实用文档之解三角形经典练习题集锦(附答案)
(完整word)解三角形练习题及答案
第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是( ).A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=().A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=( ).A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是().A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C ,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c .解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,。
解三角形经典练习题集锦附答案之欧阳语创编
解三角形一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -即是( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B均为锐角,且,sin cos B A >则△ABC的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 即是( )A .006030或 B .006045或 C .0060120或 D .0015030或6.边长为5,7,8的三角形的最年夜角与最小角的和是( )A .090 B .0120 C .0135 D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最年夜值是_______________。
2.在△ABC中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最年夜值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证:)cos cos (aAb Bc a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
(完整版)解三角形练习题及答案
第一章 解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A .90°B .120°C .135°D .150°2.在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A .1∶2∶3B .1∶∶23C .1∶4∶9D .1∶∶234.在△ABC 中,a =,b =,∠A =30°,则c 等于( ).515A .2B .C .2或D .或55551055.已知△ABC 中,∠A =60°,a =,b =4,那么满足条件的△ABC 的形状大小 ( 6).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ).A .锐角三角形B .直角三角形C .钝角三角形D .形状不能确定7.在△ABC 中,若b =,c =3,∠B =30°,则a =( ).3A .B .2C .或2D .233338.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为,那么b =( ).23A .B .1+C .D .2+231+3232+39.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好km ,那么x 的值是().3A .B .2C .或2D .3333310.有一电视塔,在其东南方A 处看塔顶时仰角为45°,在其西南方B 处看塔顶时仰角为60°,若AB =120米,则电视塔的高度为().A .60米B .60米C .60米或60米D .30米33二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =,则b = .213.在△ABC 中,∠A =60°,a =3,则= .CB A cb a sin sin sin ++++14.在△ABC 中,若a 2+b 2<c 2,且sin C =,则∠C = .2315.平行四边形ABCD 中,AB =4,AC =4,∠BAC =45°,那么AD = 63.16.在△ABC 中,若sin A ∶sinB ∶sinC =2∶3∶4,则最大角的余弦值=.三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =,解此三角形.618.在△ABC 中,已知b =,c =1,∠B =60°,求a 和∠A ,∠C .319. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)==.A a cos B b cos Cccos 20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为 α,由cos α==,得 α=60°,kk k k k 85249+64+25222⨯⨯21∴最大角和最小角之和为180°-60°=120°.2.B 3.B 4.C 5.C 6.C 7.C 8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2+++23+30sin 212++222ac c a b ac bc a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3+2+)+(+6+2++22代入后消去a ,c ,得b 2=4+2,∴b =+1,故选B .339.C 10.A 二、填空题11.5.612.2.13.2.3解析:设===k ,则=k ===2A asin B b sin Cc sin C B A c b a +sin +sin sin ++A a sin ︒60sin 3.314..32π15.4.316.-.41三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =sin 45°=·=.26262223∵c sin A =×=,a =2,c =,<2<,6223636∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =sin B ,所以b =+1或b =-1,Aasin 33∴b =+1,∠C =60°,∠B =75°或b =-1,∠C =120°,∠B =15°.33解法2:由余弦定理得b 2+()2-2b cos 45°=4,66∴b 2-2b +2=0,解得b =±1.33又()2=b 2+22-2×2b cos C ,得cos C =±,∠C =60°或∠C =120°,621所以∠B =75°或∠B =15°.∴b =+1,∠C =60°,∠B =75°或b =-1,∠C =120°,∠B =15°.3318.解析:已知两边及其中一边的对角,可利用正弦定理求解.解:∵=,B b sin Ccsin ∴sin C ===.b Bc sin ⋅360sin 1︒⋅21∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a ==2,22+c b即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B a ·()=b ·()a 2c 2-a 4-b 2c 2+b 4=0,⇒bc a c b 2222-+acc b a 2222+-⇒∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =π-2∠B ,∠A ,∠B ∈(0,π) ⇒∠A =∠B 或∠A +∠B =,⇒2π∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得==,A A R cos sin 2B BR cos sin 2C C R cos sin 2∴==,A A cos sin B Bcos sin CC cos sin 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C ,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c .解:由正弦定理= 及∠A =2∠C ,得A asin Cc sin =,即=,C a 2sin C c sin C C a cos sin 2⋅C csin ∴cos C =.ca2由余弦定理cos C =,abc b a 2222-+∵b =4,a +c =8,∴a +c =2b ,∴cos C ===,)()(c a a c c a a ++4++222)())((c a a c a c a +4+3+5a c a 43+5∴=,c a2ac a 43+5整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c .又∵a +c =8,∴a =,c =.524516。
(完整版)解三角形练习题(含答案),推荐文档
2、已知
中,
,
,则角 等于
A.
B.
C.
D.
3、在△ABC 中,a=x,b=2,B=45°,若这样的△ABC 有两个,则实数 x 的取值范围是( )
A.(2,+∞)
B.(0,2)
C.(2, )
D.( )
A.等边三角形 C.锐角三角形
B.直角三角形 D.钝角三角形
11、在△ 中,
,
, ,则此三角形的最大边长为(
,
,若
,则角 的大小为 ( )
13、(2012 年高考(天津理))在
中,内角 , , 所对的边分别是
,已知
,
,则
( )
A.
B.
C.
D.
14、已知△ABC 中, = , = ,B=60°,那么满足条件的三角形的个数为(
)
A、1
B、2
C、3
D、0
A.
B.
C.
D.
15、在钝角
中,a,b,c 分别是角 A,B,C 的对边,若 (
的图象有三个交点;
C.3
D.4
()
21、 若△ABC 的对边分别为 、 、C 且
,
,
A、5
B、25
,则 b=(
)
C、
D、
22、设 A、B、C 是△ABC 三个内角,且 tanA,tanB 是方程 3x2-5x+1=0 的两个实根,那么△ABC 是( ) A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能
建议收藏下载本文,以便随时学习!
所以
的面积
.
38、解:(1)由
得
sinA=2sinC sinA
解三角形练习题及答案.doc(最新整理)
北 东
O θ东
解得 t1 12 , t2 24 t2 t1 12
45° 西
P
答:12 小时后该城市开始受到台风气侵袭,受到台风的侵袭的时间有 12 小时?
必修 5 第一章《解三角形》练习题
1.△ABC 中,D 在边 BC 上,且 BD=2,DC=1,∠B=60o,∠ADC=150o,求 AC 的长 及△ABC 的面积.
2.在△ABC 中,已知角 A,B,C 的对边分别为 a,b,c,且 bcosB+ccosC=acosA,试判 断△ABC 的形状.
3. 如图,海中有一小岛,周围 3.8 海里内有暗礁。一军舰从 A 地出发由西向东航行,望见 小岛 B 在北偏东 75°,航行 8 海里到达 C 处,望见小岛 B 在北端东 60°。若此舰不改变舰 行的方向继续前进,问此舰有没有角礁的危险?
a
∴ CD BC sin CBD BC sin 450
aa
=10500( 6 2) 2 2
a
=10500( 3 1) =10500(1.7 1)
=7350 山顶的海拔高度=10000-7350=2650(米) 6.解:设经过 t 小时台风中心移动到 Q 点时,台风边沿恰经过 O 城,
5. 解:如图 ∵ A 150 DBC 450 ∴ ACB 300, AB= 180km(千米)/h(小时) 4 秒)
= 21000(m )
∴在 ABC 中
∴ BC AB sin A sin ACB
∴ BC 21000 sin150 10500( 6 2) 1
2
∵ CD AD ,
tan 750
8 tan 600
4 3.8
∴该军舰没有触礁的危险。
4.在△ABC 中,∠B=152o-122o=30o,∠C=180o-152o+32o=60o,∠A=180o-30o-60o=
解三角形(例、练及答案)
专题七:解三角形(例、练及答案)1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若c =b ,60B =o ,则C =_____. 2.恒等式背景例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边, 且有cos sin 0a C C b c --=. (1)求A ;(2)若2a =,且ABC △b ,c .专项训练一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =()A B C D .22.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅uu u v uu u v等于()A .19B .19-C .18D .18-3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是()A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,c 3b a =,则ABC △的面积为()AB C D 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin C B =,则A =() A .30︒B .60︒C .120︒D .150︒6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且a =ABC △外接圆的半径为() A .1BC .2D .47.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC △的形状是() A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是() A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为,2b c -=,1cos 4A =-,则a 的值为()A .8B .16C .32D .6410.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =() A .4π B .3π C .34π D .23π 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos cos cos a b cA B C==,则ABC △是() A .直角三角形B .钝角三角形C .等腰直角三角形D .等边三角形12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,c =,tan 21tan A cB b+=, 则C ∠=() A .6π B .4π C .4π或34π D .3π二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,c =2216b a -=,则角C 的最大值为_____;14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且a =ABC △面积的最大值是________16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,b ABC △面积的取值范围是__________.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C cos 2sin A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △a 的值.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,AB =4BD =..(1)求ABD △的面积.(2)若120BAC ∠=o ,求AC 的长.参考答案1.【答案】30C =o【解析】(1)由已知B ,b ,c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=, 代入可解得:1sin 2C =.由c b <可得:60C B <=o ,所以30C =o . 2.【答案】(1)3π;(2)2,2. 【解析】(1)cos sin 0a C C b c --=sin cos sin sin sin 0A C A C B C ⇒--=()sin cos sin sin sin 0A C A C A C C ⇒-+-=sin cos sin sin cos sin cos sin 0A C A C A C C A C ⇒---=,1cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭∴66A ππ-=或566A ππ-=(舍),∴3A π=; (2)1sin 42ABC S bc A bc =⇒=△,222222cos 4a b c bc A b c bc =+-⇒=+-,∴22224844b c bc b c bc bc ⎧⎧+-=+=⇒⎨⎨==⎩⎩,可解得22b c =⎧⎨=⎩.练习答案一、单选题 1.【答案】A【解析】由正弦定理sin sin a bA B =可得1sinsin 4sin sin 6a Bb A π⨯===π,且()()cos cos cos cos sin sin C A B A B A B =-+=--=由余弦定理可得:c ==.故选A .【解析】∵三边长7AB =,5BC =,6AC =,∴22222275619cos 227535AB BC AC B AB BC +-+-===⋅⨯⨯,()19cos 751935AB BC AB BC B ⎛⎫⋅=⋅π-=⨯⨯-=- ⎪⎝⎭uu u v uu u v .故选B .3.【答案】C【解析】∵2cos c a B =,由正弦定理2sin c R C =,2sin a R A =,∴sin 2sin cos C A B =, ∵A ,B ,C 为ABC △的内角,∴()sin sin C A B =+,A ,()0,B ∈π,∴()sin 2sin cos A B A B +=,sin cos cos sin 2sin cos A B A B A B +=,整理得()sin 0A B -=, ∴0A B -=,即A B =.故ABC △一定是等腰三角形.故选C . 4.【答案】A 【解析】已知3C π=,c =3b a =, ∴由余弦定理2222cos c a b ab C =+-,可得:2222227937a b ab a a a a =+-=+-=, 解得:1a =,3b =,∴11sin 1322ABC S ab C ==⨯⨯V A . 5.【答案】A【解析】根据正弦定理由sin C B =得:c =,所以222a b =-,即227a b =,则222222cos 2b c a A bc +-===, 又()0,A ∈π,所以6A π=.故选A . 6.【答案】A【解析】因为()()3a b c b c a bc +++-=,所以()223b c a bc +-=,化为222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为()0,A ∈π,所以3A π=,由正弦定理可得22sin aR A===,所以1R =,故选A .【解析】因为2sin sin sin B C A ⋅=,所以2222b c a R R R ⎛⎫⋅= ⎪⎝⎭, 也就是2a bc =,所以222b c bc +=,从而b c =, 故a b c ==,ABC △为等边三角形.故选C . 8.【答案】B【解析】利用正弦定理sin sin sin a b cA B C==化简已知的等式得: sin cos sin cos sin A B B A C -=,即()sin sin A B C -=, ∵A ,B ,C 为三角形的内角,∴A B C -=,即2A B C π=+=, 则ABC △为直角三角形,故选B . 9.【答案】A【解析】因为0A <<π,所以sin A =,又1sin 2ABCS bc A ===V ,∴24bc =,解方程组224b c bc -=⎧⎨=⎩得6b =,4c =, 由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.故选A .10.【答案】C【解析】()sin sin sin cos cos sin B A C A C A C =+=+,∵()sin cos 0b a C C +-=,可得:()sin sin sin cos 0B A CC +=﹣, ∴sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,∴cos sin sin sin 0A C A C +=, ∵sin 0C ≠,∴cos sin A A =-,∴tan 1A =-, ∵2A π<<π,∴34A =π.故答案为C . 11.【答案】D 【解析】∵cos cos cos a b cA B C==,由正弦定理得:2sin a R A =⋅,2sin b R B =⋅,2sin c R C =⋅代入,得sin sin sin cos cos cos A B CA B C==,∴进而可得tan tan tan A B C ==, ∴A B C ==,则ABC △是等边三角形.故选D . 12.【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:sin cos 2sin 1cos sin sin A B CA B B+=,去分母移项得:sin cos sin cos 2sin cos B A A B C A +=, 所以()sin sin 2sin cos A B C C A +==,所以1cos 2A =.由同角三角函数得sin A =, 由正弦定理sin sin a c A C =,解得sin 2C =所以4C π∠=或34π(舍).故选B .二、填空题 13.【答案】6π 【解析】在ABC △中,由角C 的余弦定理可知22222222232cos 224b a a b a b c a b C ab ab ab -+-+-+===≥, 又因为0C <<π,所以max π6C =.当且仅当a =b = 14.【答案】(【解析】∵ABC △的三边a ,b ,c 成等比数列, ∴2222cos 22cos ac b a c ac B ac ac B ==+-≥-,得1cos 2B ≥, 又∵0B <<π,∴03B π⎛⎤∈ ⎥⎝⎦,,74412B πππ⎛⎤+∈ ⎥⎝⎦,,可得(sin cos 4B B B π⎛⎫++∈ ⎪⎝⎭,故答案为(. 15.【解析】∵()2sin cos 2sin cos b C A A C +=-,∴()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B =-+=-+=-,则2sin cos b B A -=,结合正弦定理得2cos sin a A A -==,即tan A =,23A ∠=π 由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥,故4bc ≤,11sin 422ABC S bc A =≤⨯=△16.【答案】⎝⎦【解析】∵ABC △中A ,B ,C 成等差数列,∴3B π=.由正弦定理得2sin sin sin sin 3a c b A C B ====,∴2sin a A =,2sin c C =,∴12sin sin sin 23ABC S ac B A C A A π⎛⎫====- ⎪⎝⎭△21331cos 2sin sin cos sin 22242AA A A A A A A ⎫-=+=+=+⎪⎪⎝⎭3sin 22246A A A π⎛⎫=+=- ⎪⎝⎭, ∵ABC △为锐角三角形,∴022032A A π⎧<<⎪⎪⎨ππ⎪<-<⎪⎩,解得62A ππ<<.∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,26A π⎛⎫<-≤ ⎪⎝⎭,故ABC △面积的取值范围是⎝⎦.三、解答题 17.【答案】(1)23π;(2【解析】(1cos 2sin A C+=, ∵sin 0C ≠cos 2A A -=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵0A <<π∴666A ππ5π-<-<,∴62A ππ-=,∴23A π=.(2)由ABC S =△1sin 2S bc A =4bc =,∵5b c +=,∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=,∴a =18.【答案】(1)(2【解析】(1)由题意,120BDA ∠=︒在ABD △中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅︒ 即2281642AD AD AD =++⇒=或6AD =-(舍),∴ABD △的面积11sin 4222S DB DA ADB =⋅⋅⋅∠=⨯⨯=. (2)在ABD △中,由正弦定理得sin sin AD ABB BDA=∠,代入得sin B =B为锐角,故cos B , 所以()sin sin 60sin 60cos cos60sin C B B B =︒-=︒-︒=, 在ADC △中,由正弦定理得sin sin AD ACC CDA=∠,,解得AC =。
解三角形经典练习题集锦(附答案)
A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角解三角形2. _______________________________________________ 在厶 ABC 中,若 a 2b 2bc c 2,则A _____________________________ 。
3. _____________________________________________________ 在厶 ABC 中,若 b 2,B 30°,C 135°,则a _______________________ 。
4. 在厶 ABC 中,若 si nA : sin B : si nC 7 : 8 : 13,贝UC _____________ 。
°5. 在厶ABC 中,AB .、62, C 30°,则AC BC 的最大值是。
三、解答题一、选择题1. 在厶 ABC 中,A: B: C 1:2:3,则 a:b:c 等于( )A . 1: 2:3B . 3:2:1C . 1: .3:2D . 2^ 3 :1 2.在厶ABC 中,若角B 为钝角,则si nB si nA 的值( ) A.大于零 B.小于零 C.等于零 D .不能确定 3. 在厶ABC 中,若A 2B ,则a 等于()A . 2b si nAB . 2b cosAC . 2bsi nBD . 2b cosB 4. 在厶 ABC 中,若 Ig si nA Ig cos B Ig sin C Ig 2,则△ ABC 的形状是( ) A.直角三角形B .等边三角形C .不能确定D .等腰三角形A B a b7.在厶ABC 中,若tan ,则△ ABC 的形状是( )2 a b形或直角三角形二、填空题解三角形一、选择题 1.在厶 ABC 中,若 C 900,a 6, B 300,则 c b 等于( )2.在厶ABC 中,求证:,cos B cos A 、A. 1B. 1C. 2.3D. 2.32. 若A ABC 的内角,则下列函数中一定取正值的是( ) 1 A. sin A B. cosA C . tanA D .- tan A3. 在厶ABC 中,角A, B 均为锐角,且cos A sinB,则厶ABC 的形 状是( ) A.直角三角形 B .锐角三角形C •钝角三角形D .等腰 三角形 4. 等腰三角形一腰上的高是 3,这条高与底边的夹角为 600,则底 边长为( )、,3 — A . 2 B . C . 3 D. 2.3 25. 在厶ABC 中,若b 2asin B ,则A 等于( )A . 300或60°B . 450或60° C . 120°或60° D . 30°或 150° 3.在锐角△ ABC 中,求证:si nA si nB sinC cosA cosB cosC 。
经典解三角形练习题(含答案)
解三角形练习题一、选择题1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )A .无解B .一解C . 二解D .不能确定 5、在△ABC 中,已知bc c b a ++=222,则角A 为()A .3π B .6πC .32πD . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是()A .()10,8B .()10,8C .()10,8D .()8,108、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形9、在△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围是()A .2>xB .2<xC .3342<<x D . 3342≤<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个 11、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23B .43C .23或3 D .43 或23 12、已知△ABC 的面积为23,且3,2==c b ,则∠A 等于 ( )A .30°B .30°或150°C .60°D .60°或120°13、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .142C .15D .15214、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( )A . 450a 元B .225 a 元C . 150a 元D . 300a 元15、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )A .7150分钟 B .715分钟 C .21.5分钟 D .2.15分钟16、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为( ) A . 5000米B .50002 米C .4000米D .24000 米17、在△ABC 中,10sin =a °,50sin =b °,∠C =70°,那么△ABC 的面积为( )A .641B .321 C .161 D .81 18、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .819、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ) A .51<<x B .135<<x C .50<<x D .513<<x20、在△ABC 中,若cCb B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形 二、填空题21、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 22、在△ABC 中,===B c a ,2,33150°,则b =23、在△ABC 中,A =60°,B =45°,12=+b a ,则a = ;b = 24、已知△ABC 中,===A b a ,209,181121°,则此三角形解的情况是25、已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为 26、在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是20米30米150°三、解答题27、在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
解三角形单元测试题及答案,推荐文档
第一章解三角形正弦定理:1•正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,2)化边为角:a : :b: csin A: sin B :sin C ;a sin Ab sin B a sin Ab sin B 'c sin C Jc sin C ')化边为角: a 2Rsin A, b2Rsin B, c 2Rsin Csin Aasin B b si nA a 4)化角为边:sin BJb sin CJ Jc sin C cab csin Asin B,sin C - 5)化角为边:2R2R2R.•三角形面积11 1S ABCabsinC -bcsi nA 一 acsin B 2 2 2三•余弦定理1•余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的2倍,即a 2b 2c 2 2bccosA 2 2 2b ac 2ac cos B 2 2 2 cab 2abcosC ,2 2 2 b c a2bc 2 2 . 2 a c b2ac 2 , 2 2a b c2aba即 sin Ab c 2R sin B sin Ca b c2•变形:1) sin sin sin C(其中R 是三角形外接圆的半径)a b c sinsinsinC .cos A2•变形:cosBcosC利用余弦定理判断三角形形状:A 4■护 n 屮 O COSJ 4 = “ Z ——> 0 o J 4 u 90°2bc ,所以/为锐角②若c 2 b 2 a 2 A 为直角< Ott .4 >90° .,所以上为钝角,贝卩一上―是钝角三角形三角形中常见的结论三角形三角关系:A+B+C=180 ° ; C=180 ° — (A+B); 三角形三边关系:两边之和大于第三边:4)三角形内的诱导公式:7)三角形的五心:垂心 --- 三角形的三边上的高相交于一点重心一一三角形三条中线的相交于一点 外心 -- 三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点注意整体代入,如:a 2c 2b 2accosB 12设a 、b 、c 是 C 的角、C 的对边,则:①若,c 1<a 2匚os- ③若 两边之差小于第三边:a — c <b二-::■在同一个三角形中大边对大角:sin A sin Bsin(A B) sinC, cos(A B)cosC, tan (A B)tan C,sm ------- 二 £intan~ tan(-2 2cos --------- = cos2c=sin —解三角形一、选择题(本大题共12小题,每小题5分,共60分) 1 .在△ ABC 中,a = 2, b =』3, c = 1,则最小角为()nnnA.正B.6C.42. A ABC 的三内角A 、B 、C 所对边的长分别是 a 、b 、c ,设向量p = (a + c , b ), q = (b — a , c -a ),若p // q ,则角C 的大小为( ) n n n 2 n A .6 B3 Dp 3. 在△ ABC 中,已知 |AB | = 4, |AC|= 1, S SBC = 3,则 AB AC 等于( )A . — 2B . 2C . ±4D .戈4. A ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,若 c=J 2, b = Q 6, B = 120 ° 贝U a 等于()A. . 6B . 2C. .3D. 25. 在△ ABC 中,A = 120 ° AB = 5, BC = 7,则的值为( )sin C&下列判断中正确的是 ( )A . △ ABC 中,a = 7, b = 14, A = 30 ° 有两解B . △ ABC 中,a = 30, b = 25, A = 150 ° 有一解a = 6,b = 9, A = 45° 有两解 b = 9,c = 10, B = 60° 无解° AB = ■ 3, AC = 1,则厶ABC 的面积是( )B^2^C. .3或于D.-^或11. 在△ ABC 中,如果 sin As in B + sin Acos B + cos Asin B + cos Acos B = 2,则厶 ABC 是 ( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形 12.A ABC 中,若 a 4+ b 4+c 4= 2c 2(a 2 + b 2),则角 C 的度数是()A . 60 °B . 45。
解三角形单元测试题及答案-精品.pdf
5,
BC=
7,则
sin sin
B的值为 C
(
)
8
5
5
3
A. 5
B. 8
C.3
D.5
6.已知锐角三角形的边长分别为 2,4, x,则 x 的取值范围是 ( )
A . 1<x< 5
B. 5<x< 13 C.1<x<2 5
7.在△ ABC 中, a= 15, b= 10, A= 60°,则 cos B 等于 (
13.在△ ABC
中,若
sin a
A=
cos b
B,则
B= ________.
14.在△ ABC 中, A= 60°, AB= 5, BC= 7,则△ ABC 的面积为 ________.
15.一船自西向东匀速航行, 上午 10 时到达一座灯塔 P 的南偏西 75°距塔 64 海里的 M
处,下午 2 时到达这座灯塔的东南方向的 N 处,则这只船的航行速度为 ________海里 /小时.
3,
2
3
2
1 即 cos B cos B
2
由 A ,知 B
3
6
3
3
sin B
,即得 sin B
2
2
6
5
, . 于是 B
,或 B
66
63
3 .
2 2 .
63
所以 B ,或 B .
6
2
若B
,则C
. 在直角△ ABC中, sin
1 ,解得 c
6
2
3c
若B
, 在直角△ ABC中, tan
1 , 解得 c
3.
解三角形(含答案)
解答题1.已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P 在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域. 解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin α=,1cos 2α=, ………………2分所以22()22sin cos 2sin f αααααα=-=- ………………4分21(2(3222=-⨯-⨯-=-. ………………5分(Ⅱ)2()22sin f x x x =-cos 21x x =+- ………………6分2sin(2)16x π=+-,………………8分 因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分2.函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示. (Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]x π∈上的最大值和最小值.解:(Ⅰ)由图可得1A =,22362T πππ=-=, 所以T =π. ……2分 所以2ω=. 当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=,因为||2ϕπ<,所以6ϕπ=. ……5分 所以()f x 的解析式为()sin(2)6f x x π=+. ………6分 (Ⅱ)()()cos 2sin(2)cos 26g x f x x x x π=-=+-sin 2cos cos 2sin cos 266x x x ππ=+-12cos 222x x =- sin(2)6x π=-. ……10分 因为02x π≤≤,所以52666x πππ-≤-≤. 当262x ππ-=,即3x π=时,()g x 有最大值,最大值为1; 当266x ππ-=-,即0x =时,()g x 有最小值,最小值为12-.……13分3.已知函数x x x f 2cos )62sin()(+-=π.(1)若1)(=θf ,求θθcos sin ⋅的值; (2)求函数)(x f 的单调增区间. (3)求函数的对称轴方程和对称中心 解:(1)22cos 16sin2cos 6cos2sin )(xx x x f ++-=ππ...3分(只写对一个公式给2分) 212sin 23+=x ....5分 由1)(=θf ,可得332sin =θ ......7分 所以θθθ2sin 21cos sin =⋅ ......8分 63= .......9分(2换元法 ..11即Z k k k x ∈++-∈],4,4[ππππ时,)(x f 单调递增.所以,函数)(x f 的单调增区间是Z k k k ∈++-],4,4[ππππ... 13分4.已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值;(Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.解:(Ⅰ)()sin 2cos 212sin(2)14f x x x x π=--=--ωωω. ……4分因为22T π=,所以 T =π,1ω=. ……6分 所以 ()2sin(2)14f x x π=--.所以 ()04f π= ………7分(Ⅱ)()2sin(2)14f x x π=--当 0,2x π⎡⎤∈⎢⎥⎣⎦时, 32444x πππ-≤-≤, 所以 当242x ππ-=,即8x 3π=时,max ()21f x =-, …10分 当244x ππ-=-,即0x =时,min ()2f x =-. ………13分5.已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R . (Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若02()2x f =,0ππ(, )44x ∈-,求0cos 2x 的值. 解: 2()2sin cos 2sin 1=⋅-+f x x x x ……………………………………1分 sin 2cos2=+x x ……………………………………2分π2sin(2)4x =+. ………………3分 (Ⅰ)函数()f x 的最小正周期2ππ2T ==. ……………………………………5分 令πππ2π22π242k x k -++≤≤()k ∈Z , ……………………………………6分所以3ππ2π22π44k x k -+≤≤. 即3ππππ88k x k -+≤≤. 所以,函数()f x 的单调递增区间为3ππ[π, π]88k k -+ ()k ∈Z . ……………8分(Ⅱ)解法一:由已知得0002()sin cos 23x f x x =+=,…………………9分 两边平方,得021sin 29x += 同角关系式 所以 07sin 29x =-…………11分 因为0ππ(, )44x ∈-,所以0π2(, )22x π∈-.所以20742cos 21()9x =--=. ……………………………………13分 解法二:因为0ππ(, )44x ∈-,所以0ππ(0, )42x +∈. …………………………9分又因为000ππ2()2)2)22443x x f x =⋅+=+=,得 0π1sin()43x +=.……………………………………10分 所以20π12cos()1()433x +=-=. ……………………………………11分 所以,00000πππcos 2sin(2)sin[2()]2sin()cos()2444x x x x x π=+=+=++ 122422339=⋅⋅=.6.已知π2sin()410A +=,ππ(,)42A ∈. (Ⅰ)求cos A 的值; (Ⅱ)求函数5()cos 2sin sin 2f x x A x =+的值域. 解:(Ⅰ)因为ππ42A <<,且π2sin()410A +=,所以ππ3π244A <+<,π2cos()410A +=-ππππcos()cossin()sin 4444A A +++31021025=-+=. 所以3cos 5A =. ………6分 (Ⅱ)由(Ⅰ)可得4sin 5A =.212sin 2sin x x =-+2132(sin )22x =--+,x ∈R .因为sin [1,1]x ∈-,所以,当1sin 2x =时,()f x 取最大值32; 当sin 1x =-时,()f x 取最小值3-.所以函数()f x 的值域为3[3,]2-. 7.已知△ABC 中,2sin cos sin cos cos sin A B C B C B =+. (Ⅰ)求角B 的大小;(Ⅱ)设向量(cos , cos 2)A A =m ,12(, 1)5=-n ,求当⋅m n 取最 小值时,)4tan(π-A 值.解:所以2sin cos sin()sin()sin A B B C A A =+=π-=. ……… 3分 因为0A p <<,所以sin 0A ¹.所以1cos 2B =. ……… 5分3B π=. …………7分(Ⅱ)因为12cos cos 25A A ⋅=-+m n , ………………… 8分 所以2212343cos 2cos 12(cos )5525A A A ⋅=-+-=--m n . …10分所以当3cos 5A =时,⋅m n 取得最小值.……12分 所以tan 11tan()4tan 17A A A π--==+. …………… 13分8.已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. (Ⅰ)求)4(πf 的值;(Ⅱ)若)2,0(π∈x ,求)(x f 的最大值;(Ⅲ)在ABC ∆中,若B A <,21)()(==B f A f ,求AB BC 的值.解:(Ⅰ)234cos4sin4sin 3)4(2-+=ππππf 21=. 4分 (Ⅱ)2)2cos 1(3)(x x f -=+232sin 21-x x x 2cos 232sin 21-=)32sin(π-=x . …6分 20π<<x Θ, 32323πππ<-<-∴x . ∴当232x ππ-=时,即125π=x 时,)(x f 的最大值为1.…8分 (Ⅲ)Θ)32sin()(π-=x x f ,若x 是三角形的内角,则π<<x 0 令21)(=x f ,得解得4π=x 或127π=x . ……10分由已知,B A ,是△ABC 的内角,B A <且21)()(==B f A f , ∴4π=A ,127π=B , ∴6π=--π=B A C . …11分又由正弦定理,得221226sin 4sinsin sin ==ππ==C A AB BC . ……13分 9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值. 解:(Ⅰ)因为2cos cos c b Ba A-=, 所以(2)cos cos c b A a B -⋅=⋅由正弦定理,得(2sin sin )cos sin cos C B A A B -⋅=⋅. 整理得2sin cos sin cos sin cos C A B A A B ⋅-⋅=⋅. 所以2sin cos sin()sin C A A B C ⋅=+=. 在△ABC所以1cos 2A =,3A π∠=.(Ⅱ)由余弦定理2221cos 22b c a A bc +-==,a = 所以2220220b c bc bc +-=≥- (均值定理在三角中的应用)所以20bc ≤,当且仅当b c =时取“=” . ( 取等条件别忘)所以三角形的面积1sin 2S bc A =≤. 所以三角形面积的最大值为 ……………………13分 10. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .(Ⅰ)求角A 的大小; (Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC的形状.解:(Ⅰ)在△ABC 中,因为b 2+c2-a 2=bc可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分 ∵, (或写成A 是三角形内角) ……………………4分∴3A π=. ……………………5分 (Ⅱ)2cos 2cos 2sin 3)(2xx x x f +=11cos 22x x =++ …7分 1sin()62x π=++, ……9分∵3A π=∴2(0,)3B π∈(没讨论,扣1分)…10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. …11分 又∵3A π=, ∴3C π= ∴△ABC 为等边三角形. ……13分11. 在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积.解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分因为180A B C =--o , …………………4分………5分(II )因为0180A <<o o ,由(I )结论可得:135A =o . …………………7分因为11tan tan 023B C =>=>,所以090C B <<<o o . …………8分所以sin B =sin C =. …………9分 由sin sin a c A C=得a =, …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分 12.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=.(Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.解:(Ⅰ)∵ A 、B 、C 为三角形的内角, ∴ π=++C B A .∵∴ …………2分 ∴ 27)1cos 2(2cos 142=--+⋅C C .即 021cos 2cos 22=+-C C . ……4分∴ 21cos =C . 又∵ π<<C 0 , ∴ 3π=C . …7分(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A .…10分 ∵ 320π<<A ,∴ 6566πππ<+<A .∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.…………13分13.在ABC ∆中,角A,B,C 所对的边分别为a,b,c ,已知(1) 求sin(B+C)的值;(2) 若a=2, 求b,c 的值.【知识点】诱导公式;三角形的面积公式;解三角形.【答案解析】(2解析: A C B -=+π又,分83ΛΛΛ=∴bcA bc c b a cos 2222-+=又分10622ΛΛΛ=+∴c b【思路点拨】(1)由诱导公式及平方关系得sin(B+C)的值;(2)由三角形面积公式和余弦定理得关于b 、c 的方程组求解.14.在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c 。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
解三角形练习题和答案
解三角形练习题【1】1.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是()A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形2.在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .353.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -=4p : sin cos 2x y x y π=⇒+= 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于.5.在△ABC 中,已知边10c =, cos 4cos 3A bB a ==,求边a 、b 的长。
6.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =︒,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ⋅+⋅=.(1)求角C 的大小;(2)若,,a c b 成等差数列,且18CA CB ⋅=,求c 边的长.9.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2A n A =,且72m n ⋅= . (1)求角A 的大小; (2)若3a =b c ⋅取得最大值时ABC ∆的形状.10.在ABC ∆中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值; (Ⅱ)设15=BC ,求ABC ∆的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x⑴求)(x f 的最大值及此时x 的值;⑵求)(x f 在定义域上的单调递增区间。
解三角形专题(高考题)练习【附答案】
解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边23BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC ,记→→∙=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅BC BA ,且22=b ,求c a 和b 的值. 6、在ABC ∆中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ; (Ⅱ)设2AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.A B C120°θ当13,4==c a ,求△ABC 的面积。
(完整版)解三角形经典练习题集锦(附答案)
解三角形一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
(完整word版)解三角形练习题和答案
解三角形练习题1.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是( )A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形2. 在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .353.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于 . 5.在△ABC 中,已知边10c =,cos 4cos 3A bB a ==,求边a 、b 的长。
6.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =︒,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ⋅+⋅=.(1)求角C 的大小;(2)若,,a c b 成等差数列,且18CA CB ⋅=,求c 边的长.9.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2A n A =,且72m n ⋅= . (1)求角A 的大小;(2)若a =b c ⋅取得最大值时ABC ∆的形状.10.在ABC ∆中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值; (Ⅱ)设15=BC ,求ABC ∆的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x ⑴ 求)(x f 的最大值及此时x 的值;⑵ 求)(x f 在定义域上的单调递增区间。
解三角形经典练习题集锦(附答案)之欧阳美创编
解三角形一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B均为锐角,且,sin cos B A >则△ABC的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证:)cos cos (aAb Bc a b b a -=- 3.在锐角△ABC中,求证:C B A C B A cos cos cos sin sin sin ++>++。
解三角形经典练习题集锦附答案之欧阳治创编
解三角形一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -即是( ) A .1 B .1- C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 即是( )A .06030或 B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最年夜角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最年夜值是_______________。
2.在△ABC中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最年夜值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c abba -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
解三角形经典练习题集锦附答案之欧阳物创编
解三角形一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -即是( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 即是( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最年夜角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最年夜值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最年夜值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c ab ba -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档之"解三角形"一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .A tan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC中,若====a C B b 则,135,30,20_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC+的最大值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
4.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。
解三角形一、选择题1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1 C.2 D.22.在△ABC 中,若角B 为钝角,则sin sin B A -的值( )A .大于零B .小于零C .等于零D .不能确定3.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 24.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )A .090 B .060 C .0135 D .0150 6.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( )A .51-B .61-C .71-D .81- 7.在△ABC 中,若tan 2A B a ba b--=+,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形 二、填空题 1.若在△ABC 中,060,1,ABC A b S ∆∠==则C B A c b a sin sin sin ++++=_______。
2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。
3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。
4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。
5.在△ABC 中,若=+===A c b a 则226,2,3_________。
6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。
三、解答题 1. 在△ABC中,0120,,ABCA c b a S=>=,求c b ,。
2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A 。
3.在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin CB AC B A =++。
4.在△ABC 中,若0120=+B A ,则求证:1=+++c a b c b a 。
5.在△ABC 中,若223cos cos 222C A b a c +=,则求证:2a c b +=(数学5必修)第一章:解三角形 一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( )A .)2,2(B .)2,2(-C .]2,1(-D .]2,2[-2.在△ABC 中,若,900=C 则三边的比cba +等于( )A .2cos2B A + B .2cos 2BA -C .2sin 2B A +D .2sin 2BA -3.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .28D .364.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A .sin cos A A >B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )A .090B .060C .0120D .01506.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。
3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+==则zy x ,,的大小关系是___________________________。
4.在△ABC 中,若bc a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。
5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。
6.在△ABC中,若acb =2,则B BC A 2cos cos )cos(++-的值是_________。
三、解答题1.在△ABC中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。
1. 如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值。
3.已知△ABC 的三边cb a >>且2,2π=-=+C A b c a ,求::a b c4.在△ABC 中,若()()3a b c a b c ac ++-+=,且tan tan 3A C +=+AB边上的高为角,,A B C 的大小与边,,a b c 的长[基础训练A组]一、选择题1.C00tan 30,tan 302bb ac b c b a=====-=2.A 0,sin 0A A π<<>3.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>4.D 作出图形5.D12sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150 6.B设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求二、填空题1.12 11sin sin sin cos sin 222A B A A A ==≤ 2.0120 22201cos ,12022b c a A A bc +-==-= 3.26-sin 215,,4sin 4sin154sin sin sin 4a b b A A a A A B B ======⨯4.0120a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k ===22201cos ,12022a b c C C ab +-==-=5.4,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C +===+AC BC +sin )cos22A B A B A B +-=+= max 4cos 4,()42A BAC BC -=≤+=三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C+=+-=cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=所以△ABC 是直角三角形。
2. 证明:将acb c a B 2cos 222-+=,bca cb A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-=22a b a bab b a-==-=左边,∴)cos cos (aA bB c a b b a -=- 3.证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222A C A C B B+-=,∴1sincos 222B A C -==而0,22B π<<∴cos24B =,∴sin 2sincos 22244B B B ==⨯=839[综合训练B 组]一、选择题1.C12,,,::sin :sin :sin ::1:2632222A B C a b c A B C πππ====== 2.A ,A B A B ππ+<<-,且,A B π-都是锐角,sin sin()sin A B B π<-=3.D sin sin 22sin cos ,2cos A B B B a b B ===4.Dsin sin lglg 2,2,sin 2cos sin cos sin cos sin A AA B CB C B C===sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形5.B 22()()3,()3,a b c b c a bc b c a bc +++-=+-=222222013,cos ,6022b c a b c a bc A A bc +-+-====6.C 2222cos 9,3c a b ab C c =+-==,B 为最大角,1cos 7B =-7.D2cossinsin sin 22tan 2sin sin 2sin cos 22A B A BA B a b A B A B A Ba b A B +----===+-++,tan2tan ,tan 022tan 2A BA B A B A B ---==+,或tan 12A B +=所以A B =或2A B π+=二、填空题1.3392211sin 4,13,222ABC S bc A c c a a ∆==⨯====sin sin sin sin a b c a A B C A ++===++2.>,22A B A Bππ+>>-,即sin()2tan tan()2cos()2B A B B πππ->-=- cos 1sin tan B B B ==,1tan ,tan tan 1tan A A B B>>3. 2 sin sin tan tan cos cos B CB C B C+=+sin cos cos sin sin()2sin 1cos cos sin sin 2B C B C B C AB C A A +++===4. 锐角三角形 C 为最大角,cos 0,C C >为锐角5.060222231cos 22b c a A bc -+-====6.222222222222213,49,594a b c c a c b c c c c b a c ⎧⎧+>>⎪⎪+>+><<<<⎨⎨⎪⎪+>+>⎩⎩三、解答题1.解:1sin 4,2ABC S bc A bc ∆=== 2222cos ,5a b c bc A b c =+-+=,而c b >所以4,1==c b2. 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B CA B C A B C A B C>>∴1tan tan tan >⋅⋅C B A3. 证明:∵sin sin sin 2sincos sin()22A B A BA B C A B +-++=++2sincos 2sin cos2222A B A B A B A B+-++=+ 2sin (cos cos )222A B A B A B+-+=+2cos 2cos cos 222C A B=⋅4cos cos cos 222A B C=∴2cos 2cos 2cos 4sin sin sin CB AC B A =++4.证明:要证1=+++c a bc b a ,只要证2221a ac b bcab bc ac c+++=+++, 即222a b c ab +-=而∵0120,A B +=∴060C =2222220cos ,2cos 602a b c C a b c ab abab+-=+-==∴原式成立。