时间序列作业
时间序列分析作业
1、某股票连续若干天的收盘价如下表:304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290 288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292 294 291288 289选择适当模型拟合该序列的发展,并估计下一天的收盘价。
解:根据上面的图和SAS软件编辑程序得到时序图,程序如下:data shiyan7_1;input x@@;time=_n_;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292294 291 288 289;proc print data=shiyan7_1;proc gplot data=shiyan7_1;plot x *time=1;symbol1c=red v=star i=spline;run;通过SAS运行上述程序可得到如下结果:可以看出序列含有长期趋势又含有一定的周期性,故进行差分平稳,又从上述时序图呈现曲线形式,故对原序列作二阶差分,差分程序及时序图如下:data shiyan7_1;input x@@;difx=dif(dif(x));time=_n_;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290 288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292294 291 288 289;proc print data=shiyan7_1;proc gplot data=shiyan7_1;plot x *time difx*time;symbol1c=red v=star i=join;proc arima;identify var=x(1,1);estimate q=1;forecast lead=5id=time;run;SAS软件运行后可得到差分后的序列时序图,其图形如下:时序图显示差分后序列已无显著趋势或周期,随机波动比较平稳。
时间的序列第五章作业的
第五章SAS作业问题1:1867-1938年英国绵羊数量如下所示:2203 2360 2254 2165 2024 2078 2214 2292 2207 2119 2119 2137 2132 1955 1785 1747 1818 1909 1958 1892 1919 1853 1868 1991 2111 2119 1991 1859 1856 1924 1892 1916 1968 1928 1898 1850 1841 1824 1823 1843 1880 1968 2029 1996 1933 1805 1713 1726 1752 1795 1717 1648 1512 1338 1383 1344 1384 1484 1597 1686 1707 1640 1611 1632 1775 1850 1809 1653 1648 1665 1627 17911、选择恰当模型,拟合该序列的发展;2、利用拟合模型预测1938-1945年英国绵羊的数量;3、按照书本相应例题的格式完成问题,并附上SAS程序。
解:(1)时序图显示,序列具有长期趋势,对序列进行1阶差分▽Xt=Xt-Xt-1,观察差分后序列▽Xt的时序图。
时序图显示长期趋势信息基本被差分运算提取充分,考察差分后序列的自相关图和偏自相关图。
自相关图显示延迟3阶后自相关系数基本在2倍标准差范围内,因此认为该序列为平稳序列。
自相关图表现出拖尾现象,偏自相关图表现出3阶结尾现象,且自相关图中2阶自相关系数在2倍标准差范围内,所以考虑构造疏系数模型AR(1,3)。
残差自相关检验结果显示延迟6期后P值都大于0.05,因此认为残差为白噪声序列,即拟合模型显著有效。
参数估计结果显示两参数P值都小于0.05,都显著有效。
则拟合的AR(1,3)模型为▽Xt=0.32196▽Xt-1 –0.37616▽Xt-3 + εt(2)利用拟合模型对1938-1945年英国绵羊的数量进行预测结果如上图所示,预测图为(3)SAS程序为data a;input x@@;dif1=dif(x);t=1867+_n_-1;format time year4.;cards;2203 2360 2254 2165 2024 2078 2214 2292 2207 2119 211921372132 1955 1785 1747 1818 1909 1958 1892 1919 1853 186819912111 2119 1991 1859 1856 1924 1892 1916 1968 1928 1898 18501841 1824 1823 1843 1880 1968 2029 1996 1933 1805 1713 17261752 1795 1717 1648 1512 1338 1383 1344 1384 1484 1597 16861707 1640 1611 1632 1775 1850 1809 1653 1648 1665 1627 1791;run;proc gplot data=a;plot x*t dif1*t;symbol c=black i=join v=dot;proc arima;identify var=x(1) ;estimate p=(13) noint;forecast lead=7id=t out=out;proc gplot data=out;plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay;symbol1c=black i=none v=star;symbol2 c =red i =join v =none; symbol3 c =green i =join v =none; run ;问题2,使用Auto-Regressive 模型分析例5.9序列。
时间序列大作业
应用时间序列大作业课题:基于ARIMA模型的全国1980-2013年邮电业务函件数量时间序列分析及预测。
姓名:***学号:**********编号:48基于ARIMA 模型全国1980-2013年邮电业务函件数量时间序列分析及预测一.摘要时间序列就是按照时间的顺序记录的一列有序数据。
对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势。
时间序列分析在日常生活中随处可见,有着非常广泛的应用领域。
邮政与我们息息相关,他已经成为社会经济生活不可或缺的通信手段。
在世界上,函各国都以件量来衡量一个国家的邮政发展水平,而我国的函件量增长却不容乐观,这勾起了我研究的兴趣,加上我本人又有集邮的爱好,因此我选用了函件量进行分析研究。
本文用时间序列分析方法,对一段时间序列进行了拟合。
通过对1980至2013年全国邮电业务函件量序列进行观察分析,建立合适的ARIMA 模型,对未来五个月的全国邮电业务函件量序列进行预测。
然后对预测值和真实值进行比较,得出结论,所建立的模型有较好的拟合效果,从而提供了一个行情预测的有效方法。
关键词:时间序列 函件量 ARIMA 时间序列分析 预测二.前言邮政的最初发展史从人们的信函寄送需要开始的,现在邮政的众多业务也是借助经营函件业务而衍生出来的。
目前,函件业务的主要包括为用户传递书面通信、文件资料和书籍等。
他已经成为社会经济和生活不可缺少的通信手段。
如果的函件业务搞不好,邮政其他业务也就失去了赖以生存的基础,这将严重削弱邮政在社会中的地位和作用。
当前,世界各国都以函件量来衡量一个国家邮政发展水平,然而几十年随着经济建设的飞速发展,邮电业务的需求量迅猛增长,唯有函件业务增长不容乐观,与发达国家和甚至一些发展中国家相比还有很大差距。
原因何在?因此,本文就以以我国1980-2013年全国邮电业务函件量的数据为研究对象,做时间序列分析。
首先,对全国33年来全国邮电业务函件量的发展变化规律,运用SAS 软件进行分析其发展趋势。
时序作业
时间序列分析----中国居民民消费价格指数居民价格消费指数价指数(Consumer Price Index),英文缩写为CPI,是反映与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。
在经济学上,是反映与居民生活有关的产品及劳务价格统计出来的物价变动指标,以百分比变化为表达形式。
一般定义超过3%为通货膨胀,超过5%就是比较严重的通货膨胀。
CPI是一个滞后性的数据,但它往往是市场经济活动与政府货币政策的一个重要参考指标。
CPI物价指数指标十分重要,而且具有启示性,必须慎重把握,因为有时公布了该指标上升,货币汇率向好,有时则相反。
因为消费物价指数水平表明消费者的购买能力,也反映经济的景气状况,如果该指数下跌,反映经济衰退,必然对货币汇率走势不利。
但如果消费物价指数上升,汇率是否一定有利好呢?不一定,须看消费物价指数"升幅"如何。
由此可看,正确的把握居民价格指数是极其重要的。
下表是1985年到2007年中国居民消费价格指数的数据:年份居民价格指数年份居民价格指数1985 109.3 1997 102.81986 106.5 1998 99.21987 107.3 1999 98.61988 118.8 2000 100.41989 118 2001 100.71990 103.1 2002 99.21991 103.4 2003 101.21992 106.4 2004 103.91993 114.7 2005 101.81994 124.1 2006 101.51995 117.1 2007 104.81996 108.3根据应用时间序列分析的有关内容,现用EVIEWS软件对1985到2007年的消费价格指数进行分析,并对2008年到2010年的消费价格指数进行预测。
一对原数列的平稳性观察以及纯随机性检验1.平稳性观察用软件对原数列做折线图,如下图:X表示历年的消费价格指数图1历年价格指数折线图根据上图,历年的居民消费价格指数基本在一定的范围内上下波动,因此可以初步认为居民消费价格指数是一个平稳的时间序列。
时间序列分析练习题
17. 在趋势性检验中,进行单位根检验的意义是什么?
单位根检验就是根据已观测到的时间序列,检验产生这个时间序列的随机过程中的一阶 自回归系数是否为一,这个检验实际上就是对时间序列是否为一个趋势平稳过程的检验,如 果检验表明没有单位根,则它是一个趋势平稳过程,否则,它是一个带趋势的单位根过程。
①( 均值为常数 ) ②( 协方差为时间间隔 的函数 )
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。 8. 对于一个纯随机过程来说,若其期望和方差(均为常数),则称之为白噪声过程。白 噪声过程是一个(宽平稳)过程。 9. 时间序列分析方法按其采用的手段不同可概括为数据图法,指标法和(模型法)
19. 线性趋势平稳的特点:当我们将时间序列中的完全确定的线性趋势去掉以后,所形 成的时间序列就是一个平稳的时间序列。
20. 如何以系统的观点看待时间序列的动态性? 系统的动态性就是在某一时刻进入系统的输入对系统后继行为的影响,也就是系统的记 忆性,描述记忆性的函数称为记忆函数。
三、证明题
1. AR(1)模型: X t 1 X t1 at ,其中 at 是白噪声,且 E at2
37. ARMA(n,m) 的逆转形式 X t I j X t j at 。 j 1
38.
模型适应性检验的相关函数法,在显著性水平
0.05 下,若
k
1.96 /
N,
则接受 k 0 的假设,认为 at 是独立的。
39. 模型适应性检验的 2 检验法,在显著性水平 下,若统计量
G12
G22
时间序列分析作业及答案
(3) 5500 4000 (1 x ) 5 5500 x 106.58% 甲厂平均发展速度需 106.58% 4000
a1 a2 a3 a4 a5 1 解 : x x 1 x 1 5 a0 a1 a2 a3 a 4
n
5 (1 5.2%) (1 4.8%) (1 3.8%) (1 3.5%) (1 2.4%) 1
平均每年的降低率: x 96.05% 1 3.95%
lg1.375 0.13830 n 14.32年 15年后可达到乙厂水平 lg1.0225 0.00966
《时间序列分析》作业
STAT
[习题集P53第8题]甲、乙两厂各年产量资料如下。要求:(1) 分别计算两厂的平均发展速度;(2)按现在甲厂平均发展速度, 要几年才能达到乙厂1999年的水平?(3)如要求甲厂从1999年 起,在五年内达到乙厂1999年的水平,则甲厂的平均发展速度 必须达到多少?
a1990 25(1 4%)5 30.42 a2000 30.42(1 4.5%)10 47.24
a2000 25(1 4%)5 (1 4.5%)10 47.24 (万吨)
(2)已知:a2000 3 25 75 75 25(1 4%)5 (1 x )10
5
《时间序列分析》作业
STAT
[习题集P54第10题]某地区1995~2001年财政收入资料如下(单位: 亿元)。根据该资料: (1)用最小平方法的简捷式配合直线趋势方程; (2)根据直线趋势方程预测2002年的财政收入。
时间序列作业 VECM模型
我国FDI与进出口和人民币实际有效汇率——基于协整的VECM分析一、案例分析背景外商直接投资已成为我国经济快速发展的主要推动力之一。
2007年,据联合国《世界投资报告》统计,2006年我国吸引的外国直接投资达694.68亿美元,占当年我国固定资产形成的8%。
影响外商直接投资的因素较多且作用机制比较复杂,本文试图通过对FDI,进口总额,出口总额和人民币实际有效汇率之间的相互关系,发现我国外商直接投资、进出口和人民币汇率等重要宏观变量之间的长期均衡关系及相互作用机制。
二、变量选择和数据来源本实验选取了外商直接投资中实际利用外资金额代表外商直接投资额并记为FDI,以及进口总额,出口总额,人民币实际有效汇率1998年5月至2011年12月月度数据进行分析,由于数据数量较多,具体数据见附录。
三、VECM模型的构建(一)数据处理1.外商直接投资额将外商直接投资额变量记为FDI,FDI经过X12季节性调整后的FDI_SA图形如图1所示。
图1 经季节性调整后FDI走势图为了平滑FDI的变动趋势,对FDI做对数处理记为LFDI。
LFDI的图形如图2所示。
图2 LFDI变动图2、出口总额将出口总额变量记为EX,对EX进行季节性调整,季节性调整后的EX_SA图形如图3所示。
图3 经季节性调整后EX走势图为了平滑EX的变动趋势,对EX做对数处理记为LEX。
LEX的图形如图4所示。
图4 LEX变动图3.进口总额将出口总额变量记为IM,对IM进行季节性调整,季节性调整后的IM_SA图形如图5所示。
图5 经季节性调整后IM走势图为了平滑IM的变动趋势,对IM做对数处理记为LIM。
LIM的图形如图6所示。
图6 Lim变动图4、人民币实际有效汇率将人民币实际有效汇率记为REER,为了减少异方差性,对REER进行取对数处理,并记为LREER,LREER的图形如图5所示。
图7 LREER变动图(二)单位根检验对LFDI,LEX,LIM,LREER四个变量选取相应的形式进行单位根检验。
时间序列分析作业 (2)
应用时间序列分析随堂作业一、单项选择题1.的p 阶差分是( )t X A . B .()t PX B -1t P X B )1(-C . D .t P X B -1Pt BX -12、时间序列中,严平稳与宽平稳的关系是( )A .满足严平稳就满足宽平稳;B .满足宽平稳就满足严平稳;C .二者是相互等价的;D .正态分布时,宽平稳序列也满足严平稳条件3.ARMA(2,1)模型的形式是( )A .112211----++=t t t t t X X X εθεϕϕB .tt t t X εεθεθ+-=--2211C . 21112211------+=t t t t t X X X εθεθϕϕD .tt t t t t X X X εεθεθϕϕ+--+=----211122114.AR (1)模型的逆函数是 ( )A . B.1,0,11>==j I I j ϕjI 1ϕ=C .D .j I 1ϕ-=1ϕ=I 5. AR (1)模型的格林函数是 ( )A . B.j t j t e X -∞=∑=01φjt j j t e X +∞=∑=01φC .D .j t j j t e X -∞=∑=01φt j jt e X ∑∞==01φ6.﹛X t ﹜服从MA (q )过程,则Var (X t )为( )A . ;B .2e σ2221)1(e q σθθ+++ C .D .22121q e θθσ+++ 221e σθ7.下图是某时间序列的自相关和偏自相关图,请根据该图判断该序列是 ()A .MA (1)B .AR (1)C .ARMA (1,1) D.MA (2)8.对时间序列拟合arma (1,1)模型后,对序列残差进行检验发现,LB 统计量拒绝了原假设,这意味着 ( )A .残差序列是独立的B .残差序列存在自相关的;C .残差序列有GARCH 效应D .arma (1,1)模型是恰当的9.ARMA 过程是平稳的,意味着( )A .特征方程的根在单位圆内B .特征方程的根在单位圆外C .系数多项式方程的根在单位圆内D .其中AR 部分每项系数不超过1二、多单项选择题1.关于样本自协方差估计的正确说法有( )A .是样本自协方差的有偏估计量,()()∑-=+--=k N k k t t k y y y y N11ˆγ是样本自协方差的无偏估计量()()∑-=+---=kN k k t t k y y y y k N 1*1ˆγB .利用构造的自协方差矩阵是非负定的()()∑-=+--=k N k k t t k y y y y N 11ˆγC .利用构造的自协方差矩阵是非负定的()()∑-=+---=k N k k t tk y y y y k N 1*1ˆγD .常常用作为样本自协方差统计量k γˆE .是自协方差的无偏估计量;则是自协方差的渐进无偏估计量。
时间序列分析ch3习题解答7-11
1
1 0.4 ,12 2.51 1 0,1 2 or 1 0.5 , 2 1 1
1 2
所以,该模型有两种可能的表达式: xt t + t 1 和 xt t +2 t 1 。
8. 确 定 常 数 C 的 值 , 以 保 证 如 下 表 达 式 为 MA(2) 模 型 :
(3)
1 0.9,2 0.3
2 0.3 1 2 1 0.3 0.9 0.6 1 0.3 0.9 1.2 1 2 1
又 q 2 , 模型可逆。
(4)
1 1.3,2 0.4
达式:
kC 2 ) 2 解: (1)证明:因为 Var ( xt ) lim(1 ,所以该序列为非平稳 k
序列。 (2) yt xt xt 1 t (C 1) t 1 ,该序列均值、方差为常数,
2 2 E ( yt ) 0 , Var ( yt ) 1 (C 1)
故该 ARMA(2,1)模型不平稳,不可逆。
98 1 1 2 - 165 , k 1 1 2 2 1 2 ,k 1 -0.593939, k 1 8 2 , k 2 0.242424, k 2 k 33 2 2 1 0, k 3 1 2 ,k 2 0, k 3 0 ,k 3
10. 证明: (1) 对任意常数 C,如下定义的无穷阶 MA 序列一定是非平稳序列:
xt t C ( t 1 t 2 …), t ~ WN (0, 2 )
(2)
xt 的 1 阶差分序列一定是平稳序列,并求 yt 自相关系数表
时间序列分析作业讲解
《时间序列分析与应用》课程作业地震数据(COP.BHZ-24)时间序列分析一.前言本次作业选取了第24号文件,共1440个数据。
截取前1200个数据进行理分析,然后建立模型。
之后再对数据进行预测,然后对1200之后的30个数据进行更新,将更新结果与原观测值进行比对分析,最后得出结论。
二.数据处理1. 数据读取与画图首先将文件“COP.BHZ.txt"保存到E盘根目录下,以便于读取。
用scan()ffi 数将数据读入,并保存到sugar?文件中。
如图1所示。
>sugar2=scan(1COP.BHZ-024.txt")Read 1440 items>图1数据读取然后,画出该时间序列图。
横轴表示时间,单位是*10ms,纵轴表示高程, 单位是um。
代码及图示如图2、图3所示。
>wln.grapli (widch=-l • 875r heighL=2.5,poinEsize=8)>plot (sugax2 (0:1200] f xlab=, *10nis' . yLab=,uni,r9Q9)>图2时序图代码a 200 400 600 800 1000 1200餐10 ms图3前1200个数据散点图2. 平稳性检验从图中看出,该组数据随时间变化基本平稳,仅有小幅波动。
最高点与最低点相差也仅在250um之内。
通过adf.test()函数可以验证该假设,可以看出该序列是平稳的(stationary)o如图4所示。
然后用求平均函数mean()求出这1200个数据的平均值a,可以从图5看到结果。
>library(tsexies)>adf ・rest(sugax2[0:1200])Augirtent皂d Dickey-Fuller Testdara: suqax2[0:1200]Dickey-Fuller = 一9・3423, Lag order - 10^ p-value =0.01 alternative hypothesis: stationary图4平稳性检验结果>a=Tnean (sugar2 [0:1200]、>a[1] 7・878333■图5求平均值然后,将原始数据减去平均值,得到一组零均值的新数据,命名为sugar3o> 5UQar3:=sugar2 [0:12 00] -a3. 数据建模分析接下来绘制震前数据的自相关函数和偏自相关函数图像,初步判断其大概符合什么模型。
时间序列作业-单位根检验方法比较
单位根检验的几种方法比较一、引言单位根检验是时间序列进一步分析的基础。
传统的经济计量模型是根据某种经济理论和某些假设条件建立回归模型,描述各个经济变量之间相互依存、互为因果的关系。
其前提条件是回归时要求时序变量是平稳的,否则会产生伪回归现象。
现实经济中的变量儿乎都是非平稳的,直接运用变量的水平值研究经济现象之间的均衡关系容易导致谬论。
因此,建模前需对变量进行单位根检验。
二、文献综述随着计量经济学的发展,单位根检验理论不断得到完善和拓展,近30年來出现了多种检验单位根的方法,如DF和ADF检验法、PP检验法、KPSS检验法、DFOGLS 检验法、ERS检验法、NP检验法以及霍尔工具变量法等。
最常用的单位根检验方法是Fuller (1976)以及Dickey和Fuller (1979)提出的DF检验、ADF检验以及Phillips 和Perron (1988)提出的PP检验法。
然而,在现实经济环境下,由于受有限样本的影响,不同的检验方法存在着不同程度的检验水平畸变和检验功效损失。
虽然在大样本下,ADF、PP检验借助极限分布具有较好的功效,但是在小样本中,检验的功效明显下降。
为了提高时间序列单位根检验结果的可信性,应针对变量的数据生成特点采用多种单位根检验,并对其结果进行综合比较,若检验结果拒绝单位根过程,则可得出该序列是平稳序列;但若是非平稳的,还不能得出最终结论,因为检验研究假设前提是数据生成过程(DGP)无结构变化。
由于剧烈的外生冲击(如制度变迁,宏观经济政策等)可能会导致DGP具有结构突变,但若不考虑这种突变,用单位根检验时,将会把一个带水平突变或趋势突变的退势平稳过程误判为随机趋势非平稳过程,即进行单位根检验时不考虑结构突变会导致检验功效的降低。
Perron (1989)提出了结构突变的单位根检验,他利用此种方法对美国的14个经济变量重新进行平稳性检验发现,在Nelson和 Plosser检验的美国13个非平稳变量中,有10个变量是结构突变的趋势平稳,即分段平稳序列。
时间序列作业VAR模型教学内容
一、案例分析的目的按国际货币基金组织的划分口径可以把货币供给划分为:M0 (现钞):是指流通于银行体系以外的现钞,即居民手中的现钞和企业单位的备用金,不包括商业银行的库存现金。
M1 (狭义货币):M0加上商业银行活期存款构成。
M2 (广义货币):由M1加上准货币构成。
准货币由银行的定期存款、储蓄存款、外币存款以及各种短期信用工具如银行承兑汇票、短期国库券等构成。
我国参照国际货币基金组织的划分口径,把货币供给层次划分如下:M0 =现金M1 =M0 +活期存款M2 = M1+城乡居民储蓄存款+定期存款+其他存款M3=M2+商业票据+大额可转让定期存单在这三个层次中,M0的流动性最强,M1次之,M2的流动性最差。
M0与消费变动密切相关,是最活跃的货币;M1反映居民和企业资金松紧变化,是经济周期波动的先行指标,流动性仅次于M0;M2流动性偏弱,但反映的是社会总需求的变化和未来通货膨胀的压力状况,通常所说的货币供应量,主要指M2。
1. M1反映着经济中的现实购买力;M2不仅反映现实的购买力,还反映潜在的购买力。
若M1增速较快,则消费和终端市场活跃;若M2增速较快,则投资和中间市场活跃。
中央银行和各商业银行可以据此判定货币政策。
M2过高而M1过低,表明投资过热、需求不旺,有危机风险;M1过高M2过低,表明需求强劲、投资不足,有涨价风险。
2. M1增加表示货币市场流通性增强,M2中包括了M1,因此,再排除M1变化因素后,M2的增减代表了储蓄的增加,货币流通性降低。
根据央行的数据,2009年9月份货币供应,M2余额58.5万亿,同比增长29.3%,比上年末加快11.5个百分点。
M1余额20.2万亿元,增长29.5%,加快20.5个百分点。
9月末M1与M2的同比与环比增速双双创出了新高。
与此同时,M1的同比增速已经超越了M2的同比增速,这意味着整个经济领域的活跃度已被有效激活,储蓄开始活期化。
本案例主要研究M1的数量与M2的数量关系。
时间序列分析作业
习题2.21975-1980年夏威夷岛莫那罗亚火山每月释放的co2数据如下330.45 330.97 331.64 332.87 333.61 333.55331.90 330.05 328.58 328.31 329.41 330.63331.63 332.46 333.36 334.45 334.82 334.32333.05 330.87 329.24 328.87 330.18 331.50332.81 333.23 334.55 335.82 336.44 335.99334.65 332.41 331.32 330.73 332.05 333.53334.66 335.07 336.33 337.39 337.65 337.57336.25 334.39 332.44 332.25 333.59 334.76335.89 336.44 337.63 338.54 339.06 338.95337.41 335.71 333.68 333.69 335.05 336.53337.81 338.16 339.88 340.57 341.19 340.87339.25 337.19 335.49 336.63 337.74 338.36程序如下:(1)绘制该序列时序图,并判断该序列是否平稳。
co2328329330331332333334335336337338339340341342time01JAN7501JUL7501JAN7601JUL7601JAN7701JUL7701JAN7801JUL7801JAN7901JUL7901JAN8001JUL8001JAN81时序图清晰地显示释放的co2的数量以月为周期呈现出规则的周期性,除此之外,还有明显的逐个周期递增的趋势。
显然该序列不是平稳序列。
(2) 计算该序列的样本自相关系数 由样本自相关图可知,序列自相关系数如下:1ˆ0.90751ρ=2ˆ0.72171ρ=3ˆ0.51252ρ=4ˆ0.34982ρ=5ˆ0.24690ρ=6ˆ0.20309ρ= 7ˆ0.21021ρ=8ˆ0.26429ρ=9ˆ0.36433ρ=10ˆ0.48472ρ=11ˆ0.58456ρ=12ˆ0.60198ρ= 13ˆ0.51841ρ=14ˆ0.36856ρ=15ˆ0.20671ρ=16ˆ0.08138ρ=17ˆ0.00135ρ=18ˆ0.03248ρ=-19ˆ0.02710ρ=-20ˆ0.01124ρ=21ˆ0.08275ρ=22ˆ0.17011ρ=23ˆ0.24320ρ= 24ˆ0.25252ρ= (3) 绘制该样本自相关图,并解释该图形。
R语言时间序列作业
2016年第二学期时间序列分析及应用R 语言课后作业 第三章 趋势3.4(a) data(hours);plot(hours,ylab='Monthly Hours',type='o') 画出时间序列图(b) data(hours);plot(hours,ylab='Monthly Hours',type='l')type='o' 表示每个数据点都叠加在曲线上;type='b' 表示在曲线上叠加数据点,但是该数据点附近是断开的;type='l' 表示只显示各数据点之间的连接线段;type='p' 只想显示数据点。
points(y=hours,x=time(hours),pch=as.vector(season(hours)))TimeM o n t h l y H o u r s1983198419851986198739.039.540.040.541.041.5TimeM o n t h l y H o u r s1983198419851986198739.039.540.040.541.041.53.10(a)data(hours);hours.lm=lm(hours~time(hours)+I(time(hours)^2));summary(hours.lm) 用最小二乘法拟合二次趋势,结果显示如下: Call:lm(formula = hours ~ time(hours) + I(time(hours)^2))Residuals:Min 1Q Median 3Q Max -1.00603 -0.25431 -0.02267 0.22884 0.98358Coefficients:Estimate Std. Error t value Pr(>|t|) (Intercept) -5.122e+05 1.155e+05 -4.433 4.28e-05 *** time(hours) 5.159e+02 1.164e+02 4.431 4.31e-05 *** I(time(hours)^2) -1.299e-01 2.933e-02 -4.428 4.35e-05 *** ---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1TimeM o n t h l y H o u r s1983198419851986198739.039.540.040.541.041.5J A SO N D J FM A M J J AS O N DJ F M AM J J A S O N DJ F MA M JJA S ON DJ FM AMJ JA S ONDJ F M AM JResidual standard error: 0.423 on 57 degrees of freedom Multiple R-squared: 0.5921, Adjusted R-squared: 0.5778 F-statistic: 41.37 on 2 and 57 DF, p-value: 7.97e-12 (b)plot(y=rstudent(hours.lm),x=as.vector(time(hours)),type='l',ylab='StandardizedResiduals')points(y=rstudent(hours.lm),x=as.vector(time(hours)),pch=as.vector(season(hours))) 标准残差的时间序列,应用月度绘图标志。
时间序列作业试题及答案
第六章动态数列-、判斷题若将某地区社会商品库存额按时间先后顺序排列,此种动态数二、1.列属于时期数列。
()定基发展速度反映了现象在一定时期内发展的总速度,环比发三、2.展速度反映了现象比前一期的增长程度。
()平均增长速度不是根据各期环比增长速度直接求得的,而是根四、3.据平均发展速度计算的。
()•用水平法计算的平均发展速度只取决于最初发展水平和最末发五、4展水平,与中间各期发展水平无关。
()平均发展速度是环比发展速度的平均数,也是一种序时平均六、5.数。
()1> X 2、X 3、J 4、V 5. Vo七、单项选择题•根据时期数列计算序时平均数应采用()。
八、1几何平均法 B.加权算术平均法C.简单九、 A.算术平均法 D.首末折半法十、2•下列数列中哪一个属于动态数列()。
十-、 A.学生按学习成绩分组形成的数列 B.工业企业按地区分组形成的数列十二、 C.职工按工资水平高低排列形成的数列 D.出口额按时间先后顺序排列形成的数列十三、3.已知某企业1月、2月、3月、4月的平均职工人数分别为190人、195人、193人和201人。
则该企业一季度的平均职工人数的计算方法为()。
十四、心(190+195+193+201)4B.190+195 + 1933十五.(190/2)+195+193 + (201/2) 、[190/2)+195+193+(201/2)C・D・ ---------------------------------4-1 44.说明现象在较长时期内发展的总速度的指标是()。
A、环比发展速度 B.平均发展速度 C.定基发展速度 D.环比增长速度5•已知各期环比增长速度为2%、5%、8%和7%,则相应的定基增长速度的计算方法为()。
A.(102%X105%X108%X107%) -100%B.102%X105%X108%X107%C.2%X5%X8%X7%D.(2%X5%X8%X7%) -100%6•定基增长速度与环比增长速度的关系是()。
时间序列分析习题及答案
时间序列分析第一题:1、绘制时序图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc gplot data=ex1_1;plot x*time=1;symbol1 c=black v=star i=join;run;时序图:2、绘制自相关图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc arima data=ex1_1;identify var=x;run;样本自相关图:白噪声检验输出结果:因为P值小于α,所以该序列为非白噪声序列,根据时序图看出数据并不在一个常数值附近随机波动,后期有递减的趋势,所以不是平稳序列。
第二题:1、选择拟合模型方法一:首先绘制该序列的时序图,直观检验序列平稳性。
时间序列作业
习题2.31. 考虑系列{1,2,…,20}:(1)判断该系列是否平稳。
(2)计算该序列的样本自相关系数(k=1,2,…,6)。
(3)绘制该样本自相关图,并解释该图形。
解:(1)绘制该序列的时序图;平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界,但是该时序图显示系列并不平稳,呈现明显的递增趋势,所以一定不是平稳序列。
(2)分析上图得; 1ρ=0.850 2ρ=0.702 3ρ=0.556 4ρ=0.415 5ρ=0.280 6ρ=0.153(3)考察该序列的自相关图,进一步检验该序列的平稳性。
从图中我们发现序列的自相关系数递减到零的速度相当缓慢,在很长的延迟时期里,自相关系数一直为正,而后又一直为负,在自相关图中显示三角对称性,这是具有单调趋势的非平稳序列的一种自相关图形式。
该序列并不平稳。
同时,由于Q 检验的P 值都非常小,所以有很大的把握,断定该序列属于非白噪声序列。
2、1975-1980年夏威夷岛莫纳罗亚火山(Mauna Loa )每月释放的CO 2 数据(单位:ppm )如表2-7所示(行数据)。
表2-7:(1) 绘制该序列的时序图,并判断该序列是否平稳。
(2) 计算该序列的样本自相关系数(k=1,2, (24)(3) 绘制该样本自相关图,并解释该图形。
2.解:(1)绘制时序图由该序列的时序图可知,夏威夷岛莫纳罗亚火山(Mauna Loa)平均每月释放的CO2 数据以年为周期呈现出规则的周期性,除此之外,还有明显的逐年递增趋势。
所以该序列一定不是平稳序列。
(2)由上图知,自相关系数ρ1=0.908 ρ2=0.722 ρ3=0.513 ρ4=0.350 ρ5=0.247ρ6=0.203 ρ7=0.210 ρ8=0.264 ρ9=0.364 ρ10=0.485 ρ11=0.585 ρ12=0.602ρ13=0.518ρ14=0.369ρ15=0.207 ρ16=0.081 ρ17=0.001 ρ18=-0.032ρ19=-0.027ρ20=0.011ρ21=0.083ρ22=0.170 ρ23=0.243 ρ24=0.253(3)该序列的样本自相关系数(k=1,2,…,24)长期位于零轴的一侧,这是具有单调趋势序列的典型特征,同时自相关图呈现出明显的正弦波动规律,这是具有周期变化规律的非平稳序列的典型特征。
(完整版)时间序列习题(含答案)
一、单项选择题1.时间数列与变量数列( )A都是根据时间顺序排列的 B都是根据变量值大小排列的 C前者是根据时间顺序排列的,后者是根据变量值大小排列的D前者是根据变量值大小排列的,后者是根据时间顺序排列的2.时间数列中,数值大小与时间长短有直接关系的是( )A平均数时间数列 B时期数列 C时点数列 D相对数时间数列 3.发展速度属于( )A比例相对数 B比较相对数 C动态相对数 D强度相对数4.计算发展速度的分母是( )A报告期水平 B基期水平 C实际水平 D计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D无法确定7.由一个9项的时间数列可以计算的环比发展速度( )A有8个 B有9个 C有10个 D有7个8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58D 6%6.15810.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法 11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A%100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D%100⨯-=基期水平基期水平报告期水平增长速度E%100⨯=基期水平报告期水平增长速度5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a n x K Ba a nx n =C1a a n x n = D nR x = En xx ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A第二年的环比增长速度=定基增长速度=10%B第三年的累计增长量=逐期增长量=200万元C第四年的定基发展速度为135%D第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度-18.测定长期趋势的方法主要有( )A时距扩大法 B方程法 C最小平方法 D移动平均法 E几何平均法9.关于季节变动的测定,下列说法正确的是( )A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D总体范围要一致E计算价格和单位要一致答案1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。
时间序列作业
时间序列作业(总5页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题1. 考虑系列{1,2,…,20}:(1)判断该系列是否平稳。
(2)计算该序列的样本自相关系数(k=1,2,…,6)。
(3)绘制该样本自相关图,并解释该图形。
解:(1)绘制该序列的时序图;平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界,但是该时序图显示系列并不平稳,呈现明显的递增趋势,所以一定不是平稳序列。
(2)分析上图得; 1ρ= 2ρ= 3ρ= 4ρ= 5ρ= 6ρ=(3)考察该序列的自相关图,进一步检验该序列的平稳性。
从图中我们发现序列的自相关系数递减到零的速度相当缓慢,在很长的延迟时期里,自相关系数一直为正,而后又一直为负,在自相关图中显示三角对称性,这是具有单调趋势的非平稳序列的一种自相关图形式。
该序列并不平稳。
同时,由于Q 检验的P 值都非常小,所以有很大的把握,断定该序列属于非白噪声序列。
2、1975-1980年夏威夷岛莫纳罗亚火山(Mauna Loa )每月释放的CO 2 数据(单位:ppm )如表2-7所示(行数据)。
表2-7:(1) 绘制该序列的时序图,并判断该序列是否平稳。
(2) 计算该序列的样本自相关系数(k=1,2, (24)(3) 绘制该样本自相关图,并解释该图形。
2.解:(1)绘制时序图由该序列的时序图可知,夏威夷岛莫纳罗亚火山(Mauna Loa)平均每月释放的CO2 数据以年为周期呈现出规则的周期性,除此之外,还有明显的逐年递增趋势。
所以该序列一定不是平稳序列。
(2)由上图知,自相关系数ρ1= ρ2= ρ3= ρ4= ρ5= ρ6= ρ7= ρ8= ρ9= ρ10= ρ11= ρ12=ρ13=ρ=ρ= ρ16= ρ17= ρ18=ρ=ρ20=ρ=ρ= ρ23= ρ24=(3)该序列的样本自相关系数(k=1,2,…,24)长期位于零轴的一侧,这是具有单调趋势序列的典型特征,同时自相关图呈现出明显的正弦波动规律,这是具有周期变化规律的非平稳序列的典型特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-17解:(1)判断该序列的平稳性与纯随机性。
1)根据题中所列数据,绘制该序列的时序图,如图3-17-1所示。
图3-17-1:某城市过去63年中每年降雪量时序图其中x表示每年降雪量。
时序图显示某城市过去每年降雪量始终围绕在80.3mm附近随机波动,没有明显的趋势或周期性,基本可视为平稳序列。
2)自相关图检验。
如图3-17-2所示。
图3-17-2:样本自相关图样本自相关图显示延迟2阶之后,该序列的自相关系数都落入2倍标准误之内,而且自相关系数在零值附近波动,是典型的短期相关自相关图。
由时序图和样本自相关图的性质,可以认为该序列为平稳序列。
α=,检验结果见表3-17-1。
3)纯随机性检验(0.05)表3-17-1:纯随机性检验结果<,认为该序列为检验结果显示,在6阶延迟下LB检验统计量的P值0.05非白噪声序列。
(2)拟合模型1)模型识别。
根据样本自相关图、偏自相关图对模型进行直接识别。
由(1)可知,该序列在6阶延迟下平稳且非白噪声,已知样本自相关图,即图3-17-2所示,偏自相关图如下图所示。
图3-17-3:样本偏自相关图而该序列的图像并不能直接识别出较为准确的模型,因此进一步利用SAS对模型进行最优模型定阶,结果如图3-17-4所示:图3-17-4:最小信息量结果最后一条信息显示,在自相关延迟系数小于等于5,移动平均延迟系数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(1,0)模型,即AR(1)模型。
2)参数估计。
先利用SAS输出未知参数估计结果,如下表所示。
表3-17-2:未知参数估计结果3)模型检验。
利用SAS,残差序列白噪声检验结果如下表所示。
表3-17-3:残差自相关检验结果残差白噪声检验显示延迟6阶、12阶、18阶、24阶LB 检验统计量的P 值均显著大于0.05,所以该AR(1)模型显著有效。
参数显著性检验结果(见表3-17-2)显示两个参数t 统计量的P 值均小于0.05,即两个参数均显著。
因此AR(1)模型是该序列的有效拟合模型。
拟合模型的具体形式。
利用SAS ,拟合模型的具体形式如下图所示。
图3-17-5:拟合模型形式该输出形式等价于180.99410.31587.t t t x x ε-=-+(3)预测该城市未来5年的降雪量。
根据观察值数据和(2)中得到的拟合模型,利用SAS 对序列进行短期预测,输出结果如下图所示。
图3-17-6:未来5年的预测结果根据观察值数据和预测结果,利用SAS 绘制拟合预测图,如下图所示。
图3-17-7:拟合预测图【程序】data zuoye3_17;input x@@;time=_n_;cards;126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4110.5 25 69.3 53.5 39.8 63.6 46.7 72.979.6 83.6 80.7 60.3 79 74.4 49.6 54.771.8 49.1 103.9 51.6 82.4 83.6 77.8 79.389.6 85.5 58 120.7 110.5 65.4 39.9 40.188.7 71.4 83 55.9 89.9 84.8 105.2 113.7124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.998.3 55.5 66.1 78.4 120.5 97 110;proc gplot data=zuoye3_17;plot x*time;symbol i=jion c=black v=star;proc arima data=zuoye3_17;identify var=x nlag=6minic p= (0:5) q= (0:5);estimate p=1;forecast lead=5id=time out=results;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay; symbol1c=black i=none v=star;symbol2c=red i=jion v=none;symbol3c=green i=jion v=none l=25;run;3-19解:(1)判断该序列的平稳性与纯随机性。
1)根据题中所列数据,绘制该序列的时序图,如图3-19-1所示。
图3-19-1:现有201个连续生产记录时序图其中x表示生产记录数据。
时序图显示现有的201个连续生产记录始终围绕84.1194附近随机波动,没有明显的趋势或周期性,基本可视为平稳序列。
2)自相关图检验。
如图3-19-2所示。
图3-19-2:样本自相关图样本自相关图显示延迟1阶之后,该序列的自相关系数都落入2倍标准误之内,而且自相关系数在零值附近波动,是典型的短期相关自相关图。
由时序图和样本自相关图的性质,可以认为该序列为平稳序列。
α=,检验结果见表3-19-1。
3)纯随机性检验(0.05)表3-19-1:纯随机性检验结果检验结果显示,在6阶、12阶、18阶、24阶延迟下LB检验统计量的P值 ,认为该序列为非白噪声序列。
0.05(2)拟合模型1)模型识别。
根据样本自相关图、偏自相关图对模型进行直接识别。
由(1)可知,该序列在6阶、12阶、18阶、24阶延迟下均平稳且非白噪声,已知样本自相关图,即图3-19-2所示,偏自相关图如下图所示。
图3-19-3:样本偏自相关图由样本自相关图和偏自相关图可知,自相关系数1阶截尾,偏自相关系数拖尾,可以初步确定拟合模型为MA(1)模型。
为了拟合出较为有效的模型,进一步利用SAS对模型进行最优模型定阶,结果如图3-19-4所示:图3-19-4:最小信息量结果最后一条信息显示,在自相关延迟系数小于等于6,移动平均延迟系数也小于等于6的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(0,1)模型,即MA(1)模型。
2)参数估计。
先利用SAS输出未知参数估计结果,如下表所示。
表3-19-2:未知参数估计结果3)模型检验。
利用SAS ,残差序列白噪声检验结果如下表所示。
表3-19-3:残差自相关检验结果残差白噪声检验显示延迟6阶、12阶、18阶、24阶、30阶、36阶LB 检验统计量的P 值均显著大于0.05,所以该MA(1)模型显著有效。
参数显著性检验结果(见表3-19-2)显示两个参数t 统计量的P 值均远小于0.05,即两个参数均显著。
因此MA(1)模型是该序列的有效拟合模型。
4)拟合模型的具体形式。
利用SAS ,拟合模型的具体形式如下图所示。
图3-19-5:拟合模型形式该输出形式等价于184.128890.47959.t t t x εε-=+-(3)预测该序列下一时刻95%的置信区间。
根据观察值数据和(2)中得到的拟合模型,利用SAS 对序列进行预测,输出结果如下图所示。
图3-19-6:下一时刻的预测结果由输出结果可知下一时刻95%的置信区间为(80.4131,90.9580)。
【程序】data zuoye3_19;input x@@;time=_n_;cards;81.9 89.4 79.0 81.4 84.8 85.9 88.0 80.3 82.6 83.5 80.2 85.2 87.2 83.5 84.3 82.9 84.7 82.9 81.5 83.4 87.7 81.8 79.6 85.8 77.9 89.7 85.4 86.3 80.7 83.8 90.5 84.5 82.4 86.7 83.0 81.8 89.3 79.3 82.7 88.0 79.6 87.8 83.6 79.5 83.3 88.4 86.6 84.6 79.7 86.0 84.2 83.0 84.8 83.6 81.8 85.9 88.2 83.5 87.2 83.7 87.3 83.0 90.5 80.7 83.1 86.5 90.0 77.5 84.7 84.6 87.2 80.5 86.1 82.6 85.4 84.7 82.8 81.9 83.6 86.8 84.084.2 82.8 83.0 82.0 84.7 84.4 88.9 82.4 83.085.0 82.2 81.6 86.2 85.4 82.1 81.4 85.0 85.8 84.2 83.5 86.5 85.0 80.4 85.7 86.7 86.7 82.3 86.4 82.5 82.0 79.5 86.7 80.5 91.7 81.6 83.9 85.6 84.8 78.4 89.9 85.0 86.2 83.0 85.4 84.4 84.5 86.2 85.6 83.2 85.7 83.5 80.1 82.2 88.6 82.0 85.0 85.2 85.3 84.3 82.3 89.7 84.8 83.1 80.6 87.4 86.8 83.5 86.2 84.1 82.3 84.8 86.6 83.5 78.1 88.8 81.9 83.3 80.0 87.2 83.3 86.6 79.5 84.1 82.2 90.8 86.5 79.7 81.0 87.2 81.6 84.4 84.4 82.2 88.9 80.9 85.1 87.1 84.0 76.5 82.7 85.1 83.3 90.4 81.0 80.3 79.8 89.0 83.7 80.9 87.3 81.1 85.6 86.6 80.0 86.6 83.3 83.1 82.3 86.7 80.2;proc gplot data=zuoye3_19;plot x*time;symbol i=jion c=black v=star;proc arima data=zuoye3_19;identify var=x minic p= (0:7) q= (0:7);estimate q=1;forecast lead=1id=time out=results;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay; symbol1c=black i=none v=star;symbol2c=red i=jion v=none;symbol3c=green i=jion v=none l=25;run;。