人教版七年级下册数学第二章复习题知识分享
人教版七年级下册数学各章经典复习题
七年级数学下册 9、如图 5, a ∥b , M , N 分别在 a ,b 上, P 为两平行线间一点,那么 1 2 3( )第五章相交线与平行线A .180B . 270C . 360D . 540一、选择题10、已知:如图 6,AB//CD ,则图中 、 、 三个角之间的数量关系为( ).1、如图 1,如果 AB ∥CD ,那么下面说法错误的是( )A 、 + + =360B 、 + + =180C 、 + - =180D 、 - - =90A .∠3=∠7;B .∠ 2=∠6C 、∠ 3+∠4+∠5+∠6=1800D 、∠4=∠82、如图 2, AB ∥ DE , E 65 ,则 BC ()P2M 1aAB 120°α 135115 36 65 AB C D .. . .3、如图 3,PO ⊥OR ,OQ ⊥PR ,则点 O 到 PR 所在直线的距离是线段()的长3Nb25°CDA 、POB 、ROC 、OQD 、PQC图 4二、填空题图 5 图 6A 1D82711、把“等角的补角相等”写成“如果 ⋯ ,那么 ⋯ ”形式A12、如图 7,已知 AB ∥CD ,BE 平分∠ ABC ,∠ CDE =150°,则∠ C =BFB 3 4 56 C D 图 2E 图 313、如图 8,把长方形纸片沿 折叠,使 , 分别落在 ,的位置,若 ,则 等于图 114、如图 9,已知 , =____________4、下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则E 内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A . 1 B . 2C DC .3D .以上结论皆错 AB 5、如果 a ∥b ,b ∥c ,那么a ∥c ,这个推理的依据是( )A 、等量代换B 、两直线平行,同位角相等C 、平行公理D 、平行于同一直线的两条直线平行图 7图 8图 96、如图 4,小明从 A 处出发沿北偏东60°方向行走至 B 处,又沿北偏西20 方向行走至 C 处,此时需把 三、解答题 15、推理填空:方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°7、如果两个角的两边分别平行,而其中一个角比另一个角的 4 倍少 30 ,那么这两个角是( )A . 42 、138 ;B . 都是 10 ;C . 42 、138 或 42 、10 ;D . 以上都不对如图: ① 若∠ 1=∠2,则 ∥() 若∠DAB+ ∠ABC=1800,则∥ ()3 D C12②当∥时,∠ C+∠ABC=180°()当∥时,∠3= ∠ CAB8、下列语句错误的是()()A.连接两点的线段的长度叫做两点间的距离;B.两条直线平行,同旁内角互补16.已知,如图∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+ ∠C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补BCD=180°.D.平移变换中,各组对应点连成两线段平行且相等将下列推理过程补充完整:- 1 -(1)∵∠1=∠ABC(已知),第六章实数∴AD∥______一、填空题(2)∵∠3=∠5(已知),1∴AB∥______, 1.169 的算术平方根为()(______________________________)_(3)∵∠ABC+∠BCD=180°(已知),2、已知5 11的整数数部分为m,5 11的小数部分为n,则m n ()∴_______∥________, 3、式子x 3 有意义,x 的取值范围()(_______________________________)_4、已知:y= x 5 + 5 x +3,则xy 的值为()17、已知:如图AB∥CD,EF 交AB 于G,交CD 于F,FH 平分∠EFD,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8 分)E 5、3 a b 4 0,求a+b 的值()A HB 6、9 的平方根是()G7、快速地表示并求出下列各式的平方根9 C F D⑴116⑵|-5| ⑶0.81 ⑷(-9)28、如果一个数的平方根是 a 1和2a 7 ,求这个数?9.用平方根定义解方程18、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.⑴16(x+2)2=81 ⑵4x2-225=0AED110、下列说法正确的是( )FB 2G CA、16 的平方根是 4B、 6 表示6 的算术平方根的相反数C、任何数都有平方根D、2a 一定没有平方根11、求值:⑴3 0.512 = ⑵-3 729=⑶3 ( 2)3=⑷(3 8 )3=12、如果3 x 2 有意义,x 的取值范围为- 2 -13.用立方根的定义解方程3-27 =0 ⑵2(x+3)3=512 ⑴x公式四:∵(3 8 )3= (3 27 )3= (3 125)3=∴ 3 ) 3 ( a =重要公式综合公式三和四,可知,当满足a 条件时,3 a3 = 33 )( a公式一: ∵ 2 2 = 2 3 = 2 4 = 公式五:3a=2 2 2 知识点五:实数定义及分类( 2) ( 3) ( 4)= = = ∴ 2 a = 无理数的定义:实数的定义:有关练习:1.( 172)= 21999 =实数与上的点是一一对应的1、判断下列说法是否正确:2(a 3)(1)实数不是有理数就是无理数(2)无限小数都是无理数。
人教版七年级数学下册各章节知识点归纳
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
七年级下册数学2章知识点
七年级下册数学2章知识点数学,作为一门基础学科,为我们的生活提供了必要的数学工具和技能。
数学不仅仅是一门学科,而且是一种思考方式。
在七年级下册数学的第二章中,我们将学习一些重要的数学知识点。
下面就让我们一起来了解这些知识点吧!一、有理数加减法在第二章中,我们将学习有理数的加减法。
有理数是可以表示为两个整数之比的数(其中分母不等于零)。
在加减法中,我们需要注意符号的运用。
当两个数的符号相同时,我们将它们的绝对值相加,符号不变。
例如:3 + 5 = 8-3 + (-5) = -8当两个数的符号不同时,我们将它们的绝对值相减,结果的符号与绝对值较大的数的符号相同。
例如:-3 + 5 = 23 + (-5) = -2二、有理数乘法在有理数乘法中,我们需要注意正负号的运用。
当两个数的符号相同时,它们的积为正数。
例如:3 × 5 = 15-3 × (-5) = 15当两个数的符号不同时,它们的积为负数。
例如:3 × (-5) = -15-3 × 5 = -15三、有理数除法有理数除法可以看作是有理数乘法的逆运算。
在有理数除法中,我们需要将除数的倒数乘以被除数。
例如:6 ÷ 3 = 2,等价于 6 × 1/3 = 2-6 ÷ (-3) = 2,等价于 -6 × 1/(-3) = 2四、分数的意义和性质在第二章中,我们还将学习分数的意义和性质。
分数是由一个整数(分子)和一个非零自然数(分母)构成的数。
分数有多种意义,如:部分、比例、运算、度量等。
四分之一、三分之二等常见分数都有自己的含义和应用。
另外,分数还有一些重要的性质,如:分数的大小比较、分数的化简、分数的加减乘除等。
五、小数的意义和性质小数是指一个由整数部分和小数部分组成的有限或无限循环的数。
小数在我们的日常生活中使用非常广泛,如:货币、时间、长度、重量等。
我们还需要学习小数的一些性质,如:小数和分数的关系、小数的大小比较、小数的加减乘除等。
七年级下册数学第二章知识点归纳
七年级下册数学第二章知识点归纳全文共3篇示例,供读者参考七年级下册数学第二章知识点归纳篇1相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
七年级下册数学第二章知识点归纳篇2(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)
七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)( 时间:90分钟 总分:100分)一、选择题:(本大题共12小题,每小题2分,共计24分)1.下列说法中,正确的是( )A. 单项式b 的次数是0B. 是一次单项式C. 24x 3是7次单项式D. -5是单项式2.对于单项式-的系数和次数分别是( )A. -2,2B. -2,3C. -,2D. -,33.下列单项式中,书写规范的是( )A. 1aB. x ·2C. 0.5xD. 1mn4.若21213n x y --是7次单项式,则n =( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. -x +3x 三次二项式B. x -1二次二项式C. x 2-2x +34是二次三项式D. -5x 5+2x 4y 2-1是八次三项式6.一个n 次多项式(n 为正整数),它的每一项的次数是( )A. 都等于nB. 都小于nC. 都不小于nD. 都不大于n7.设M ,N 都是关于x 的五次多项式,则M +N 是( )A.十次多项式B.五次多项式C.次数不大于5的多项式D.次数不大于5的整式8.-3x 4与3y 是同类项,则mn 的值为( )A. 6B. 8C. 2D. 19.化简:ab-(2ab-3ab2)结果是()A.3a2b+3abB.-3ab2-abC.3ab2-abD.-3ab2+3ab10.若x 是两位数,y是一位数,如果把y 置于x左边所得的三位数是()A.100y+xB. 100y+10xC.10y+xD. yx11.减去2-3x等于6x2-3x-8的代数式是()A.6x2-6x-10B.6x2-10C.6x2-6D.6x2-6x-612.若a2b+4=0,则代数式3a2b-(a2b-3a2b)的值为()A. 20B. -20C. 4D. -4二、填空题:(本大题共8小题,每小题2分,共16分)13.用式子表示“数a的3倍与3的差的一半”是.14.把多项式6+2x4-3x2+7x3按各项的次数从高到低重新排列为.15.某项工程。
人教版初一七年级数学第二单元知识点及练习题
第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【2.1.1列代数式】一.选择题1.某种商品进价为a元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为()A.a元 B.0.7a元 C.0.91a元D.1.03a元2.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为()A.10x+y B.xy C.100x+y D.1000x+y3.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元 C.(3a+b)元 D.(a+3b)元4.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1-25%)x+10 C.25%(x+10)D.(1-25%)(x+10)月份的产值是()A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元6.如图,表示阴影部分面积的代数式是()A.ab+bc B.ad+c(b-d)C.c(b-d)+d(a-c) D.ab-cd二.填空题7.某机关单位2015年3月的三公经费为a万元,为响应省委提倡节俭的号召,开始减少三公经费,a的式子表示).10.某市出租车收费标准为:起步价10元,3千米后每千米价1.8元.则某人乘坐出租车x(x>3)三.解答题11.列代数式:(1)比a的一半大3的数(2)a与b的差的c倍(3)a的一半与b的平方的差.(4)王明同学买2本练习册花n元,那么买m本练习册要花多少元?(5)正方体的棱长为a,那么它的表面积是多少?体积呢?【2.1.2单项式】一.选择题A.3个 B.4个C.5个D.6个A.系数是-35,次数是2 B.系数是35,次数是2C.系数是-3,次数是3 D.系数是-35,次数是3A.49,7 B.49π,6 C.4π,6 D.49π,4A.2 B.3 C.5 D.65.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x36.下列说法中正确的是()A.-13 xy2是单项式B.xy2没有系数C.x-1是单项式D.0不是单项式二.填空题三.解答题12.若(a-4)x3y b+2是关于x,y的四次单项式,求a,b应满足的条件.【2.1.3多项式】一.选择题A.2个B.3个C.4个D.5个2.多项式1-2xy+xy3的次数是()A.1 B.2 C.3 D.4A.三次四项式B.三次三项式 C.四次四项式 D.二次四项式A.1个B.2个C.3个D.4个5.多项式1+xy-xy2的次数及最高次项的系数分别是()A.2,1 B.2,-1 C.3,-1 D.5,-16.当x=1时,代数式4-3x的值是()A.1 B.2 C.3 D.4二.填空题三.解答题12.若a,b互为相反数,c,d互为倒数,x的绝对值为4,求代数式a+b-cd+x2的值.【2.2.1合并同类项】一.选择题1.下列各式中,是3a2b的同类项的是()A.2x2y B.-2ab2C.a2b D.3ab2.如果2x2y3与x2y n+1是同类项,那么n的值是()A.1 B.2 C.3 D.43.计算-a2+3a2的结果为()A.-2a2B.2a2C.4a2D.-4a24.下列计算正确的是()A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a35.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为()A.29 B.-6 C.14 D.246.如果x2+xy=2,xy+y2=1,则x2+2xy+y2的值是()A.0 B.1 C.2 D.3二.填空题三.解答题11.合并同类项(1)4a2+3b2-2ab-3a2-5b2;(2)3xy2-5xy+0.5x2y-3xy2-4.5x2y;(3)3x3+x3;(4)xy2;(5)4a2+3b2+2ab−4a2−4b2.13.先化简,再求值:2x+7+3x-2,其中x=2.【2.2.2去括号合并同类项】一.选择题1.化简-16(x-0.5)的结果是()A.-16x-0.5 B.-16x+0.5 C.16x-8 D.-16x+82.学习了去括号后,李欣、曹敏、李犇和朱晓洋同学在,去括号:-(-a+b-1)时分别得到下面的,其中正确的是()A.-a+b-1 B.a+b+1 C.a-b+1 D.-a+b+13.下列各题去括号所得结果正确的是()A.x2-(x-y+2z)=x2-x+y+2z B.x-[-y+(-3x+1)]=x+y+3x-1C.3x-[5x-(x-1)]=3x-5x-x+1 D.(x-1)-(x2-2)=x-1-x2-24.下列等式成立的是()A.-(3m-1)=-3m-1 B.3x-(2x-1)=3x-2x+1C.5(a-b)=5a-b D.7-(x+4y)=7-x+4y5.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.1 B.5 C.-5 D.-16.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A.3x2y B.-3x2y+xy2.-3x2y+3xy2D.3x2y-xy2二.填空题9.去括号,合并同类项得:3b-2c-[-4a+(c+3b)]+c= .三.解答题11.先去括号,再合并同类项(1)2(2b-3a)+3(2a-3b)(2)4a2+2(3ab-2a2)-(7ab-1)12.先化简,再求值:【2.2.3整式的加减】一.选择题1.化简(2x-3y)-3(4x-2y)结果为()A.-10x-3y B.-10x+3y C.10x-9y D.10x+9y2.ab减去a2-ab+b2等于()A.a2+2ab+b2B.-a2-2ab+b2C.-a2+2ab-b2D.-a2+2ab+b23.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6a+b B.6a C.3a D.10a-b4.若多项式3x2-2xy-y2减去多项式M所得的差是-5x2+xy-2y2,则多项式M是()A.-2x2-xy-3y2B.2x2+xy+3y2C.8x2-3xy+y2D.-8x2+3xy-y2[5.若代数式2x3-8x2+x-1与代数式3x3+2mx2-5x+3的和不含x2项,则m等于()A.2 B.-2 C.4 D.-46.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式二.填空题9.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比10.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:三.解答题11.已知A=3a2b-2ab2+abc,小明错将“2A-B”看成“2A+B”,算得结果C=4a2b-3ab2+4abc.(1)计算B的表达式;值.12.已知A=2x2+3xy-2x-1,B=-x2+xy-1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值。
人教版七年级下册数学Unit 2 知识点总结
人教版七年级下册数学Unit 2 知识点总结一、整数的加减运算1. 同号相减,异号相加同号相减:先把它们的绝对值相加,然后把相加的结果的符号改为原来两数的符号。
异号相加:先把它们的绝对值相减,然后把相减的结果的符号与绝对值大的数的符号一致。
2. 加法的基本性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)加法单位元:a+0=a3. 减法的基本性质减法的基本性质:a-b=c,a=c+b二、小数的加减运算1. 数轴法小数数轴上每格表示1/10(或0.1)。
小数a对应的点在数轴上,向右移动b个单位就表示a+b,向左移动b个单位就表示a-b。
2. 竖式计算法竖式计算法跟整数加减法竖式计算法类似。
三、正比例函数1. 正比例函数的概念设x,y是两个正比例函数,若对于x的每一个正值,y都与x 成比例,那么就称y是x的正比例函数。
2. 正比例函数的图象y=kx(k>0),是一条通过原点的直线。
k越大,斜率越大,直线越陡。
3. 正比例函数的性质k>0,y=kx 与 x>0,y=k/x 互为反比例函数。
四、图形与运动1. 轨迹物体运动过程中所经过的所有位置构成这个物体的轨迹。
2. 匀速直线运动在相等的时间内,物体在直线上所经过的路程相等,则这个物体做匀速直线运动。
直线上的匀速直线运动可以用速度与位移表示。
3. 路程和位移的关系路程:物体行进的路线长度。
位移:一个物体由一个位置达到另一个位置,它所在直线上起点和终点之间的“直线距离”。
在匀速直线运动中,位移恒等于路程。
4. 速度速度是物体运动在某个方向的变化量,即单位时间内物体行进的长度。
物体速度的计算公式:v= l/t,l是运动物体在某个方向上的行进路程,t是运动物体所用的时间。
5. 等速直线运动当物体在同一直线上行进,且速度大小不变,那么这个物体做的运动就是等速直线运动。
等速直线运动可以用已知路程及物体速度来表示。
6. 图象与运动在坐标系上,把物体的位置与时间对应地表示出来,所得到的图象称为运动图象。
数学七下第2章知识点总结
数学七下第2章知识点总结人教版数学七年级下册第二章知识点总结。
一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
3. 垂线。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线及其判定。
1. 平行线。
- 定义:在同一平面内,不相交的两条直线叫做平行线。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 平行线的判定。
- 方法1:同位角相等,两直线平行。
- 方法2:内错角相等,两直线平行。
- 方法3:同旁内角互补,两直线平行。
三、平行线的性质。
1. 性质1。
- 两直线平行,同位角相等。
2. 性质2。
- 两直线平行,内错角相等。
3. 性质3。
- 两直线平行,同旁内角互补。
四、命题、定理、证明。
1. 命题。
- 定义:判断一件事情的语句,叫做命题。
命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
- 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题。
- 假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题。
2. 定理。
- 经过推理证实得到的真命题叫做定理。
3. 证明。
- 在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明。
人教版七年级下册数学《消元―解二元一次方程组》二元一次方程组说课教学课件复习(第2课时加减法)
加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y)=8.
问题3 如何解这个方程组?
加减消元法的实际应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,
消元—解二元一次方程组 加减法
课件
教学目标
会用加减消元法解简单的二元一次方程组.
理解解二元一次方程组的思路是“消元”, 经历由未知向 已知转化的过程,体会化归思想. 会用二元一次方程组表示简单实际问题中的数量关系,并 用加减消元法解决它.
能选择适当方法解二元一次方程组.
教学重点 用加减消元法解简单的二元一次方程组. 用二元一次方程组解简单的实际问题.
(4)2(3y-3)=6x+4.
复习巩固 2.用代入法解下列方程组:
y=x+3, (1)
7x+5y=9;
3s-t=5, (2)
5s+2t=15;
3x+4y=16, (3)
5x-6y=33;
4(x-y-1)=3(1-y)-2, (4)
复习巩固 3.用加减法解下列方程组:
3u+2t=7, (1)
6u-2t=11;
教学难点
用二元一次方程组解简单的实际问题.
思考 根据等式性质填空: (1)若a=b,那么a±c=___b_±_c___. 思考:若a=b,c=d,那么a+c=b+d吗? (2)若a=b,那么ac=__b_c__.
思考 x+y=10,①
数学七年级下册第二章知识点
数学七年级下册第二章的知识点主要包括:
位置图形:位置图形由点、线段和多边形组成,是表示人和物体位置的基本图形。
向量:向量是由矢量所表示的位置向量,用于表示物体在坐标系中的运动方向和大小。
坐标:坐标是由一定数量的坐标轴组成的位置系统,用于表示任意位置的点以及它们之间的关系。
与零点的距离:在二维坐标系中,点的距离计算方式为求点到轴的距离的平方和的平方根。
点的坐标:使用坐标来表示点的位置,坐标可以以分数、小数或负数形式表示。
线段的长度:线段由两个端点确定,其长度是两个端点之间的距离。
平面图形的面积:利用已知的长度或半径等数据,结合面积公式计算平面图形的面积。
旋转:物体以某一点为轴心,以某一角度进行旋转,从而改变其位置。
此外,还涉及到变量之间的关系,包括自变量、因变量和常量的概念,以及如何利用公式表示变量之间的关系,如路程=速度×时间、长方形周长=2×(长+宽)等。
以上仅是简要概述,具体的知识点可能因教材版本和教学计划而有所不同。
建议参考所在学校使用的教材和教学大纲,以获得更详细
和准确的知识点。
人教版七年级下数学三角形知识点归纳、典型例题及考点分析
BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
新版人教版七年级数学下册第一二章知识点复习
新版人教版七年级数学下册第一二章知识
点复习
本文档将对新版人教版七年级数学下册第一章和第二章的知识点进行复,以帮助学生回顾和掌握相关知识。
第一章:有理数
知识点1:整数和有理数的概念
- 整数由正整数、负整数和0组成,用Z表示。
- 有理数包括整数和分数,用Q表示。
知识点2:有理数的比较和大小
- 在数轴上,数越大,表示的值越大。
- 两个有理数的大小可以通过比较它们的绝对值来判断。
知识点3:有理数的加法和减法
- 同号两个有理数相加或相减,绝对值相加或相减,符号不变。
- 异号两个有理数相加或相减,取绝对值较大的数的符号。
第二章:图形与尺度
知识点1:平行四边形
- 平行四边形的对边平行且相等。
- 相邻两边平行且相等的平行四边形是矩形。
知识点2:计算面积
- 矩形的面积等于底边长乘以高。
- 三角形的面积等于底边长乘以高再除以2。
知识点3:三角形
- 三角形的内角和为180°。
- 等边三角形的三个角相等,都为60°。
以上是新版人教版七年级数学下册第一章和第二章的知识点复习,希望对学生的学习有所帮助。
七年级数学书第二章复习题
七年级数学书第二章复习题七年级数学书第二章复习题数学是一门重要的学科,它不仅仅是一种学习工具,更是一种思维方式。
在我们的日常生活中,数学无处不在,它贯穿于我们的生活方方面面。
而作为学习数学的学生,我们需要不断巩固和复习已学的知识,以便能够更好地应用于实际问题中。
第二章是七年级数学书中的重要章节,主要涉及到整数、分数和小数的运算。
这些内容是我们在日常生活中经常会遇到的,所以对于我们来说掌握这些知识非常重要。
首先,我们来回顾一下整数的运算。
整数是由正整数、负整数和零组成的集合。
在整数的加减乘除运算中,我们需要掌握一些基本的规则和方法。
比如,两个正整数相加,结果仍然是正整数;两个负整数相加,结果仍然是负整数。
而当正整数和负整数相加时,我们需要注意它们的绝对值大小,结果的符号由绝对值大的数决定。
此外,我们还需要掌握整数的乘法和除法运算规则,例如两个正整数相乘,结果仍然是正整数;而两个正整数相除,结果可能是正整数、负整数或零,取决于被除数和除数的大小关系。
接下来,我们来复习一下分数的运算。
分数是由一个整数除以一个非零的整数得到的,它表示了一个数相对于整体的部分。
在分数的加减乘除运算中,我们需要先将分数转化为相同的分母,然后按照相应的运算规则进行计算。
比如,两个分母相同的分数相加,只需将它们的分子相加,分母保持不变。
而两个分母不同的分数相加,则需要先找到它们的最小公倍数,然后将分数转化为相同的分母,再进行运算。
除了加法,我们还需要掌握分数的减法、乘法和除法运算规则,以及如何化简分数和比较大小等技巧。
最后,我们来复习一下小数的运算。
小数是由整数和小数点组成的数,它比分数更直观和实用。
在小数的加减乘除运算中,我们需要对齐小数点,然后按照相应的运算规则进行计算。
比如,两个小数相加,只需将它们的整数部分和小数部分分别相加即可。
而两个小数相乘,则需要将它们的小数位数相加,然后按照普通的乘法规则进行计算。
除了加法和乘法,我们还需要掌握小数的减法和除法运算规则,以及如何将小数转化为分数或百分数等技巧。
人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解
《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(3)】 【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。
新人教版七年级数学知识点归纳(上下册)
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)
第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。
(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。
(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。
二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。
七年级下册数学第二章复习题
123副标题题号一二三总分得分一、选择题(本大题共17小题,共51.0分)1.如果一个角的两边分别平行于另一个角的两边,那么这两个角的关系是()A.相等B.互补C.相等或互补D.互余2.两条平行线被第三条直线所截,一对同旁内角的比为2:7,则这两个角中较大的角的度数为()A.40°B.70°C.100°D.140°3.如图,直线a、b被直线c所截,给出的下列条件中不能得出结论a∥b的是()A.∥1=∥3B.∥1=∥4C.∥1=∥2D.∥1+∥2=180°4.如图,直线AB∥CD,EF分别与AB、CD交于G、H,若∥1=∥CHG,则∥GOH的度数为()A.60°B.90°C.120°D.150°5.如图,要把河中的水引到水池A中,应在河岸B处(AB∥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线 D.垂线段最短6.如图,两条直线a、b被第三条直线c所截,形成的同旁内角有()A.2对B.4对C.6对D.8对7.张萌将直尺ABCD(AD∥BC)和三角板EFG按如图所示的方式摆放,点F在BC上,若∥BFE=20°,∥EFG=90°,则∥DMF的度数为()A.80°B.70°C.60°D.50°8.下列图形中,能由∥1+∥2=180°得到AB∥CD的是()A. B. C. D.9.如图,直线EF,GH被直线AB所截,直线AB交GH于点A,交EF于点B,已知∥EBA=60°,则下列说法中正确的是()A.若∥GAC=60°,则GH∥EFB.若∥GAB=150°,则GH∥EFC.若∥BAH=120°,则GH∥EF D.若∥CAH=60°,则GH∥EF10.如图,已知直线a,b被线段AB所截,则其中属于内错角的是()A.∥2和∥3B.∥1和∥3C.∥1和∥4D.∥2和∥411.如果两条平行线被第三条直线所截,那么一组内错角的平分线()A.互相垂直B.互相平行C.互相重合D.以上均不正确12.下列关系中,互相垂直的两条直线是()A.互为对顶角的两角的平分线B.两直线相交成的四角中相邻两角的角平分线C.互为补角的两角的平分线D.相邻两角的角平分线13.已知∥α的两边分别与∥β的两边垂直,且∥α=20°,则∥β的度数为()A.20°B.160°C.20°或160°D.70°14.两条平行线被第三条直线所截,则()A.一对内错角的平分线互相平行B.一对同旁内角的平分线互相平行C.一对对顶角的平分线互相平行D.一对邻补角的平分线互相平行15.同学们,你一定练过跳远吧!在测量跳远成绩时,从落地点拉向起跳线的皮尺,应当与起跳线()A.平行B.垂直C.成45°D.以上都不对16.若∥α+∥β=180°,∥β+∥γ=180°,则∥α与∥γ的关系是()A.互余B.互补C.相等D.∥α=90°+∥γ17.已知OA∥OB,O为垂足,且∥AOC:∥AOB=1:2,则∥BOC是()A.45°B.135°C.45°或135°D.60°或20°二、填空题(本大题共17小题,共51.0分)18.在同一平面内,若a∥b,a∥c,则b与c的位置关系是______ .19.如图,若要AB∥CE,则需满足的条件是______ .20.如图所示,直线a、b与直线c相交,给出下列条件:①∥1=∥2②∥4=∥6③∥4+∥7=180°④∥5+∥3=180°其中能判断a∥b的条件是______ (只填序号)21.一个小区大门的栏杆如图所示,BA垂直地面AB于A,CD平行于地面AE,那么∥ABC+∥BCD= ______ 度.22.如图是一把剪刀,其中∥1=40°,则∥2= ______ .23.如图,CD∥AB,BC∥AC,垂足分别为D,C,则线段AB,AC,CD中最短的一条为______ .24.如图:直线l1∥l2,l3∥l4,∥1比∥2的3倍少20°,则∥1=______ ,∥2= ______ .25.如图,AB∥CD,CM平分∥BCD,CN∥CM,∥B=48°,则∥DCM= ______ ,∥BCN= ______ .26.如图,已知直线a∥b,c∥d,∥1=36°,则∥2的度数是______ .27.已知一个角的余角等于40度,则这个角的补角度数是______ .28.如果∥α=70°,那么∥α的余角的度数是______ 度.29.如果两条直线被第三条直线所截,一组同旁内角的度数比为3:2,差为36°,那么这两条直线的位置关系是______ ,这是因为______ .30.如图所示,一条街道的两个拐角∥ABC和∥BCD,若∥ABC=150°,当街道AB和CD平行时,∥BCD= ______ 度,根据是______ .31.如图,O点在直线AB上,∥AOD=90°,∥COE=90°,则图中相等的锐角有______对.32.若∥α的余角是45°32′,则∥α的补角为______ .33.如图:两条直线相交于一点形成2对对顶角,三条直线相交于一点形成6对对顶角,四条直线相交于一点形成12对对顶角,请你写出n条直线相交于一点可形成______ 对对顶角.34.在同一平面内,不重合的两条直线的位置关系只有______ 和______ 两种.三、解答题(本大题共9小题,共72.0分)35.如图,GH分别交AB、CD于点E、F,∥AEF=∥EFD.(1)试写出AB∥CD的依据;(2)若ME是∥AEF的平分线,FN是∥EFD的平分线,则EM、FN平行吗?若平行,请说明理由.36.如图,已知AC∥AE,BD∥BF,∥1=40°,∥2=40°.(1)AC∥BD吗?为什么?(2)AE∥BF吗?为什么?37.如图,∥1=30°,∥B=60°,AB∥AC.①∥DAB+∥B=多少度?②AD与BC平行吗?AB与CD平行吗?试说明理由.38.已知:如图,直线AB∥ED,求证:∥ABC+∥CDE=∥BCD.39.如图,已知AB∥CD,∥B=96°,EF平分∥BEC,EG∥EF,求∥BEG和∥DEG的度数.40.已知AB∥CD,∥ABE与∥CDE两个角的角平分线相交于点F.(1)如图1,若∥E=70°,求∥BFD的度数为______ 度.(2)如图2中,∥ABM= ∥ABF,∥CDM= ∥MDF,写出∥M与∥E之间的数量关系并证明你的结论.41.探究题:(1)如图1,若AB∥CD,则∥B+∥D=∥E,你能说明理由吗?(2)若将点E移至图2的位置,此时∥B,∥D,∥E之间有什么关系?(3)若将点E移至图3的位置,此时∥B,∥D,∥E之间的关系又如何?(4)在图4中,AB∥CD,∥E+∥G与∥B+∥F+∥D之间有何关系?42.如图,若AB∥CD,∥1=∥2,∥3=∥4,AD与BC平行吗?并请说明理由.43.如图,已知直线AB∥DE.(1)当∥B=27°,∥D=123°时,求∥DCB的大小;(2)写出∥B,∥DCB,∥D之间的数量关系,不必说明理由.。
人教版七年级数学下册实数章末复习二实数测试题
章末复习(二) 实数基础题知识点1 平方根、算术平方根、立方根的概念与性质1.(武汉中考)若式子x -2在实数范围内有意义,则x 的取值范围是(C )A .x ≥-2B .x >-2C .x ≥2D .x ≤2 2.(滨州中考)数5的算术平方根为(A )A . 5B .25C .±25D .± 5 3.下列说法中正确的是(D )A .-4没有立方根B .1的立方根是±1C .136的立方根是16D .-5的立方根是3-54.利用计算器计算:52-32=4,552-332=44,5552-3332=444.猜想23802580333555 个个-=480444个⋯ . 5.已知2a +1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.解:∵2a +1=0,∴a =-12.∵b -a =12,∴b -a =14.∴b =-14.∴12ab =12×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-14=116. ∴12ab 的算术平方根是14.知识点2 实数的分类与估算6.(烟台中考)下列实数中,有理数是(D )A .8B .34C .π2D .0.101 001 0017.下列语句中,正确的是(A )A .无理数都是无限小数B .无限小数都是无理数C .带根号的数都是无理数D .不带根号的数都是无理数8.估算17+4的值在(D )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 知识点3 实数与数轴9.如图,下列各数中,数轴上点A 表示的数可能是(C )A .4的算术平方根B .4的平方根C .8的算术平方根D .10的算术平方根10.如图,数轴上的两个点A ,B 所表示的数分别是a ,b ,在a +b ,a -b ,ab ,|a|-|b|中,是正数的有1个.知识点4 实数的性质及运算11.计算:3-22+23=33-2212.实数1-2的相反数是2-1,绝对值是2-1. 13.求下列各式的值:(1)(5)2-22; 解:原式=5-2=3.(2)(-3)2+3-64; 解:原式=3+(-4)=-1.(3)121+7×⎝⎛⎭⎪⎫2-17-31 000.解:原式=11+27-1-10=27.中档题14.计算(-8)2的结果是(B )A .-8B .8C .16D .-16 15.下列各式正确的是(A )A .±31=±1 B .4=±2 C .(-6)2=-6 D .3-27=316.下列说法中,正确的有(B )①只有正数才有平方根;②a 一定有立方根;③-a 没意义;④3-a =-3a ;⑤只有正数才有立方根.A .1个B .2个C .3个D .4个17.(郾城区期中)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C )A .0个B .1个C .2个D .3个 18.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是(B )A .3500≈17.100B .3500≈7.937 C .3500≈171.00 D .3500≈79.3719.下列各组数中,互为倒数的一组是(D )A .5与-5B .2与12C .|-π|与(-π)2D .32与2320.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4. 21.-27的立方根与81的平方根之和是0或-6.22.有若干个面积为2的正方形,根据下图拼图的启示填空:(1)计算:2+8=32; (2)计算:8+32=62; (3)计算:32+128=122. 23.求下列各式中x 的值:(1)x 2-5=49; (2)(x -1)3=125.解:x 2-5=49, 解:(x -1)3=125,x 2=499, x -1=5,x =±73. x =6.24.用长3 cm ,宽2.5 cm 的邮票30枚,拼成一个正方形,则这个正方形的边长是多少?解:设这个正方形的边长是x cm ,根据题意,得 x 2=3×2.5×30.解得x =15. 答:这个正方形的边长是15 cm . 25.已知2a -1的平方根是±3,(-16)2的算术平方根是b ,求a +b.解:由题意,得2a -1=32.解得a =5.由于(-16)2=16,∴b =4. ∴a +b =5+4=3.26.已知a 为250的整数部分,b -1是400的算术平方根,求a +b 的值.解:∵152<250<162, ∴250的整数部分是15,即a =15. ∵b -1=400=20,∴b =21. ∴a +b =15+21=36=6. 综合题27.已知实数a ,b 在数轴上的位置如图所示,化简:|a -b|-a 2+(-b)2+23b 3.解:由图知,a>0,b<0,a -b>0. ∴原式=a -b -a -b +2b =0.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE =2∠COF . (2)∠BOE =2∠COF 仍成立. 理由:设∠AOC =β, 则∠AOE =90°-β,又因为OF 是∠AOE 的平分线, 所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF . 25.解:(1)0.5x ;(0.65x -15) (2)(165-123)÷6×30=210(度), 210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元. (3)设10月的用电量为a 度. 根据题意,得0.65a -15=0.55a , 解得a =150.答:该用户10月用电150度. 26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变. 设运动时间为m s , 则PO =100+8m ,AQ =4m . 由题意知N 为PO 的中点, 得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m , ON -AQ =50+4m -4m =50.故ON-AQ的值不变,这个值为50.。
七年级数学上下册知识点总结---1-10章
初级中学数学一轮复习知识点回顾与总结七年级(第一章---第十章)学校:姓名:学号:人教版数学七年级(上)第一章有理数知识点1.1正数和负数知识点1 正数和负数的概念(1)像3、1.5、12、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、12、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零即不是正数也不是负数,零是正数和负数的分界。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
知识点2 用正数、负数表示具有相同意义的量正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6C和零下4C等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
1.2有理数知识点1 有理数的有关概念(1)有理数:整数和分数统称为有理数。
注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。
但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
(2) 整数包括正整数、零、负整数。
例如:1、2、3、0、-1、-2、-3等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校 班级 姓名 考号________________考试时间 ______ ________ 装订线内不要答题
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆ 学年下期七年级数学练习五 本试卷共印两个班:七年级 命题人:张纳 时间:2018-4-1 一选择题(每题3分,共36分) 1.(和县校级月考)体育课上,老师测量跳远成绩的依据是( ) A .两点确定一条直线 B .垂线段最短 C .两点之间,线段最短 D .平行线间的距离相等 2.如图,三条直线相交于点O.若CO ⊥AB ,∠1=52°,则∠2等于( ) A .52° B .28° C .38° D .47° 3.如图所示,下列说法不正确的是( ) A .点B 到AC 的垂线段是线段AB B .点C 到AB 的垂线段是线段AC C .线段AD 是点D 到BC 的垂线段 D .线段BD 是点B 到AD 的垂线段 4.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( ) A .同位角、同旁内角、内错角 B .同位角、内错角、同旁内角 C .同位角、对顶角、同旁内角 D .同位角、内错角、对顶角 5.(威海中考)如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC =35°,则∠1的度数( ) A .65° B .55° C .45° D .35° 6.如图,能判定EB ∥AC 的条件是( ) A .∠C =∠ABE B .∠A =∠EBD C .∠C =∠ABC D .∠A =∠ABE 7.下列命题中是真命题的是( ) A .两个锐角之和为钝角 B .两个锐角之和为锐角 C .钝角大于它的补角 D .锐角小于它的余角 8.(潮南区月考)将图中所示的图案平移后得到的图案是( ) 卷面分
9.(邵阳中考)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现
计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A .甲种方案所用铁丝最长
B .乙种方案所用铁丝最长
C .丙种方案所用铁丝最长
D .三种方案所用铁丝一样长
10.能说明命题“对于任何数a ,|a|>-a ”是假命题的一个反例可以是( )
A .a =-2
B .a =13
C .a =1
D .a =2
11.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;
③有一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有( )
A .1个
B .2个
C .3个
D .4个
12.同一平面内的四条直线满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( )
A .a ∥b
B .b ⊥d
C .a ⊥d
D .b ∥c
二、填空题(每空5分,共30分)
13.三条直线相交,最多有 个交点.
14.(西和县校级月考)在同一平面内,两条直线的位置关系只有两种 15.把命题“平行于同一条直线的两条直线平行”改成“如果……那么……”形式:
16.(宜兴市校级月考)如图,大长方形的长10 cm ,宽8 cm ,
阴影部分的宽2 cm ,则空白部分的面积是 cm 2
.
17.如图所示,一条公路修到湖边时,需拐弯绕湖而过,在
A ,
B ,
C 三处经过三次拐弯,此时道路恰好和第一次拐弯之
前的道路平行(即AE ∥CD),若∠A =120°,∠B =150°,则
∠C 的度数是 .
18.如图,台阶的宽度为1.5米,其高度AB =4米,水平
距离BC =5米,要在台阶上铺满地毯,则地毯的面积
为 .
三、综合题(1-4每题11分,12题12分,共56分)
1.(利川市校级月考)如图,直线AB,CD,EF相交于点O.
(1)写出∠COE的邻补角;
(2)分别写出∠COE和∠BOE的对顶角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC
的度数.
2.(射阳县期中)如图,∠AEF+∠CFE=180°,∠1=∠2,EG与HF平行吗?为什么?
3.(重庆校级月考)直线AB,CD相交于O,OE平分∠AOC,∠EOA∶∠AOD=1∶4,求∠EOB的度数.
4.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:
(1)过点P作PQ∥CD,交AB于点Q;
(2)过点P作PR⊥CD,垂足为R;
(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.
5.(德州校级期中)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求证:AB∥CD;
(2)求∠C的度数.。