2.3报童问题模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 4 k
18
LLBean: Expected profit
Demand d(i) 4 5 6 7 8 9 10 11 12 13 14 15 16 Probability p(i) 0.01 0.02 0.04 0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04 0.02 0.01 Sum(d(i)xp(i)) Cumulative Prob. Prob. demand greater Expected profit P(i) = Pr( D < d(i) ) 1 - P(i) = Pr( D > d(i) ) if stock d(i) 0.04 0.01 0.99 220.00 0.14 0.03 0.97 274.40 0.38 0.07 0.93 327.60 0.94 0.15 0.85 378.40 1.66 0.24 0.76 424.40 2.65 0.35 0.65 465.00 4.25 0.51 0.49 499.00 6.45 0.71 0.29 523.40 7.77 0.82 0.18 535.80 9.07 0.92 0.08 541.60 9.63 0.96 0.04 541.40 9.93 0.98 0.02 538.80 10.09 0.99 0.01 535.00
Understocking cost Cu
Customer/Cycle service level CSL
Determining Optimal Level of Product Availability
• Single period • Possible scenarios
– Seasonal items with a single order in a season – One-time orders in the presence of quantity discounts – Continuously stocked items – Demand during stockout is backlogged – Demand during stockout is lost
How much to order?
13
Factors affecting availability
Demand uncertainty Overstocking cost C0
= loss incurred when a unit unsold at end of selling season = profit margin lost due to lost sale (because no inventory on hand) =level of product availability = Prob(Demand < stock level) 14
0 n
n
结果解释
p ( r ) dr a b p ( r ) dr b c
0 n
n
p(r )dr P , p(r )dr P
0 1 n
n
2
p(r)
取n 使
P a b 1 P2 b c
P1~卖不完的概率,a-b ~售出一 份赚的钱
P2~卖超的概率,b-c ~退回一 份赔的钱
n r 0
售出n, 赚(a b)n
G(n) [( a b)r (b c)( n r )] f (r )
求n使G(n)最大
r n 1
(a b)nf (r )
求 解
将r视为连续变量
n
f (r ) p(r ) (概率密度)
G(n) 0 [( a b)r (b c)( n r )] p(r )dr n (a b)np(r )dr
报童问题模型
1、报童问题的提出
2、报童问题所属范畴
3、报童模型的建立与求解
4、报童模型的推广与应用
1、报童问题的提出
在日常生活中,经常会碰到一些季节性强、更新快、不易保 存等特点的物品,如海产、山货、时装、生鲜食品和报纸等,当 商店购进这些商品时,买的数量越多,价格越便宜获利越大。但 买得太多也可能卖不出去,需要削价处理,人力物力都受损;如 果进货太少,又可能发生缺货现象,失去销售机会而减少利润。
19
Newsvendor : Marginal Analysis
Stock one unit if … Stock 2 units (instead of 1 unit) if ...
Stock 1
D=0 D=1
Stock 2
Stock 3
D=2
D=3
20
keep order size at k
报童问题的推广与应用:
多产品报童问题; 考虑风险偏好的报童问题; 基于需求预测的报童问题; 考虑采购提前期的报童问题;
Product Availability: Tradeoffs
High availability =>
responsive to customers attract increased sales higher revenue
Cost of overstocking = Co = $45 + $10 - $50 = c - s = $ 5 Marginal profit from selling parka = cost of understocking = Cu = $100 - $45 = p - c = $55
16
High availability =>
larger inventory higher costs risk of obsolescence
12
Newsboy Model Newsvendor
single period model (one selling season)
(one-time order, e.g. for quantity discount)
每天购进多少份使收入最大?
分 析
购进太多卖不完退回赔钱 购进太少不够销售赚钱少 应根据需求确定购进量 每天需求量是随机的
存在一个合适的 购进量
每天收入是随机的
优化问题的目标函数应是长期的日平均收入 等于每天收入的期望
2、报童问题所属范畴
单周期随机型存贮模型 这种单周期购入—售出(报纸、日历、杂志,各种季节性货物、时 装),并且超出该购入—售出周期商品就会严重贬值的存贮问题,存 贮论中统称为卖报童问题。 这类问题的库存控制策略是以利润期望最大为目标,确定一次购入的 经济订货批量。
Increase order from k to k+1 if Prob(Demand < k) < Cu Co + Cu
21
LL Bean
Cu p c 100 45 55 Co c s 45 40 5 Cu critical ratio Co Cu 55 0.917 5 55 so order13
6
7 8 9 10 11 12 13 14
0.04
0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04
0.07
0.15 0.24 0.35 0.51 0.71 0.82 0.92 0.96
0.93
0.85 0.76 0.65 0.49 0.29 0.18 0.08 0.04
n dG (a b)np(n) 0 (b c) p(r )dr (a b)np(n) dn
n (a b) p(r )dr (b c) 0 p(r )dr (a b) n p(r )dr
n
dG 0 dn
p (r )dr a b p (r )dr b c
P1 0 n
P2 r
(a b) n , (b c) n
4、报童问题的推广与应用
在科学的管理方法和手段在管理实践中运用越来越多的今天, 管理者同样需要考虑,怎样改进粗放的管理模式,才能提高企业 的管理水平,从而提高企业的效益。在管理实践中,我们会发现, 与报童问题类似的问题非常多,这样我们就可以将报童问题的研 究方法运用到实践中,通过科学的调查、计算,把过去经验的管 理方法,上升到科学的管理方法。
Demand d(i) 4 5 6 7 8 9 10 11 12 13 14 15 16 Probability p(i) 0.01 0.02 0.04 0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04 0.02 0.01 Cumulative Prob. P(i) = Pr( D < d(i) ) 0.01 0.03 0.07 0.15 0.24 0.35 0.51 0.71 0.82 0.92 0.96 0.98 0.99
3、模型的建立与求解
准 备 建 模
调查需求量的随机规律——每天需求量为 r 的 概率 f(r), r=0,1,2…
• 设每天购进 n 份,日平均收入为 G(n)
• 已知售出一份赚 a-b;退回一份赔 b-c
rn
售出r , 退回n r
赚(a b)r, 赔(b c)(n r )
r n
1 more unsold
Additional contribution
0
order k+1 instead of k
Co
Cu
1 fewer lost sale
Order k+1 instead of k if Pr(D>k) Cu Pr(D<k) (Co) > 0 or Pr(D< k ) (Co) + [1-Pr(D<k)] Cu > 0
demand uncertainty order placed (and delivered) before demand is known unmet demand is lost unsold inventory at the end of the period is discard (or salvaged at lower value)
15
16 17
Copyright ©2013 Pearson Education.
0.02
0.01 0.01
0.98
0.99 1.00
0.02
0.01 0.00
13-17
LLBeHale Waihona Puke Baidun: Expected Profit
Expected demand j p j 10 j 4 Expected profit if order 10
L.L. Bean Example – Demand Distribution
Table 13-1 Demand Di (in hundreds) 4 5 Probability pi 0.01 0.02 Cumulative Probability of Demand Being Di or Less (Pi) 0.01 0.03 Probability of Demand Being Greater than Di 0.99 0.97
Copyright ©2013 Pearson Education. 13-15
Example: Selling parkas at LL Bean
Cost per parka = c = $45 Sale price per parka = p = $100 Inventory holding (until season end) and transportation cost (to outlet store) per parka = $10 Discount price per parka (season end sales) = $50 Salvage value per parka = $50 -$10 = $40 = s
pi [i( p c) (10 i)(c s)] [1 P 10)( p c) 10 ](
i 4 10
17
Expected profit if order k
pi [i( p c) (k i)(c s)] [1 Pk ](k )( p c)
这就产生一个问题:订货量过多,出现过剩,会造成损失; 订货量少,又可能会失去销售机会,影响利润,那么应该如何确
定订货策略呢?将这一现象具体到报童销售报纸上,就引发了报
童问题:
报童问题:
报童每天需订购多少份报纸?
问 题
报童售报:(零售价) a > (购进价) b > (退回价) c
售出一份赚 a-b;退回一份赔 b-c
18
LLBean: Expected profit
Demand d(i) 4 5 6 7 8 9 10 11 12 13 14 15 16 Probability p(i) 0.01 0.02 0.04 0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04 0.02 0.01 Sum(d(i)xp(i)) Cumulative Prob. Prob. demand greater Expected profit P(i) = Pr( D < d(i) ) 1 - P(i) = Pr( D > d(i) ) if stock d(i) 0.04 0.01 0.99 220.00 0.14 0.03 0.97 274.40 0.38 0.07 0.93 327.60 0.94 0.15 0.85 378.40 1.66 0.24 0.76 424.40 2.65 0.35 0.65 465.00 4.25 0.51 0.49 499.00 6.45 0.71 0.29 523.40 7.77 0.82 0.18 535.80 9.07 0.92 0.08 541.60 9.63 0.96 0.04 541.40 9.93 0.98 0.02 538.80 10.09 0.99 0.01 535.00
Understocking cost Cu
Customer/Cycle service level CSL
Determining Optimal Level of Product Availability
• Single period • Possible scenarios
– Seasonal items with a single order in a season – One-time orders in the presence of quantity discounts – Continuously stocked items – Demand during stockout is backlogged – Demand during stockout is lost
How much to order?
13
Factors affecting availability
Demand uncertainty Overstocking cost C0
= loss incurred when a unit unsold at end of selling season = profit margin lost due to lost sale (because no inventory on hand) =level of product availability = Prob(Demand < stock level) 14
0 n
n
结果解释
p ( r ) dr a b p ( r ) dr b c
0 n
n
p(r )dr P , p(r )dr P
0 1 n
n
2
p(r)
取n 使
P a b 1 P2 b c
P1~卖不完的概率,a-b ~售出一 份赚的钱
P2~卖超的概率,b-c ~退回一 份赔的钱
n r 0
售出n, 赚(a b)n
G(n) [( a b)r (b c)( n r )] f (r )
求n使G(n)最大
r n 1
(a b)nf (r )
求 解
将r视为连续变量
n
f (r ) p(r ) (概率密度)
G(n) 0 [( a b)r (b c)( n r )] p(r )dr n (a b)np(r )dr
报童问题模型
1、报童问题的提出
2、报童问题所属范畴
3、报童模型的建立与求解
4、报童模型的推广与应用
1、报童问题的提出
在日常生活中,经常会碰到一些季节性强、更新快、不易保 存等特点的物品,如海产、山货、时装、生鲜食品和报纸等,当 商店购进这些商品时,买的数量越多,价格越便宜获利越大。但 买得太多也可能卖不出去,需要削价处理,人力物力都受损;如 果进货太少,又可能发生缺货现象,失去销售机会而减少利润。
19
Newsvendor : Marginal Analysis
Stock one unit if … Stock 2 units (instead of 1 unit) if ...
Stock 1
D=0 D=1
Stock 2
Stock 3
D=2
D=3
20
keep order size at k
报童问题的推广与应用:
多产品报童问题; 考虑风险偏好的报童问题; 基于需求预测的报童问题; 考虑采购提前期的报童问题;
Product Availability: Tradeoffs
High availability =>
responsive to customers attract increased sales higher revenue
Cost of overstocking = Co = $45 + $10 - $50 = c - s = $ 5 Marginal profit from selling parka = cost of understocking = Cu = $100 - $45 = p - c = $55
16
High availability =>
larger inventory higher costs risk of obsolescence
12
Newsboy Model Newsvendor
single period model (one selling season)
(one-time order, e.g. for quantity discount)
每天购进多少份使收入最大?
分 析
购进太多卖不完退回赔钱 购进太少不够销售赚钱少 应根据需求确定购进量 每天需求量是随机的
存在一个合适的 购进量
每天收入是随机的
优化问题的目标函数应是长期的日平均收入 等于每天收入的期望
2、报童问题所属范畴
单周期随机型存贮模型 这种单周期购入—售出(报纸、日历、杂志,各种季节性货物、时 装),并且超出该购入—售出周期商品就会严重贬值的存贮问题,存 贮论中统称为卖报童问题。 这类问题的库存控制策略是以利润期望最大为目标,确定一次购入的 经济订货批量。
Increase order from k to k+1 if Prob(Demand < k) < Cu Co + Cu
21
LL Bean
Cu p c 100 45 55 Co c s 45 40 5 Cu critical ratio Co Cu 55 0.917 5 55 so order13
6
7 8 9 10 11 12 13 14
0.04
0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04
0.07
0.15 0.24 0.35 0.51 0.71 0.82 0.92 0.96
0.93
0.85 0.76 0.65 0.49 0.29 0.18 0.08 0.04
n dG (a b)np(n) 0 (b c) p(r )dr (a b)np(n) dn
n (a b) p(r )dr (b c) 0 p(r )dr (a b) n p(r )dr
n
dG 0 dn
p (r )dr a b p (r )dr b c
P1 0 n
P2 r
(a b) n , (b c) n
4、报童问题的推广与应用
在科学的管理方法和手段在管理实践中运用越来越多的今天, 管理者同样需要考虑,怎样改进粗放的管理模式,才能提高企业 的管理水平,从而提高企业的效益。在管理实践中,我们会发现, 与报童问题类似的问题非常多,这样我们就可以将报童问题的研 究方法运用到实践中,通过科学的调查、计算,把过去经验的管 理方法,上升到科学的管理方法。
Demand d(i) 4 5 6 7 8 9 10 11 12 13 14 15 16 Probability p(i) 0.01 0.02 0.04 0.08 0.09 0.11 0.16 0.20 0.11 0.10 0.04 0.02 0.01 Cumulative Prob. P(i) = Pr( D < d(i) ) 0.01 0.03 0.07 0.15 0.24 0.35 0.51 0.71 0.82 0.92 0.96 0.98 0.99
3、模型的建立与求解
准 备 建 模
调查需求量的随机规律——每天需求量为 r 的 概率 f(r), r=0,1,2…
• 设每天购进 n 份,日平均收入为 G(n)
• 已知售出一份赚 a-b;退回一份赔 b-c
rn
售出r , 退回n r
赚(a b)r, 赔(b c)(n r )
r n
1 more unsold
Additional contribution
0
order k+1 instead of k
Co
Cu
1 fewer lost sale
Order k+1 instead of k if Pr(D>k) Cu Pr(D<k) (Co) > 0 or Pr(D< k ) (Co) + [1-Pr(D<k)] Cu > 0
demand uncertainty order placed (and delivered) before demand is known unmet demand is lost unsold inventory at the end of the period is discard (or salvaged at lower value)
15
16 17
Copyright ©2013 Pearson Education.
0.02
0.01 0.01
0.98
0.99 1.00
0.02
0.01 0.00
13-17
LLBeHale Waihona Puke Baidun: Expected Profit
Expected demand j p j 10 j 4 Expected profit if order 10
L.L. Bean Example – Demand Distribution
Table 13-1 Demand Di (in hundreds) 4 5 Probability pi 0.01 0.02 Cumulative Probability of Demand Being Di or Less (Pi) 0.01 0.03 Probability of Demand Being Greater than Di 0.99 0.97
Copyright ©2013 Pearson Education. 13-15
Example: Selling parkas at LL Bean
Cost per parka = c = $45 Sale price per parka = p = $100 Inventory holding (until season end) and transportation cost (to outlet store) per parka = $10 Discount price per parka (season end sales) = $50 Salvage value per parka = $50 -$10 = $40 = s
pi [i( p c) (10 i)(c s)] [1 P 10)( p c) 10 ](
i 4 10
17
Expected profit if order k
pi [i( p c) (k i)(c s)] [1 Pk ](k )( p c)
这就产生一个问题:订货量过多,出现过剩,会造成损失; 订货量少,又可能会失去销售机会,影响利润,那么应该如何确
定订货策略呢?将这一现象具体到报童销售报纸上,就引发了报
童问题:
报童问题:
报童每天需订购多少份报纸?
问 题
报童售报:(零售价) a > (购进价) b > (退回价) c
售出一份赚 a-b;退回一份赔 b-c