流体力学3-5动量方程.
流体力学第3章(第二版)知识点总结经典例题讲解
dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be
工程流体力学第三章
物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
《流体力学》流体力学基本方程
2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0
《流体力学》典型例题
《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ== 又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ==粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ== 2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
流体动力学基本方程
Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。
本章任务建立控制方程组,确定边界条件的近似描述和数学表达。
I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。
质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。
在此假设下,对物质体τ有0dd dtτρτ=⎰。
根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CVCSd v ds tρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。
上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。
由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。
考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。
2)由0=dtmd δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。
3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。
由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。
不可压缩流动满足的0v ∇⋅=或0CSv ds ⋅=⎰⎰是对速度场的一个约束。
例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。
工程流体力学:第二章 流体力学基本方程
y x
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
2020年12月7日 20
三、流管与流束 1.流管——在流场中任取一个有流体
从中通过的封闭曲线,在曲线上的每一个 质点都可以引出一条流线,这些流线簇围 成的管状曲面称为流管。
第二章 流体力学基本方程
1. 流体运动的基本概念-流体运动的特征 2. 4个重要方程:
连续性方程 - 根据质量守恒定律导出 运动方程- 根据牛顿第二运动定律导出 伯努利方程- 根据能量守恒定律导出 动量积分方程和动量矩积分方程- 根据动量定理 和动量矩定理导出. 这些方程是分析研究和解决流体力学问题的基础.
合;
对于定常流动,流线与迹线重合。
❖ 流线不能相交(驻点和速度无限大的奇点除外)。
❖ 流线的走向反映了流速方向,疏密程度反映了流速的大小分 布。
❖ 迹线和流线的区别: ❖ 迹线是同一流体质点在不同时刻的位移曲线,与Lagrange
观点对应; ❖ 流线是同一时刻、不同流体质点速度向量的包络线,与
Euler观点对应。
的速度向量
相切v。x, y, z, t
❖ 流线微分方程:
v2 v1
v3
v4
dr v 0
dx dy dz u(x, y, z,t) v(x, y, z,t) w(x, y, z,t)
2020年12月7日 16
迹线与流线的区别
❖ 流线的性质:
❖ 对于非定常流动,不同时刻通过同一空间点的流线一般不重
u u u u
ax
t
u
x
v
y
流体力学伯努利方程及动量方程
p1 gh1 p2 gh2 ghp
p1
g
h1
p2
g
h2
hp
( p1
g
h1)
( p2
g
h2 )
hp
而 h1 h2 Z1 Z2 hp
( p1
g
Z1 )
(
p2
g
Z2)
hp
hp
hp
注意:
水(ρ)-水银(ρ’) 气(ρ)-液(ρ’)
' h hp
h
'
hp
34
第三节 恒定总流的伯努利方程
2
第三节 恒定总流的伯努利方程
微小圆柱体的力平衡
p1dA ldAcos p2dA l cos Z1 Z2
p1 (Z1 Z2 ) p2
Z1
p1
Z2
p2
3
第三节 恒定总流的伯努利方程
Z1
p1
Z2
p2
均匀流过流断面上压强 分布服从水静力学规 律
Z p c
4
第三节 恒定总流的伯努利方程
第三节 恒定总流的伯努利方程
二、动能积分 u2 dQ u3 dA u3dA
Q 2g
A 2g
2g A
表单位时间通过断面的流体动 能
v
Q
udA
A
AA
u3dA u3dA
v3dA
v3 A
——动能修正系数
10
第三节 恒定总流的伯努利方程
2g
u13dA
A1
2g
1v13dA
A1
1v12
管道弯头、接头、闸 阀、水表
1、恒定流; 2、不可压缩流体; 3、质量力只有重力; 3、所取过流断面为渐变流断面; 4、两断面间无分流和汇流。
流体力学 第三章
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
流体力学动量方程表达式
流体力学动量方程表达式
流体力学动量方程是描述流体运动的基本方程之一。
动量方程
可以通过牛顿第二定律和质量守恒定律推导得出。
在欧拉描述和拉
格朗日描述下,动量方程的表达式略有不同。
在欧拉描述下,流体力学动量方程的表达式如下:
∂(ρv)/∂t + ∇(ρv⋅v) = -∇p + ∇⋅τ + ρg.
其中,ρ是流体密度,v是流体速度矢量,t是时间,p是压力,τ是应力张量,g是重力加速度矢量。
在拉格朗日描述下,动量方程的表达式如下:
Dv/Dt = -1/ρ ∇p + ∇⋅τ/ρ + g.
其中,Dv/Dt是流体质点速度的材质导数,ρ是密度,p是压力,τ是应力张量,g是重力加速度矢量。
这些方程描述了流体内部的动量变化,包括流体的加速度、压
力、应力和重力等因素对流体运动的影响。
通过这些方程,我们可以深入理解流体在运动过程中的行为和特性。
工程流体力学 第3章 流体流动的基本方程
B F ( x, y, z, t )
比如,流体质点的速度场:
u F ( x, y, z, t )
第3章 流体流动的基本方程
速度分布的分量可表示为:
u x F1 ( x, y , z , t ) u y F2 ( x, y , z , t ) u z F3 ( x, y , z , t )
u x 2 x 2 F1 (a, b, c, t ) ax 2 t t t 2 u y 2 y 2 F2 (a, b, c, t ) ay 2 t t t 2 u z 2 z 2 F3 (a, b, c, t ) az 2 t t t 2
教学内容
第0章 绪论
第1章 流体的主要物理性质
第2章 流体静力学
第3章 流体流动的基本方程
第4章 势流理论
第5章 相似理论与量纲分析
第6章 粘性流体管内流动
第7章 粘性流体绕物体的流动
第3章 流体流动的基本方程
流体运动——满足质量守恒、牛顿第二定律、能量守恒… 推导——连续方程,动量方程,动量矩方程,能量方程…
第3章 流体流动的基本方程
流体质点的速度和加速度
u ux i uy j uz k
x F1 (a, b, c, t ) ux t t y F2 (a, b, c, t ) uy t t z F3 (a, b, c, t ) uz t t
a ax i ay j az k
两边积分 ln x 2t C ,故 x c1e
' 1
流体力学基本方程
流体的本构关系
流体均匀各向同性 流体可承受正应力 静止流体不能承受剪切 运动流体不同速度层之间存在剪切力(粘性) 静止流体表面应力为
p ij
ij p ij dij
流体的本构关系
Resistentian, quae oritur ex defectu lubricitatis partuim fluidi, caeteris paribus, proportionalem esse velocitati, qua partes fluidi separantur ab invicem. Isaac Newton, 1687, From Section IX of Book II of his Principia
流体的输运系数
粘性系数(动量输运): 热传导率(能量输运): k
( p, T ) k ( p, T )
n
幂函数公式:
T 0 T0
k T k0 T0
1.5
n
Sutherland公式:
T T0 Ts 0 T0 T T
0
Du p f Dt
Euler Equation
1 p U 2 C 2
Bernoulli’s Equation
涡量方程
u 0 : Du 2 p f u Dt
0:
Du p f Dt
Skk u
1 v u ( ) 2 x y v y 1 w v ( ) 2 y z
1 w u ( ) 2 x z 1 w v ( ) 2 y z w z
单位体积变化率(描述流体均匀膨胀,压缩)
流体力学三大方程公式及符号含义
流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。
在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。
本文将对这三大方程公式及其符号含义进行详细介绍。
一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。
连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。
1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。
这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。
二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。
其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。
2.2 ∇·(ρv⃗v):表示动量流动率的散度。
2.3 -∇p⃗:表示流体受到的压力梯度力。
2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。
2.5 f⃗:表示单位体积内流体受到的外力。
动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。
三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。
流体动力学动量方程及伯努利方程一流体力学
R
2
d2
p1
R
1
2
R Q(v3x v2x ) Q(0 v2x )
1000( 25 )( 4 25 / 3600 ) 3600 3.14 0.022 4
180N
3 v3 3 R′
v2
3
3
v3
对平板冲击力 F R 180N
总流伯努利方程
z1
p1
1V12
2g
z2
p2
2V2 2
2g
hl
总流伯努利方程意义与微小流束方程相 同,式中以均速替代实际流速,用系数修正
§5.6 动量方程
讨论运动的流体与固体边界的相互作用力。
质点系动量定理
dM dt
d ( mu)
dt
F
概念:
控制体
控制面
流体系统
一、定常不可压缩流体动量方程
p1
d12
4
0
Q(v2 x
v1x) )
Q2
d 2 2
[1 ( d2 )2 ]
4
d1
R
1000( 25 )2 3600
4 0.02 2
[1
( 0.02 ) 2 0.05
]
2.38
105
0.052 4
338N 喷嘴接头处拉力 F R 338N
取2-2,3-3面及射流表面 为控制面
d1
1
v1
2g
z p — 测压管水头;
单位重量流体 具有的比势能
z p u2 H
2g
H—总水头;
单位重量流体的总机械能,总比能
z1
p1
u12 2g
z2
p2
u22 2g
流体力学基本方程
微分形式的能量方程
D Dt
1 e u u dv u pn ds u fdv n qds 2 V S V S Fra bibliotek
第二雷诺输运定理
高斯定理
D Dt
S
V
e u u dv
1 2
duy 1 p yy 1 xy zy fy x dt y z
duz 1 pzz 1 xz yz fz dt z x z
2.3
能量方程
积分形式的能量守恒方程
任取流动系统体积V,外表面S,表面外法线单位矢量为 n
1 系统总能量, e u u dv,
单位质量流体的动能 1 u u 2 Wp pnv dS W t t dS 表面力作功功率, S S
2.2
动量守恒定理
微分形式的动量方程
D udv pn ds fdv V S V Dt
D udv Dt V
Du dv Dt V
n σ ds σ dv
S
pn n σ
Du dv σ dv fdv Dt V V V
2.3
能量方程
微分形式的能量方程
v2 v2 1 1 e1 v e1 f v v khT t 2 2
或写为:
2 d v 1 1 e1 f v v khT dt 2
《流体力学》徐正坦主编课后答案第三章
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
流体力学第四章
1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。
稳定流的动量方程表达式
稳定流的动量方程表达式稳定流是指在流体流动过程中,流速和流动性质保持不变的状态。
稳定流动的特点是流体的速度分布、压力分布和密度分布都是恒定的。
在稳定流动中,动量守恒定律成立,可以用动量方程来描述。
动量方程是研究流体力学中非常重要的方程之一,它描述了流体中动量的变化情况。
动量方程的一般形式为:∂(ρv)/∂t + ∇(ρv^2)/∂x = -∇P + ∇τ其中,ρ是流体的密度,v是流体的速度,t是时间,P是流体的压力,τ是应力张量,∇是偏导数算子。
动量方程的左边描述了流体动量的变化率,右边描述了外力对流体动量的影响。
第一项∂(ρv)/∂t表示单位时间内单位体积内动量的变化率,即流体动量的时间变化率。
第二项∇(ρv^2)/∂x表示由于速度梯度引起的动量传输,即流体动量的空间变化率。
这两项合起来描述了流体动量的变化。
第三项-∇P表示压力梯度对流体动量的影响。
压力梯度越大,流体受到的压力力越大,动量变化越明显。
最后一项∇τ表示流体受到的剪切力对动量的影响。
剪切力是由于流体内部分子之间的相互作用而产生的一种力,它会改变流体的速度分布,从而对动量产生影响。
动量方程的形式简洁明了,但是具体应用时需要根据实际情况进行适当的简化和修正。
在稳定流动中,流速和流动性质保持不变,所以动量方程可以简化为:0 = -∇P + ∇τ这意味着在稳定流动中,压力梯度和剪切力之间存在平衡关系。
压力梯度和剪切力的大小和方向决定了流体的流动方式。
当压力梯度和剪切力平衡时,稳定流动就能够保持下去。
动量方程是流体力学研究中的重要工具,它可以用于分析流体流动的特性和行为。
通过求解动量方程,可以得到流体速度、压力和密度的分布情况,从而揭示流体流动的规律和机理。
稳定流的动量方程是描述流体动量变化的方程,它包含了动量的时间变化率、空间变化率以及压力梯度和剪切力对动量的影响。
通过求解动量方程,可以揭示流体流动的规律和机理,对于理解和研究流体力学问题具有重要意义。
工程流体力学答案(周云龙第三版)
第一章1-190610500453.06=⨯==-V m ρkg/m 3906.01000906==d1—2 544.0140027327334.11013252732730=⨯+⨯=+=p t ρρkg/m 31-3 1121211V V V t t V dV dt V--==α98.616060)2080(10550)(611122=+⨯-⨯⨯=+-=-V V t t V V αm 3/h1-4933666112121051011011099510102111----⨯=⨯⨯-⨯-⨯-=---=-=V V V p p V dV dp κ1/Pa1-5 47109.26781028.4--⨯=⨯⨯==νρμ Pa·s1—6 63103.14.999103.1--⨯=⨯==ρμνm 2/s1—7 (1)17.266050001.014.360=⨯⨯==dnu π m/s521023.510005.017.260⨯=⨯=-=-δu dy du 1/s(2)222ddy du dL d dy du A d FM μπμ===35221033.51023.5108.01.014.35.322-⨯=⨯⨯⨯⨯⨯==du dy L d M πμ Pa·s(3)3531079.21023.51033.5⨯=⨯⨯⨯==-dyduμτPa1—8 (1)y dydu μμτ2==(2)μμμμτ2122=⨯===y dydu 1-9 (1)hu bL dy duAF 022μμ==(2) 当2h y =时,h u dy duμμτ== (3)当h y 23=时,0u u = 所以0==dy duμτ 1—102903.03.0133)(112121=⨯⨯==+=+=μμμμdy du A dy du AF F F N967.01=μ Pa·s 933.1212==μμPa·s1-11drr r dr r r r dA dy du r dF dM αδπωμαπδωμμsin 2sin 203=-=⋅=⋅=αδαπωμααδπωμαδπωμαδπωμαααcos 24)(sin 2sin 2sin 234403030tg H Htg dr r dr r dM M Htg Htg Htg =====⎰⎰⎰1-1262.26020025.014.360=⨯⨯==dnu πm/s3925.050.025.014.3=⨯⨯==dL A πm 2331022.4102.0062.23925.082.0⨯=⨯-⨯⨯==-dy du AF μN 05.1162.21022.43=⨯⨯==Fu P kW 1-130841.0100092.0109144.04=⨯⨯⨯==-νρμ Pa·s 1459.03048.01524.014.3=⨯⨯==dL A πm 22.7361024.1526.152061459.00841.03=⨯--⨯⨯==-dydu AF μN42.462.736=⨯==Fv P kW1—14dr r r r rdr r dy du dAr dF dM 3202δμπωδωπμμ=-⋅==⋅=δμπωδμπω3224203d dr r dM M d A===⎰⎰ 1-15785.0125.014.3=⨯⨯==dL A πm 23610258.4001.003.0785.01008.18--⨯=-⨯⨯⨯==dy du AF μN 1—161884.03.02.014.3=⨯⨯==Db A πm 2δμδμμ20u Au u A u dy du A Fu N =-=== 9374.01884.0245.01008.07.502=⨯⨯⨯==-A N u μδm/s9056.892.014.39374.06060≈=⨯⨯==D u n πr/min 1-17082.091810893.04=⨯⨯==-νρμ Pa·s75.14103.003.01.08.1082.03=⨯-⨯⨯⨯==-dy du AF μN1—18 由1-14的结果得2.791023.096046.09014.31044003032323424424=⨯⨯⨯⨯⨯⨯=⨯==--δμπδμπωnd d M N·m1—19dy du AF 00μ=dyduA F 120120μ= %7.86015.0002.0015.00120001200=-=-=-μμμF F F1-203.29105.0324.0105.08.910000728.098.1324.098.1332=⨯⨯-⨯⨯⨯⨯=-=--r gr h O H ρσmm1—217.11)105.0216.0105.08.91000513.053.1()216.053.1(33=⨯⨯-⨯⨯⨯⨯-=--=--r gr h Hg ρσmm1—22 由2642322δδδδρσ-++=RR g h 得δδδδρσ4622223+⎪⎪⎭⎫ ⎝⎛-+=R R h g其中 ()θθδsin 1cos -=R则 ()⎥⎦⎤⎢⎣⎡+++=22sin 13sin 21cos 2θθθρσR h gR1-23 根据牛顿内摩擦定律 drdV μτ-= 由于流速随半径的增加而减小,即drdu是负值,为了使为正值,上式在等号右端取负号根据已知条件 r r D drd 2)]4(4[22βμβμτ=--= 在管壁处2D r = 则4221DDββτ==当4D r =时 4222DDββτ==管壁处的阻力 L D DL DA F 21414βππβτ===1—24maF G =- 其中18.98.990===g Gm (kg )则 )61.0(18.990-⨯=-F 60.95=F N 由dydu A F μ= 其中0583.01219.015228.014.3=⨯⨯==DL A πm 2 6.248979100245.001.603=⨯-=-=-δu dy du 1/s 则310586.6006586.06.2489790583.06.95-⨯==⨯==dydu A F μ Pa·s第二章2—1112.2128.08.910009.08.913600105122=⨯⨯-⨯⨯+=-+=gh gh p p OH HgaAρρkPa2-2 08.140599.08.91594)0(=⨯⨯=∆--=-=h g p p evρPa 92.8726508.14059101325=-=-=v ap p p Pa2-3 gh gh p BAeρρ=+ 且 1.015.025.0=-=h m (a) 9801.08.91000)(=⨯⨯=≈-=gh gh p BABeρρρPa 102305980101325=+=+=e ap p p Pa(b) 4.8131.08.9100083.0)(=⨯⨯⨯=≈-=gh gh p BABeρρρPa 4.1021384.813101325=+=+=e ap p p Pa(c) 123481.08.9)100013600()(=⨯⨯-=-=gh p ABeρρPa 11367312348101325=+=+=eap p p Pa2-4 设A 点到下水银面的距离为h 1,B点到上水银面的距离为h 2 BOH HgOH Ap gh gh gh p =+-+2122ρρρ04.348.521+=+-h h h 即44.221+=+h h h305.18.9)100013600(8.9100044.210)372.1744.2()(44.2522=⨯-⨯⨯+⨯-=-+-=gg p p h O H Hg OH B A ρρρm 2—544.03000027.025.10027.025.1=⨯-=-=s s t ρkg/m 3gHp gH p a a s s ρρ-=-6.166208.9)44.029.1()(=⨯⨯-=-=-gH p p s a s a ρρPa2—64.1340638.9100012.08.913600312.02=⨯⨯+⨯⨯-=⨯+⨯-=g g p OH HgeρρPa 2-7 223311gh gh p gh p B A ρρρ++=+ (1)112233100010001000gh d gh d gh d p p B A -++=16.08.983.0100008.08.96.13100012.08.983.010********.68⨯⨯⨯-⨯⨯⨯+⨯⨯⨯+⨯=287.79=kPa (2) 332211100010001000gh d gh d gh d pp AB--+=12.08.983.0100008.08.96.13100016.08.983.010*******.137⨯⨯⨯-⨯⨯⨯-⨯⨯⨯+⨯=96.127562=Pa563.319600096.127562=-=-=a B Be p p p kPa2—8 设401=h cm 22=h m 33=h m)(32112h h g p gh gh gh p BBHgAAA+-=+--ρρρρ 11232)(gh gh gh h h g p p HgAABBAρρρρ-+++-=4.08.9136004.08.97.85628.97.856)32(8.93.1254200000⨯⨯-⨯⨯+⨯⨯++⨯⨯-=377.105=kPa2-9 (1)93.138545sin 2.08.91000sin =⨯⨯⨯==-αρgL p p BAPa(2)3530sin 8.980093.1385sin =⨯⨯=-=αρg p p L BA cm 2—10666405.08.9136001=⨯⨯=∆=h g p Hg ρPa68.08.91000666422=⨯==∆gph O H ρm2—11 1022gh p gh p O H Hg a ρρ+=+4032gh p gh p O H Hg a ρρ+=+整理得)(1321422h h h h Hg Hg O H OH ρρρρ+-=)3.0136002.0136005.01000(10001⨯+⨯-⨯=86.1=m 2—12)()()(112342h H g h h g h h g p p O H Hg Hg a ---+-+=ρρρ)5.15.3(8.91000)5.15.2(8.913600)0.13.2(8.913600105-⨯⨯--⨯⨯+-⨯⨯+=386944=Pa2-13 ghh g p Hg A ρρ=++)84.0(85.1138.9)100075.013600(84.08.9100075.010372.1)(84.05=⨯⨯-⨯⨯⨯+⨯=-⨯+=g g p h Hg A ρρρcm 2-14)0.343.3(1000)74.22.3(1000-⨯-=-⨯+g d g d p B A862.043.08.9100046.08.9100060.110845=⨯⨯-⨯⨯⨯+-=B d2-15 59.0)59.0(22⨯++-=-g z g p gz p Hg O H B O H A ρρρ整理:853.7259.08.9)100013600(59.059.02=⨯⨯-=⨯-⨯=-g g p p OH HgBAρρkPa 2—16 设差压计中的工作液体密度为)()()(213241h h g h h g p h h g p B A -'---=--ρρρ)()(213241h h g h h h h g p p p B A -'-+--=-=∆ρρ)48.381.3(8.9100075.0)00.348.310.081.3(8.910005.1-⨯⨯⨯-+--⨯⨯⨯=5.45055Pa065.38.910005.15.45055=⨯⨯=∆g p ρm2-17112233100010001000gh d gh d gh d p p A B ---=44.28.975.0100052.18.9110006.08.96.131000274600⨯⨯⨯-⨯⨯⨯-⨯⨯⨯-=161802=Pa2—1882.38)34.01360053.0100025.1(8.934.053.0-=⨯-⨯⨯⨯=⨯-⨯=g g p HgA ρρkPa2—19 (1) 981010018.910004=⨯⨯⨯⨯==-ghA F ρN(2) 95.1)99.01001.001.0(8.910004=⨯+⨯⨯⨯==-gV G ρN 2-20 证明:如书中证明过程。
动量方程
dI d(mv ) F dt dt
在作定常流动的管流中,取 定由断面1和断面2及管壁所组成 的控制体积,研究此控制体积内 的液体在外力作用下的动量改变。 在某时刻t,管中液体处于1-2 位置,经微段时间dt后,移动到1’2’位置。
1、如下图所示,设管端喷嘴直径dn=50mm,管道直径为 100mm,流体为水,环境温度20C,气化压力为 0.24mH2Oabs,不计管路损失。试求: (1)喷嘴出流速度Vn和流量; (2)E处的流速和压力; (3)为了增大流量,喷嘴直径能否增大?最大喷嘴直径为 多少?【提示:E处不发生气穴】。
例1:求液流通过滑阀时,对阀芯的轴向作用力的大小 。
F q(v2 cos 2 v1 cos1 )
液流有一个力图使阀口关闭 的力,这个力称为液动力。
F F qv1 cos
例2:有油从直径为D=80mm的液压缸的右端直径为d =20mm的小孔流出,活塞上的作用力F=3000N。忽 略活塞重量及流动损失,试求支持油缸不动所需的力。
解:液压缸中油液在外力 F和F1的作用下,动量发 生变化。由动量定理有
根据连续性方程
v1 F F1 q (v2 v1 ) A v (1 ) v2
2 2 2
2 F F1 A2 v2 (1
v1 A2 v2 A1
A2 ) A1
式1
建立液压缸断面1与孔口断面2的伯努利方程
p1
2 2 v1 p2 v2 z1 g z2 g 2 2
由于p1
F pa , p2 pa , z1 z 2 0 A1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dt 2v2 A2 v 2 dt 1v1 A1 v1 dtQ( 2 v 2 1 v1 )
2
动量修正系数β
修正以断面平均速度计算的动量与实际动量的差异而引入
3 u A dA
A
3
2 u A dA
A
2
β值取决于过流断面上的速度分布, 速度分布较均匀的流动β =1.02~1.05, 通常取β=1.0
恒定流动,dt 前后 K 1'2 无变化,则
d K K 22' K11' 2u2dtdA2 u2 1u1dtdA1u1
1
取过流断面为渐变流断面,各点的流速平行, i 令 ——为单位向量
u ui
d K K 22' K11' 2u2dtdA2 u2 1u1dtdA1u1
该质点系上的外力的冲量
质点系动量定理: 质点系动量的增量等于作用于
Fdt dtQ( v v ) F Q( v v )
2 2 1 1
2 2 1 1
3
恒定总流动量方程
F Q( v v ) F Q ( v v F Q ( v v F Q ( v v
1 4
3、由连续性方程
v1
d
Q = v1A1= v2A2
2 1
3.185m/s
4Q v2 5.66m/s 8 2 d2
v v p2 p1 7.043kPa 2g 2 d2 P2 p2 0.124kN 4 4、将各量代入总流动量方程,解得 Rx ' 0.538kN
2 2 1 1 x 2 2x y 2 2y z 2 2z
1 1x 1 1y
) ) )
1 1z
物理意义:作用于控制体内流体上的外力,等
于单位时间控制体流出动量与流入动量之差
4
应用条件:
恒定流 过流断面为渐变流断面 不可压缩流体
F 合外力:
作用在该控制体内所有流体质点的质量力;
作用在该控制体面上的所有表面力
d K 2 u 2 dtdA2 u 2 i 2 1u1 dtdA1u1 i 1 A2 A1
对于不可压缩流体ρ1=ρ2=ρ,并引入修正系数β ,以断 面平均流速v 代替点流速u 积分,总流的动量差为
2 2 d K dt 2v2 A2 i 2 dt 1v1 A1 i1
2 1 2 2
Ry ' 0.597kN
水流对弯管的作用力与弯管对水流的作用力,大小相等方 向相反 R 0.538kN 方向沿Ox方向
x
R y 0.597kN
方向沿Oy方向
9
第五节 动量方程
总流的动量方程是动量定理的流体力学表达式 . 设恒定总流,过流断面Ⅰ-Ⅰ、Ⅱ-Ⅱ(渐变流断面) 流体经dt 时间由Ⅰ-Ⅱ运动到Ⅰ‘- Ⅱ’位置 任取元流l – 2 dt 时间内元流动量增量
1 1 2
u1
1 1
dA2
2 2
2
u2
dA1
d K K1'2' K12 (K1'2 K 22' )t dt (K11' K1'2 )t
重力G在xOy面无分量;
弯管对水流的作用力R‘ 列总流动量方程的投影式
Fx Q( 2v2 x 1v1x ) F Q ( v v ) y 2 2 y 1 1 y
7
P 1P 2 cos 60 Rx ' Q( 2 v2 cos 60 1v1 ) o o P sin 60 R ' Q ( v sin 60 ) 2 y 2 2
四周边界对水流的总作用力
5
动量方程的解题步骤
1. 选控制体 根据问题的要求,将所研究的两个渐
变流断面之间的水体取为控制体; 2. 选坐标系 选定坐标轴 的方向,确定各作用力及 流速的投影的大小和方向; 3. 作计算简图 分析控制体受力情况,并在控制体 上标出全部作用力的方向; 4. 列动量方程解题 将各作用力及流速在坐标轴 上的投影代入动量方程求解。计算压力时,压强 采用相对压强计算。 注意与能量方程及连续性方程的联合使用。
6ห้องสมุดไป่ตู้
例: 水平设置的输水弯管(转角θ = 60°),直径由d1=200mm 变为d2=150mm,已知转弯前断面p1=18kPa(相对压强), 输水流量Q=0.1m3/s,不计水头损失; 试求水流对弯管的作 用力。
解:取过流断面l-1、2-2及控制体,选直角坐标系
1、分析受力:过流断面上的动压力P1、P2;
o o
2 其中 P p A 18 0.2 0.565kN 1 1 1
2、列1-1、2-2断面的伯诺里方程,忽略水头损失,有
2 2 p1 α 1v1 p2 α 2v 2 z1 z2 hl ρg 2g ρg 2g 2 2 p1 v1 p2 v2 0 0 0 g 2g g 2 g 4Q