则取得“注射疫苗”的动物为⨯=0.510050,完善列联表得:所以注射疫苗发病的动物数为50-40=10,故选项A 正确; 从该试验未注射疫苗的动物中任取一只,发病的概率为=505202,故选项B 正确; 又()()()()⨯⨯⨯++++≈>==⨯⨯−⨯−a b c d a c b d K n ad bc 703050504.762 3.84110030102040222)((),所以能在犯错概率不超过0.05的前提下,认为疫苗有效,故选项C 正确; 对于选项D ,虽说注射疫苗的动物中不发病的频率为=5080%40, 但是未注射疫苗的动物中也有不发病的情况,错误.故选:D【答案】C【分析】先确定P 的轨迹以及直线l 过的定点,再根据圆的性质特点求最值.【详解】由⊥PA PB 可得点P 的轨迹为以线段AB 为直线的圆,圆心为0,0(),半径为1,又直线+−=l m x n y :((1)0,其过定点),=13.故答案为:C 7.泊松分布的概率分布列为()e (0,1,2,)===−λλk P X k k k!,其中e 为自然对数的底数,λ是泊松分布的均值.若随机变量X 服从二项分布,当n 很大且p 很小时,二项分布近似于泊松分布,其中=λnp ,即X B n p ~,,()N ∈==−i n P X i np np i!e *()()().现已知某种元件的次品率为0.01,抽检100个该种元件,则次品率不超过1%的概率约为(参考数据:≈e0.371)( )A .37%B .74%C .90%D .99%【答案】B【分析】100个元件,次品率不超过1%,即次品数为0或1,根据题干公式,求=+=P X P X (0)(1)即可. 【详解】由题意知==n p 100,0.01,则=⨯=λ1000.011,所以==−k P X k )1!(e 1. 因为======−−P X P X 1!e0!e (0)e ,(1)e 111111, 所以次品率不超过1%的概率约为==+==+≈P P X P X e e(0)(1)74%11. 故选:B8. 已知直线=+∈>y ax b a b (R,0)是曲线=f x xe ()与曲线=+g x x ln 2()的公切线,则+=a b ( )A .2B .21C .eD .e1【答案】A【分析】设t t,e ()是f x ()图象上的切点,利用导数的几何意义求出曲线=+g x x ln 2()上的切点,继而求出t 的值,结合切线方程,即可求得答案.【详解】由题意知直线=+∈>y ax b a b (R,0)是曲线=f x xe ()与曲线=+g x x ln 2()的公切线,设t t ,e ()是f x ()图象上的切点,='f x xe (),所以f x ()在点t t ,e ()处的切线方程为−=−y x t t t e e (),即=+−y x t t te 1e ()①令='=xg x t e 1(),解得==+=−−−−t x g t t t e ,e lne 22(), 即直线=+∈>y ax b a b (R,0)与曲线=+g x x ln 2()的切点为−−t te ,2(),所以−=−−−tt t t t e e 2e ,即−=−t t t11e (),解得t =0或=t 1,当=t 1时,①为==y x b e ,0,不符合题意,舍去, 所以t =0,此时①可化为=+y x 1,所以+=+=a b 112, 故选:A二、选择题:本大题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如东县2008—2009学年度第一学期期中四校联考
高二数学参考答案及评分标准
一、填空题:
1、1
8
y =-; 2、8; 3、27;4、原点; 5、②③; 6、(3,0);
7、
1
3
; 8、5; 9、2;10、(][)0,28,m ∈⋃+∞;11、;(不写单位不扣分)
12、①②; 13;14、12
- 二、解答题:
15、解:(Ⅰ)由题意,椭圆224936x y +=的焦点为(),………………………2分
即c ,∴设所求双曲线的方程为22
22
15x y a a
-=-.…………………………………4分 ∵双曲线过点(3,-2),∴2294
15a a -=-.……………………………………………6分
∴23a =,或215a =(舍去).
∴所求双曲线的方程为22
132
x y -=.………………………………………………………8分
(Ⅱ)由(Ⅰ),可知双曲线的右准线为
x . ………………………………10分
设所求抛物线的标准方程为220y px p =->(),则
p =.…………………………12分
∴所求抛物线的标准方程为2y =.………………………………………………14分 16、(Ⅰ)证明:由正三棱柱111ABC A B C -,∴ 1CC ⊥面ABC ,
又AD ⊂面ABC ∴AD 1CC ⊥ ……………………………………………3分 又1AD C D ⊥,11,CC C D ⊂面11BCC B ,111CC C D C ⋂=
∴AD ⊥平面11BCC B ………………………………………………………6分
(Ⅱ)连结DE ,由AD ⊥平面11BCC B ,BC ⊂平面11BCC B
∴AD ⊥BC ,又ABC ∆为正三角形
∴D 为BC 的中点……………………………………………………………………8分
又E 为E 是11B C 的中点∴BE//1C D ,又BE 不在面AD 1C ,1C D 在面AD 1C 内,
∴BE//面AD 1C …………………………………………………………………10分
又易证1A E//AD ,1A E 不在面AD 1C ,AD 在面AD 1C 内
∴1A E//面AD 1C …………………………………………………………………12分
BE//面AD 1C ,1A E//面AD 1C ,BE ,1A E 为1A EB 内两相交线
∴平面1A EB //平面1ADC ……………………………………………………14分
17. 解:(Ⅰ) 设椭圆C 的方程为22
221(0)x y a b a b
+=>> ……………………………2分
则22238c a c a b c =⎧⎪+=⎨⎪=+⎩,解得5
43a b c =⎧⎪
=⎨⎪=⎩
………………………………………………7分 所以椭圆C 的方程为
22
12516
x y += ………………………………………………8分 (Ⅱ) ∵MN BD ⊥,垂足为P 00()x y ,,1
F ,
2F 为椭圆C 的两焦点,
所以P 点在以线段1F 2F 为直径的圆上,∴22
009x y +=……………………12分
∴22
00199
x y += ∴
2222
00001251699
x y x y +<+=………………………………………………………15分 18证明:(Ⅰ)连结1BD ,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则
11111111////EF D B
D B BCD A EF BCD A EF BCD A ⎫
⎪
⊂⇒⎬⎪⊄⎭
平面平面平面 ……………………………5分 (Ⅱ)1111111,B C AB
B C BC AB B C ABC D AB BC B ⊥⎫
⎪⊥⎪
⎬⊂⎪
⎪=⎭
平面 ⇒
111111B C ABC D BD ABC D ⊥⎫⇒⎬⊂⎭
平面平面
111//B C BD EF BD ⊥⎫
⎬⎭
1EF B C ⇒⊥……………………………………………10分
(Ⅲ)
11AF BDD B ⊥平面
1AF EFB ∴⊥平面 且
AF DF ==
11
2
EF BD =
=
,1B F ===
222211111(22)3B E B D D E =+=+=
∴222
11EF B F B E +=
即190EFB ∠=……………………………………………………………12分
11113B AEF A B EF B EF V V S AF --∆∴==⋅⋅=111
32
EF B F AF ⨯⋅⋅⋅
=
11
362132
⨯⨯⨯⨯= …………………………………………14分 19解:(Ⅰ) BD 与FG 异面………………………………………………………2分 证明:∵BD 在面AC 内,Q 点在面AC 内,F 点不在面AC 内,Q 不在BD 上,
∴BD 与FG 异面…………………………………………………5分
(Ⅱ)连结AC 交BD 于M 点,连结PM
易证AMP ∠为所求二面角的平面角 …………………………………………8分 在Rt AMP ∆中,tan 22
AP AMP AM ∠=
== ∴二面角P BD A --的正切值2 …………………………………………10分 (Ⅲ)假设在线段CD 上存在一点Q 满足题设条件。
过点Q 作QR ⊥AB 于R ,
连结RE ,则QR//AD 。
∵ABCD 是正方形,△PAD 是直角三角形,且PA=AD=2, ∴AD ⊥AB ,AD ⊥PA , 又A PA AB =⋂, ∴AD ⊥平面PAB 。
又∵E ,F 分别是PA ,PD 中点, ∴EF//AD ,∴EF ⊥平面PAB
又⊂EF 面EFQ ,
∴面EFQ ⊥平面PAB 。
过A 作AT ⊥ER 于T ,则AT ⊥面EFQ ,
∴AT 就是点A 到平面EFQ 的距离。
……………………………………………14分 设)20(≤≤=x x CQ ,则x CQ BR ==,x AR -=2,AE=1, 在Rt △EAR 中,5
4
1)2(1)2(22=+-⋅-=⋅=
x x RE AE AR AT 解得32=x 。
故存在点Q ,当32=
CQ 时,点A 到平面EFQ 的距离为5
4
…… …………16分 20.解:(1)由题可得)2,0(1F ,)20(2-F ,设)0,0(),(00000>>y x y x P 则)2,(001y x PF --=,)2,(001y x PF ---=,…………………………………2分
∴1)2(20
2
21=--=⋅y x PF PF ,∵点),(00y x P 在曲线上,则14
22
20=+y x ,
∴2
42
020
y x -=,从而1)2(242
020=---y y ,得20=y .
则点P 的坐标为)2,1(. ……………………………………………………5分 (2)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为)0(>k k ,
则BP 的直线方程为:)1(2--x k y .由⎪⎩⎪
⎨⎧=+
-=-14
2)1(222y x x k y
得x k k x k )2(2)2(22-++ 04)2(2=--+k ,
设),(B B y x B ,则2
22222
2212)2(2,2)2(21k k k k k k x k k k x B B +--=
-+-=+-=+, 同理可得222)222k k k x A +-+=,则2
224k
k
x x B A +=-,…………………………8分2
28)1()1(k k
x k x k y y B A B A +=
----=-. ………………………………………9分 所以:AB 的斜率2=--=B
A B
A A
B x x y y k 为定值. ………………………………10分
(3)设AB 的直线方程:m x y +=2.
由⎪⎩⎪
⎨⎧=+
+=14
2222y x m x y ,得0422422=-++m mx x ,
由0)4(16)22(22>--=∆m m ,得2222<<-m
P 到AB 的距离为3
|
|m d =,………………………………12分
则3||3)21
4(21||212m m d AB S PAB ⋅
⋅-=⋅=∆ 2)2
8(81)8(812222
2=+-≤+-=m m m m 。
当且仅当()
22,222-∈±=m 取等号
∴三角形PAB 面积的最大值为2。
………………………16分。