人教版七年级上册数学应用题汇总

合集下载

新人教版七年级上册数学应用题汇总

新人教版七年级上册数学应用题汇总

新人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲独自达成要 6 天,乙独自达成要12 天,丙独自达成要15 天(1)甲、乙合作几日达成这项工作?(2)甲、乙、丙合作几日达成这项工程?(3)甲、丙合作几日达成这项工作?(4)乙、丙合作几日达成这项工程 ?(5)甲、乙合作几日达成这项工作的3?4( 6)甲、乙、丙合作几日达成这项工程 3 ?5(7)甲独自做了 2 天后,甲乙合作几日达成这项工作?(8)甲独自做了 2 天后,甲乙丙合作几日达成这项工作?(9)甲、丙合作 3 天后有其余工作走开,由乙独自达成,一共几日达成这项工作?( 10)乙独自做了 3 天,后甲乙丙合作,达成了该工程的 4 ,问甲共工作了5几日达成这项工程?( 11)乙独自做了 3 天,后甲乙合作,达成了该工程的 4 ,剩下的由丙独自5达成这项工作,问甲、乙、丙各工作了几日?2、某车间接到 x 件零件加工任务,计划每日加工120 件。

(1)6 天能达成 , 问总任务是多少件?(2)实质每日比计划多加工 20 件, 7 天能达成,问总任务多少件?(3)实质每日比计划多加工2,4 天能达成,问总任务多少件?5(4)实质每日比计划多加工 20 件,结果比计划提早了 2 天达成,问总任务多少件?(5)实质每日比计划少加工1,结果比计划多用了 4 天达成,问总任务多少5件?3、某工程,甲独自达成要45 天达成,乙独自做要30 天达成,若乙先单独做了 22 天,剩下的由甲去达成,问甲、乙一共用几日能够达成所有工程?4、一项工程,甲队独自达成需40 天,乙队独自达成需50 天,现甲队独自做 4 天,后两对合作。

(1)求甲、乙合作多少天才能把该工程达成;(2)在( 1)的条件下,甲队每日的施工费为 3000 元,乙队每日施工费为2500 元,求达成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队独自达成需小时,乙队独自达成要 5 小时,现乙队独自先做 1 小时候,节余工作由甲、乙两队共同达成,问这项工作还需要多长时间达成?二、配套问题1、一个工厂有 32 工人,要加工一批螺母和螺栓,一个工人每日可生产 120 个螺母或 80 个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每日生产的螺母和螺栓恰巧配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28 名员工,接到一批方桌生产任务,一个工人每日可制作 120 条桌腿或 40 个桌面, 1 张方桌需要一个桌面和 4 条桌腿,问,怎样安排员工才可使每日达成的桌面和桌腿恰巧配套?3、用木材做方桌,每立方米木材可做桌面50 个或桌腿 300 条,一张方桌需要一个桌面和 4 条桌腿, 5 立方米的木材敲好可做多少张方桌?4、整理一批档案,由一个人达成需要20 天,先计划由一部分人先做 2 天,而后再增添 2 人与他们一同做了8 天,达成了这项任务的 3 ,假定每人的效率都4相同,详细应先安排多少人工作?5、有一批苹果和一些箱子,假如每个箱子里装 6 千克,则节余 4 千克苹果无箱可装,假如每个箱子装8 千克苹果则期中一个箱子再装 6 千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分红若干小组做手工制作,假如每组 5 人,则多 3 人;假如每组 6 人则少 5 人,教师计划将同学们分红几组?7、一个工厂有员工660 人,要加工一批螺母和螺栓,一个工人每日可生产14 个螺母或 20 个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每日生产的螺母和螺栓恰巧配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170 名学生参加义务绿化活动。

最新人教版七年级上册数学二元一次方程应用题及答案汇总

最新人教版七年级上册数学二元一次方程应用题及答案汇总

最新人教版七年级上册数学二元一次方程应用题及答案汇总1. 问题:某商店购进了20件衣服,每件衣服成本为300元。

商店希望将成本与售价之间的差距控制在4000元以内。

请问商店至少应以多少元的售价出售每件衣服?解答:设每件衣服的售价为x元。

根据题意,售价与成本之间的差距控制在4000元以内,可列出方程:x - 300 ≤ 4000。

解这个不等式可得x ≤ 4000 + 300。

答案:商店至少应以4300元的售价出售每件衣服。

2. 问题:某公司在一年内生产了件产品,已知公司每个月的生产量是上个月生产量的1.5倍。

求这个公司每个月的生产量。

解答:设这个公司每个月的生产量为x件。

根据题意,每个月的生产量是上个月生产量的1.5倍,可列出方程:x = 1.5 * x。

答案:这个公司每个月的生产量为 / 12 = 1500件。

3. 问题:某地区的人口在过去的四年中呈等比增长,第一年的人口是人,第四年的人口是人。

求这个地区每年的人口增长率。

解答:设这个地区每年的人口增长率为r。

根据题意,人口在过去的四年中呈等比增长,可列出方程: * (1 + r)^3 = 。

解这个方程可得r ≈ 0.116。

答案:这个地区每年的人口增长率约为11.6%。

4. 问题:某书店在一次促销活动中卖出了400本书,减价幅度为x元每本,共收入元。

求减价幅度x。

解答:设减价幅度为x元每本。

根据题意,减价后的售价与初始售价之间的差距为x,可列出方程:400 * x = 。

答案:减价幅度为30元每本。

以上是最新人教版七年级上册数学二元一次方程应用题及答案的汇总。

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。

人教版初一数学上册应用题精选

人教版初一数学上册应用题精选

2017年12月25日305****6348的初中数学组卷一.选择题(共39小题)1.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为,这个两位数是,根据题意得:(请完成后面的解答过程)2.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库 A工地 xB工地 x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)3.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.4.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)5.根据题意,列出关于x的方程(不必解方程):(1)要锻造一个直径为10cm,高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多长?设应截取直径为8cm的圆钢x cm,则可列出方程;(2)某人存了一笔三年定期存款,年利率为 4.25%,今年到期后,连本带息取出11275元,他三年前存了多少元?设他三年前存了x元,则可列出方程.(3)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为x,则可列出方程.6.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)解:设快车开出x小时后两车相遇,根据题意得:7.七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A、B两个超市“五•一”期间的销售额(只需列出方程即可).8.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?9.方程是刻画现实世界数量关系的有效模型,表格是帮助建立方程的手段之一,请填写表格中的数据(不需要化简),列出方程.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h,则老师去时上坡用了多少小时?由此,可以列出方程.10.一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.11.根据下列条件列出方程:(1)某数比它的大;(2)某数比它的2倍小5;(3)某数的一半比它的3倍大4;(4)某数比它的平方小24;(5)某数的40%与25的差的一半等于30.12.一列火车匀速行驶.经过一座1000m的铁路桥,从车头上桥到车身全部通过铁路桥需要1min,并且车身全部在桥上的时间为40s,求火车的速度和火车的长度.(1)若设火车的速度为xm/s,则列出的方程为.(2)若设火车的长度为xm,则列出的方程为.13.“五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)14.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨若400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.15.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x(x大于0)秒.(1)点C表示的数是;(2)当x= 秒时,点P到达点A处?(3)运动过程中点P表示的数是(用含字母x的式子表示);(4)当P,C之间的距离为2个单位长度时,求x的值.16.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.18.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?19.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?20.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?22.某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.23.一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)24.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金优惠措施额少于等于450元不优惠超过450元,但不超过按售价打九折600元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?25.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?26.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?28.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?29.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a= 元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?30.某商场将M品牌服装每套按进价的2倍进行销售,恰逢“春节”来临,为了促销,他将售价提高了50元再标价,打出了“大酬宾,八折优惠”的牌子,结果每套服装的利润是进价的,该老板到底给顾客优惠了吗?说出你的理由.31.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?32.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?33.根据下面的两种移动电话计费方式表,考虑下列问题:全球通神州行月租费25元/月0本地通话费0.2元/分钟0.3元/分钟(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?34.马年新年即将来临,七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.该小组计划做多少个“中国结”?35.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.36.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?37.某种绿色食品,若直接销售,每吨可获利润0.1万元;若粗加工后销售,每吨可获利润0.4万元;若精加工后销售,每吨可获利润0.7万元.某公司现有这种绿色产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在15天内将这批绿色产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?38.2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):月用水量水价(元/吨)第1级 20吨以下(含20吨) 1.65第2级 20吨~30吨(含30吨) 2.48第3级 30吨以上 3.30例:若某用户2013年6月份的用水量为35吨,按三级计算则应交水费为:20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家2013年6月份的用水量为20吨,则需缴交水费多少元?(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)(3)若一用户2013年7月份应该水费90.8元,则该户人家7月份用水多少吨?39.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?二.解答题(共1小题)40.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?2017年12月25日305****6348的初中数学组卷参考答案与试题解析一.选择题(共39小题)1.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为2x ,这个两位数是20x+x ,根据题意得:(请完成后面的解答过程)【分析】设原来两位数的个位数字为x,根据题意列出方程解答即可.【解答】解:设原来两位数的个位数字为x,可得十位数字为2x,这个两位数是20x+x,根据题意可得:20x+x=10x+2x+27,解得:x=3,所以这个两位数是63.故答案为:2x;20x+x.【点评】此题主要考查了一元一次方程的应用,根据题意得出正确等量关系是解题关键.2.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库 A工地 x70﹣xB工地100﹣x x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为﹣10x+15000 元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)【分析】(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.【解答】解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:甲仓库乙仓库 A工地 x70﹣xB工地100﹣x x+10(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为:﹣10x+15000;(3)140x+150(100﹣x)+200(70﹣x)+80(x+10)=25900,整理得:﹣130x+3900=0.【点评】此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键3.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.【分析】根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.【解答】解:设这群羊有x只,根据题意得:x+x+x+x+1=100.【点评】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.4.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【分析】首先设支援拔草的有x人,则支援植树的有(20﹣x)人,根据题意可得等量关系:原来拔草人数+支援拔草的人数=2×(原来植树的人数+支援植树的人数).【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+(20﹣x)].【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.5.根据题意,列出关于x的方程(不必解方程):(1)要锻造一个直径为10cm,高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多长?设应截取直径为8cm的圆钢x cm,则可列出方程π×52×8=π×42•x ;(2)某人存了一笔三年定期存款,年利率为 4.25%,今年到期后,连本带息取出11275元,他三年前存了多少元?设他三年前存了x元,则可列出方程(1+4.25%×3)x=11275 .(3)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为x,则可列出方程x+x+1+x+7+x+8=416 .【分析】(1)根据题意可知,圆柱形毛坯与圆钢的体积相等,利用此相等关系列方程;(2)利用年利率4.25%的三年期存款,表示出总利息,进而得出等式即可;(3)左右相邻两个数差1,上下相邻的两个数相差为7,据此表示其他三个数,根据题意列出x+x+1+x+7+x+8=416;【解答】(12分)(1)解:设应截取直径8cm的圆钢xcm,由题意得:π×52×8=π×42•x,故答案为:π×52×8=π×42•x;(2)设他三年前存了x元,根据题意得:(1+4.25%×3)x=11275,故答案为:(1+4.25%×3)x=11275;(3)由图表可知:左右相邻两个数差1,上下相邻的两个数相差为7,左上角的一个数为x,则另外三个数用含x的式子从小到大依次表示x+1;x+7;x+8;根据题意可得:x+x+1+x+7+x+8=416,故答案为:x+x+1+x+7+x+8=416.【点评】本题考查了由实际问题列一元一次方程的知识,解题的关键是找到等量关系,难度不大.6.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)解:设快车开出x小时后两车相遇,根据题意得:【分析】设快车开出x小时后两车相遇,根据题意可得,两辆车总共走了300千米,据此列方程.【解答】解:设快车开出x小时后两车相遇,根据题意得:60x+40(x﹣)=300.【点评】本题考查了有实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A、B两个超市“五•一”期间的销售额(只需列出方程即可).【分析】因为今年两超市的销售额都是在同去年进行比较,那么先分别表示出去年的两超市各自的销售额,再根据关系表示出今年两超市的各自的销售额,然后根据等量关系列出方程.【解答】解:设A超市去年的销售额为x万元,则去年B超市的销售额为(150﹣x)万元,今年A超市的销售额为(1+15%)x万元,今年B超市的销售额为(1+10%)•(150﹣x)万元,以今年两超市销售额的和共170万,可得方程:(1+15%)x+(1+10%)(150﹣x)=170解出x,然后可得到A超市的销售额(1+15%)x万元和B超市的销售额(1+10%)•(150﹣x)万元.【点评】此题的关键是理解两个超市有同一年中的销售额的关系,及不同年份中A,B两个超市今年的销售额与去年的销售额之间的关系.8.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【分析】首先设应调至甲地段x人,则调至乙地段(29﹣x)人,则调配后甲地段有(28+x)人,乙地段有(15+29﹣x)人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x),再解方程即可.【解答】解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【点评】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.9.方程是刻画现实世界数量关系的有效模型,表格是帮助建立方程的手段之一,请填写表格中的数据(不需要化简),列出方程.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h,则老师去时上坡用了多少小时?由此,可以列出方程.【分析】设上坡需要x小时,那么下坡就需要2.5﹣x小时,根据题意可得:来回一次上坡和下坡路程相等,据此可列方程解答.【解答】解:设上坡需要x小时,可得:,故答案为:.【点评】此题考查一元一次方程问题,解答本题的关键是明确来回一次上坡和下坡路程相等,重点是求出上坡需要时间.10.一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.【分析】首先设小红答对了x道题,则答错了(30﹣x)道题,再根据题意可得。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案1.一元一次方程应用题市场经济中,打折销售是一种常见的促销手段。

在此背景下,我们需要掌握以下知能点:1)商品利润=商品售价-商品成本价2)商品利润率=商品利润/商品成本价×100%3)商品销售额=商品销售价×商品销售量4)商品的销售利润=(销售价-成本价)×销售量5)商品打几折出售,即按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。

1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元。

这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。

这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:45%×(1+80%)x-x=504.某商品的进价为800元,出售时标价为1200元。

后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的原售价。

知能点2:方案选择问题6.某蔬菜公司有一种绿色蔬菜。

若在市场上直接销售,每吨利润为1000元。

经粗加工后销售,每吨利润可达4500元。

经精加工后销售,每吨利润涨至7500元。

当地一家公司收购这种蔬菜140吨。

该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨;如果进行粗加工,每天可加工6吨。

但两种加工方式不能同时进行。

受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。

为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工。

人教版数学七年级上册应用题专项(附答案)

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

(完整)人教版七年级上册数学应用题及答案

(完整)人教版七年级上册数学应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费。

人教版七年级上册数学 期末专题训练 一元一次方程 应用题

人教版七年级上册数学    期末专题训练   一元一次方程   应用题

人教版七年级上册数学期末专题训练一元一次方程应用题1.为了打赢蓝天保卫战,某市环保局对一段长2400m的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成30m,乙工程队每天完成50m.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时60天,求甲、乙工程队分别整治了多长的河道.2.为了迎接亚洲冬季运动会,现要修一条公路,甲工程队单独修需30天完成,乙工程队单独完成需要的天数是甲工程单独完成天数的710少1天.(1)乙工程队单独完成需要多少天?(2)若甲先单独修5天,之后甲乙合作修完这条公路,求甲乙还需合作几天修完这条路?3.用边长为12cm的正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19 张硬纸板,裁剪时 x 张用 A 方法,其余用 B 方法.(1)用 x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?4.琪琪爸爸在一家电信公司了解到两种移动电话计费方法:计费方法A是每月收月租费30元,通话时间120分钟内免费,超过120分的部分按每分钟0.25元加收通话费;计费方法B是每月收月租费50元,通话时间200分钟内免费,超过200分的部分按每分钟0.2元收通话费.(1)若琪琪爸爸一个月的通话时间大约在150分钟和160分钟之间,请通过计算说明选用哪种计费方式,可以节省费用?(2)琪琪爸爸当前选择了计费方式A,有一个月累计通话240分钟,话费m元.若改成用计费方法B,则同样话费m元,可多通话多少分钟?5.某水果商人以每千克20元的价格购进一批草莓,售完后,又再次购进一批,由于第二批草莓的进货价格比第一批每千克便宜2元,故多购进50千克,两批草莓共花费4700元.(1)该商人第二批购进多少千克的草莓?(2)水果商人将第二批购进的草莓平均分给甲、乙两家水果店零售,零售价为每千克30元.甲店按零售价卖出m千克后,剩余的按零售价的八折全部售出;乙店同样按零售价卖出m千克,然后将n千克按零售价打九折售出,剩余的按零售价打七折全部售出,结果销售额与甲店相同.①求m与n的数量关系;②已知乙店按零售价打九折售出的数量不超过按零售价卖出的数量,那么乙店的利润能恰好为588元吗?请说明理由.6.某服装厂加工A、B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)将这100件学生服送到商场销售,A种学生服售价200元,B种学生服售价220元.若销售过程中发现A 种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的七折出售,两种学生服全部卖出后,共获利9840元,则A种学生服卖出多少件后打折销售?7.为庆祝“六一”儿童节,某县中小学统组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表,购买服装的套数1套至45数46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买方式.8.随着生活水平的提高,人们越来越重视运动健身.为了满足大众需求,某体育运动品牌店铺推出了A,B 两种运动套装,每套A运动套装的成本为120元,每套B运动套装的成本为100元,每套B运动套装的售价比每套A运动套装的售价少40元,卖3套A运动套装的利润和卖4套B运动套装的利润相同.(1)求每套A运动套装和B运动套装的售价;(2)为了吸引顾客,该体育运动品牌店铺针对这两种运动套装新推出以下两种促销方案:方案一:50元购买一张打折优惠券后(限购一张),买这两种运动套装均打七五折;方案二:每满50元立减10元.若乐乐准备购买1套A运动套装和1套B运动套装,请你算算,哪种方案更划算?9.某工厂一车间有50名工人,某月接到加工两种轿车零件的生产任务.每个工人每天能加工甲种零件30个,或加工乙种零件20个.(1)若一辆轿车只需要甲零件1个和乙零件1个使每天能配套生产轿车,问应安排多少工人加工甲种零件?(2)若一辆轿车需要甲零件7个和乙零件2个使每天能配套生产轿车,若加工一件甲种零件加工费为10元,加工一件乙种零件加工费为12元,若50名工人正好使得每天加工零件能配套生产轿车,求一天这50名工人所得加工费一共多少元?14.某文艺团体开展文艺演出,为“乡村振兴工程”募捐,已知成人票每张40元,学生票每张25元.(1)某场演出共售出1000张票,筹得票款34750元.问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是36450元吗?为什么?(3)已知某单位按(1)中成人及学生数购票,与演出组织单位达成票价打折的优惠方案,共少付票款6975元.若成人票打九折,则学生票打几折?15.某钢材加工厂生产甲、乙两种型号的商品,商品的体积和质量分别如下表所示:体积(3m/件)质量(吨/件)甲种商品0.80.5乙种商品21(1)已知一批商品包含甲、乙两种型号,体积共326m,质量共14吨,求甲、乙两种型号的商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为36m,收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费250元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送付费方式,能够使得运费最少?并求出该方式下的运费是多少元?16.某学校六年级参加春游的一共270人,租一辆45座的小客车租金为250元,租一辆60座的大客车租金为300元,如果租用的大客车比小客车多一辆,恰好坐满.(1)需要租用的大客车和小客车各多少辆?(2)应付租金多少元?(3)如果全部租用小客车或全部租用大客车,哪一种方式更省钱?a,b=;(1)设答对一题记a分,答错一题记b分,则=(2)参赛者D说他得了80分,你认为可能吗,为什么?19.某工厂车间有60个工人生产A零件和B零件,每人每天可生产A零件15个或B零件20个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?20.某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票,超过 10 人的团队,其中 10 人仍按原价售票,超过 10人部分的游客打8 折购票.x x 人,(1)若某旅游团到该景区游玩,游客人数为(10)①若在非节假日,应付票款___________元;②若在节假日,应付票款___________元.(2)某旅行社于今年5月1日(节假日)组织A团,5月10日(非节假日)组织B团到该景区旅游,两次共付门票款1840元,已知A、B两个团游客共计50人,问A、B两个团各有游客多少人?。

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练1.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?2.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)3.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.某服装厂加工一批西服,每1米布料能裁上衣1件或裁裤子2件.现有布料15米,为了使上衣和裤子配套,裁上衣和裤子的布料各几米?5.某校七年级(2)班共有42名学生,在一节科技活动课上作长方体纸盒,已知每名同学一节课可制作盒身20个或盒盖30个,一个盒身和两个盒盖配成一个长方体纸盒.为使一节课制作的盒身、盒盖刚好配套,应安排制作盒身和盒盖的同学各多少名?6.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?7.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?8.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?(列一元一次方程求解)9.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?10.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)11.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?12.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套13.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?14.某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?15.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?16.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库内存有布料180m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料202m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)17.某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?(2)在(1)的方案中,能配成套.18.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?19.糕点厂中秋节前要制作一批盒装月饼,每盒装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?20.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?参考答案:1.(1)80人(2)2000(套)2.分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套3.安排16人加工轴杆,24人加工轴承4.裁上衣的布料为10米,裁裤子的布料为5米5.18名同学制作盒身,24名同学制作盒盖6.该年级的男生有119人,那么女生有51人7.18个工人生产塑料棒,16个工人生产金属球8.46人生产甲种零件,48人生产乙种零件,每天生产552套9.应用3千克紫砂泥做茶壶,3千克紫砂泥做茶杯,恰好配成这种茶具6套10.(1)做上衣用布料180m,则做裤子用布料120m,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子11.应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.12.安排14人加工甲部件,安排36人加工乙部件才能使每天加工的两种部件刚好配套,一共加工了252套13.(1)新分配到A车间20人,分配到B车间5人(2)A车间新增工人和生产线后比原来提前2天完成任务14.(1)七年(2)班有男生22人、女生23人(2)应该分配25名学生搬运桌子,20名学生搬运椅子15.甲种零件生产10天,乙种零件生产8天.16.(1)做上衣用布料108m,则做裤子用布料72m;72套;(2)最多可以生产80套衣服,余料可以做1件上衣或2条裤子.17.(1)应分配40名工人生产手环,30名工人生产丝巾;(2)360018.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.19.(1)用了250kg面粉制作大月饼,200kg制作小月饼;(2)120000元.20.(1)七年级2班有男生有24人,女生有26人;(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底刚好配套.。

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练次进货价格比第一次每千克便宜了1.4元,两次一共购进600千克,且第二次进货的费用是第一次进货费用的1.44倍.(1)该水果店两次分别购进了多少千克的砂糖橘?(2)售卖中,第一批砂糖橘在其进价的基础上加价进行定价,第二批砂糖橘因为进价便宜,因此以第一批砂糖橘的定价再打七折进行销售.销售时,在第一批砂糖橘中有3%的砂糖橘变质不能出售,在第二批砂糖橘中有5%的砂糖橘变质不能出售,该水果店售完这两批砂糖橘能获利1700元,求a 的值.19.现在是互联网的时代,微商小古一次购进了一种时令水果250kg ,开始两天他以每千克高于进价的价格卖出180kg ,第三天他发现网上卖该种水果的商家陡增,于是他果断将剩余的该种水果在前两天的售价基础上打折全部售出.最后他卖该种水果获得元的利润.问:(1)这批水果的进价为多少元?(2)计算小古打折卖出剩余的水果比购进这些水果亏了多少元?20.某商店销售一种电器,先将成本价提高30%作为标价进行出售,结果每销售一件该电器可以获利60元利润.(1)求这种电器的成本价为多少?(2)因市场调整原因,商品需要下架,所以当这批电器销售出100台时,剩下的40台按照标价的五折进行销售,请问:商店是赚了还是亏了?赚了或亏了多少钱,为什么?%a 40%4618参考答案:1.(1)设购买乒乓球盒时,两种优惠办法付款一样(2)去乙店购买,2.(1)到乙超市购物更优惠(2)350元3.(1)七(一)班买了彩灯和射灯各15个,35个(2)4.(1)该店用1300元可以购进A 型号的文具40只,购进B 型号的文具60只(2)若把所购进A ,B 两种型号的文具全部销售完,利润率超过,理由见解析5.(1)甲种商品每件进价为元(2)购进甲商品的数量为件,购进乙商品的数量为件(3)每件乙种商品的售价为元6.(1)元(2)元7.(1)(2)甲(3)在甲,乙两商店购买的本数相同.理由见解答.8.(1)绿叶水果店第一次购进甲种苹果千克,乙种苹果千克(2)第二次乙种苹果按原价打折销售9.712.4元或730元10.(1)第一次购进橙子200千克,第二次购进橙子400千克.(2)a 的值为80.1020m =40%40204062.527060(2.140)x +9540611.(1)每件服装的标价是300元,每件服装的成本是200元(2)712.(1)甲纪念品有40件,乙纪念品有60件(2)3400元13.(1)乙种服装每件进价为80元;(2)商场销售完这批服装,共盈利1450元.60%14.(1)40,(2)购进甲种商品40件15.(1)甲、乙两种文具的每件进价分别为80元和100元;(2)乙种文具每件售价为136元.16.(1)购进甲种水果70千克,乙种水果50千克(2)获得的利润是410元17.(1)甲、乙两种品牌书包每个进价分别是80元、60元(2)每个甲种品牌书包售价为116元18.(1)第一次购进砂糖橘200千克,则第二次进砂糖橘400千克(2)a的值为8019.(1)15元/千克(2)亏了462元20.(1)这种电器的成本价为200元(2)商店赚了3200元,理由见解析。

新人教版七年级上册整式教材应用题汇总附答案

新人教版七年级上册整式教材应用题汇总附答案

整式教材中可能考到的实际问题1.礼堂第1排有a个座位,后面每排都比前面一排多一个座位.第2排有多少个座位?第3排呢?用式子表示第n排的座位数.如果第1排有20个座位,计算第19排的座位数.【解答】解:第2排有(a+1)个座位;第3排有(a+2)个座位;第n排的座位数是a+n-1.当a=20,n=19时,座位数为20+19-1=38.2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度都是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?【解答】解:(1)(50+a)×2+(50-a)×2=200千米;(2)(50+a)×2-(50-a)×2=4a千米.答:2小时后两船相距200千米;甲船比乙船多航行4a千米.3.做大小两个长方体纸盒,尺寸如下(单位:cm):少平方厘米?【解答】解:(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=2ab+2bc+2ac+6ab+8bc+6ac=8ab+10bc+8ac答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米(2)2(1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-2ab+2bc+2ac=4ab+6bc+4ac答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.4.某村小麦的种植面积是a hm2,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5hm2,列式表示水稻的种植面积、玉米的种植面积,并计算水稻种植面积比玉米种植面积大多少?【解答】解:(1)水稻种植面积为:3a公顷,玉米种植面积为(a-5)公顷.(2)3a-(a-5)=3a-a+5=2a+5(公顷),答:水稻种植面积比玉米大(2a+5)公顷.5.(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数;(2)列式表示上面两位数与10的乘积;(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?【解答】解:(1)根据题意得两位数=10×b+a=10b+a;(2)依题意得 10(10b+a);(3)能.理由如下:依题意得 10b+a+10(10b+a)=110b+11a=11(10b+a).∵11(10b+a)÷11=10b+a.∴(1)中的两位数与它的10倍的和,这个和是11的倍数6. 10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是多少?【解答】解:6×6×(a×a)=36a2(cm2)故这个图形的表面积是36a2cm2.7.一种笔记本售价2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本.列式表示买n本笔记本所需钱数(注意对n的大小要有所考虑).请同学们讨论下面的问题:(1)按照这种销售价格规定,会不会出现多买比少买反而付钱少的情况?(2)如果需要100本笔记本,怎样购买能省钱?【解答】解:(1)当n≤100时:需要的钱数是2.3n元;当n>100时:需要的钱数是2.2n元;当n=100时,需要的钱数是2.3×100=230元,由2.2n<230得;n<104.5,则100<n≤104时,会出现多买比少买反而付钱少的情况;(2)∵如果需要100本笔记本,购买101本时,需要的钱数是101×2.2=222.2(元),购买100本时,需要的钱数是100×2.3=230(元),∴如果需要100本笔记本,购买101本能省钱;8.图1是某月的月历.(1)带阴影的方框中的9个数的和与方框正中心的数有什么关系?(2)如果将带阴影的方框移至图2的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框大小,将方框移动几个位置试一试,你能得出什么结论?你能证明这个结论吗?(4)这个结论对于任何一个月的月历都成立吗?(5)如图3,如果带阴影的方框里的数是4个,你能得出什么结论?(6)如图4,对于阴影的方框里的数是4个,又能得出什么结论?【解答】解:(1)9个数之和为:3+4+5+10+11+12+17+18+19=99,99÷11=9,则方框中9个数之和为方框正中心的9倍;(2)移动位置,9个数字之和为:8+9+10+15+16+17+22+23+24=144,144÷16=9,所以改变位置,关系不变;(3)不改变带阴影的方框的大小,将方框移动位置,关系不变.设正中心的数为x,则9个数之和为:(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,9x÷x=9,故移动位置,方框中9个数之和为方框正中心的9倍.(4)这个关系对任何一个月的日历都成立,理由为任何一个日历表都具有这种排列规律;(5)11+12+18+19+15+16+22+23=136,136÷17=8;则方框中8个数之和为对称中心17的8倍;(6)12+19=13+18=31,则方框中对角两数之和相等.9.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,确定哪一种方案砌各圆形水池的周边需要材术料多.(堤示:比较两种方粜中各圆形水池周长的和)【解答】解:(1)∵方案1需要的材料为4πr ,方案2需要的材料为2πr+2π•6π+2π•3π+2π•2π=4πr , ∴方案1、2需要的材料一样多;10.一种商品每件的成本a 元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?【解答】解:∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为(1+22%)a =1.22a (元);现在售价:1.22a ×85%=1.037a (元);每件还能盈利1.037a -a =0.037a (元);答:每件售价1.22a 元;现在售价1.037a 元;每件还能盈利0.037a 元.。

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

7.(1)七年级 2001 班有男生 20 人,女生 30 人 (2)应该分配 30 人剪筒身,20 人剪筒底
8.(1)裁剪出的侧面个数是 4x ;裁剪出的底面个数是 6x 672 (2)A 方法裁剪 84 张,B 方法裁剪 28 张,能做 84 个盒子
9.应该分配 27 名学生做机身,18 名学生做机翼,每小时能够做出 540 套
(1)请用含 x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问 A 方法、B 方法各裁剪几张?能做多少个盒 子?
9.初一年级共 45 名学生参与科技节活动,制作纸飞机模型.每人每小时可做 20 个机 身或 60 个机翼,一个飞机模型要 1 个机身配 2 个机翼,为了使每小时制作的成品刚好 配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时 能够做出多少套?
5.一套仪器由一个 A 部件和三个 B 部件构成.用1m3 钢材可做 40 个 A 部件或 200 个 B 部件.现要用 8m3 钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部件,恰 好配成这种仪器多少套?
6.某瓷器厂共有工人120 人,每个工人一天能做 200 只茶杯或 50只茶壶.如果 8 只茶杯 和一只茶壶为一套. (1)应安排多少人生产茶杯,可使每天生产的瓷器配套. (2)按(1)中的安排,每天可以生产多少套茶具?
17.(1)侧面数:5x+90;底面数:120﹣4x;(2)若裁剪出的侧面和底面恰好全部用完, 能做 32 个盒子. 18.(1)20 立方米 (2)800 元
(1)按 B 种方法剪裁的有______张白板纸;(用含 x 的代数式表示) (2)将 5 32 名工人生产桌子和椅子,每人每天平均生产 15 张桌子或 50 把椅子,一 张桌子要配两把椅子.已知车间每天安排 x 名工人生产桌子. (1)求车间每天生产桌子和椅子各多少?(用含 x 的式子表示) (2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?

人教版七年级上册数学应用题及答案

人教版七年级上册数学应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100% (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1、 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价就是多少元?优惠价就是多少元?2、 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价就是多少?3、一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价就是多少元?若设这种自行车每辆的进价就是x 元,那么所列方程为( )A 、45%×(1+80%)x-x=50B 、 80%×(1+45%)x - x = 50C 、 x-80%×(1+45%)x = 50D 、80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2: 方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力就是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.您认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0、2元;“神州行”不缴月基础费,每通话1•分钟需付话费0、4元(这里均指市内电话).若一个月内通话x 分钟,两种通话方式的费用分别为y 1元与y 2元.(1)写出y 1,y 2与x 之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0、40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费。

人教版七年级上册数学应用题大全及答案

人教版七年级上册数学应用题大全及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

人教版七年级上册数学一元一次方程应用题(数字问题)专题训练

人教版七年级上册数学一元一次方程应用题(数字问题)专题训练

人教版七年级上册数学一元一次方程应用题(数字问题)专题训练1.一个两位数的数字之和是11,若原数加上45,则得到的数正好是原数的十位数字与个位数字交换位置后所得的数,求这个两位数.2.有一个三位数的个位数字为1,如果把这个1移到最前面的位置上,那么所得的新三位数的2倍比原数多15,求原来的三位数.3.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?4.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.5.有一些分别标有7,14,21,28,…的卡片,后一张卡片上的数比前一张卡片上的数大7,小明拿了相邻的三张卡片.(1)若小明拿到的三张卡片上的数之和为273,则三张卡片上的数分别是多少?(2)小明能否拿到相邻的三张卡片,使得这三张卡片上的数之和等于171?如果能拿到,请求出这三张卡片上的数各是多少?如果不能拿到,请说明理由.6.一个三位数的三个数字和是24,十位数字比百位数字少2,若这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这个三位数的三个字母的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数.7.有人问一个男孩:“你们家兄弟有几个,姊妹有几个?”他回答:“我有几个兄弟就有几个姊妹.”这人又问男孩的姐姐,她回答说:“我的兄弟数就是我的姊妹数的2倍.”请问他们家兄弟、姊妹各有几个?.8.有一列按一定规律排成的数:1,3,7,11,(1)这列数中的第100个数是多少?(2)2019,2021是否为这列数中的数?若是,是第几个数;若不是,请说明理由.9.一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为______,新三位数可表示为______;(2)列方程求解原三位数.10.已知有理数-3,1,m.(1)计算-3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.11.把100分成两个数的和,使第一个数加3,与第二个数减3的结果相等.这两个数分别是多少?12.如图是输入一个x的值,计算函数y的值的程序框图:(1)当输入x的值为100时,输出的y的值为多少?x时,输出的y的值为-500,则输入的0x的值是多少?(2)当输入一个整数13.将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)探索任意一个十字形框中的五个数之和与中间的数的关系是.(2)若十字框中的五数之和是2015,请求出此时框中的五个数分别是什么?14.一个两位数,把它的个位数字与十位数字交换位置得到新两位数,原两位数的个位数字比原两位数的十位数字大2,且新两位数与原两位数的和为154,求原两位数是多少?15.已知一个由50个偶数排成的数阵,请你观察框内的四个数之间的关系并解答下列问题:在数阵中任意作一个类似图中的框.(1)设框内左上角的数为x,那么其他三个数分别是:,,.(2)如果框内四个数的和是172,这四个数分别是什么?16.有一些分别标有7,13,19,25…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数之和为345.(1)猜猜小彬拿的3张卡片上的数各是多少?(2)小彬能否拿到相邻的3张卡片,使得3张卡片上的数字之和等于150?如果能拿到,请求出这3张卡片上的数各是多少,如果拿不到,请说明理由.17.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m,n的值分别是多少?18.将连续的偶数2,4,6,8,…排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和等于.(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和是.(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次,,,,.(4)框住的五个数的和能等于2019吗?参考答案:1.382.2313.三张卡片上分别标有32,-64,1284.485.(1)三张卡片上的数分别是84、91、98.(2)不能拿到,理由见解析.6.原来的三位数为978.7.他们家兄弟有4个、姊妹有3个.8.(1)395;(2)2019是这列数中的数,是第506个数;2021不是这列数中的数. 9.(1)102x,201x(2)30610.(1)-1;(2)811.47;53.12.(1)-1500;(2)300或140或172.13.(1)五个数之和为中间数的5倍;(2)五个数分别为393,401,403,405,413.14.原两位数是6815.(1)x+2,x+12,x+14;(2)36,38,48,50.16.(1)小彬拿到的三张卡片上的数各是109,115,121;(2)小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150,n=17.(1)3;(2)1m=-,318.(1)80;(2)5x;(3)这五个数分别为:394,402,404,406,414;(4)不能。

人教版七年级上册数学期末一元一次方程应用题(方案选择问题)专题训练

人教版七年级上册数学期末一元一次方程应用题(方案选择问题)专题训练

人教版七年级上册数学期末一元一次方程应用题(方案选择问题)专题训练1.在“五一”期间,小明、小亮等小学生随家长一同到某公园游玩,已知:成人票价为每张40元,学生票价为成人票价的五折优惠,团体(10人以上含10人)购票按成人票价八折优惠.小亮发现,他们这一行12人如果每人单个去买票共需400元.(1)小明他们这一行人中学生和家长各多少人?(2)请你帮小明算一算,怎样购票最划算?2.七年级组织观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于50人票价为每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:“50人以上的团体票有两个优惠方案可选择:方案一全体人员可打8折;方案二:若打9折,则有7人可以免票.”(1)二班有61名学生,该选择哪个方案?(2)一班班长思考一会儿说:“我们班无论选择哪种方案要付的钱是一样的.”你知道一班有多少人吗?(此问要求列方程解答)3.公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每销售一件产品增加推销费5元;方案二:不付底薪,每销售一件产品给推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品市,两种方案所得工资一样多?4.元旦期间某商店进行促销活动,活动方式有如下两种:方式一:每满200元减50元;方式二:若标价不超过400元时,打8折;若标价超过400元,则不超过400元的部打8折,超出400元的部分打6折.某一商品的标价为x 元,当200600x <<时,x 取值为 时,两种方式的售价相同.5.某商场对一种零售价为每块2元的肥皂,推出两种优惠方案.方案一:凡购买2块以上(含2块),第一块原价,其余按原价的七五折优惠;方案二:全部按原价的八折优惠.(1)若一顾客购买了3块该种肥皂,则选择更优惠(填“方案一”或“方案二”).(2)求顾客购买多少块该种肥皂时,使用两种方案付费相同.6.明德中学某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.7.某玩具厂出售一种玩具,其成本价每件28元,现有两种方式销售.方式1:直接由玩具厂的门市部销售,每件产品售价为40元,同时每月还要支出其他费用3600元;方式2:委托某一商场销售,出厂价定为每件35元.(1)若每个月销售x件,则方式1可获得利润为,方式2可获得利润为;(2)若每个月销售量达到2000件时,采用哪种销售方式获得利润较多?(3)请列一元一次方程求解:每个月销售多少件时,两种销售方式所得利润相等?8.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;①乙队单独完成;①甲、乙两队全程合作完成.哪一种方案的施工费用最少?9.影片《夺冠》讲述了中国女排的奋斗历程和顽强拼搏、为国争光的感人故事.上初期,某校为了对学生进行爱国主义教育及励志教育,计划组织所有学生及教师观看经了解,甲、乙两家电影院的电影票单价都是30,这两家电影院有两种不同的优惠方式.甲电影院,购买票数量不超过100张时,每张30元;超过100张时,超过的部分打八折.乙电影院,不论买多少张,每张打九折.(1)设该学校有教师和学生共x人观看电影(每人买一张电影票),请用含x的式子分别表示在甲、乙两家电影院购票所需的费用;(2)求出两家电影院购票费用相同时x的值.10.某同学在A、B大型服装超市发现他看中的衣服单价相同,鞋子单价也相同,衣服和鞋子单价之和是486元,且衣服单价是鞋子单价的2倍多6元.()1求该同学看中的衣服和鞋子单价各是多少元?()2某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返,购物券全场通用,但只能用于下一次消费时抵扣),他只带了400元钱,如果他只在一家超市购买看中的两样物品,你能说明他选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?11.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券,使用购物券消费不再返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.12.为增强同学的体质,某学校拟利用大课间进行学生集体跳绳活动.为此,小红和小明到商店里购买跳绳.已知每根跳绳25元,若购买的数量超过10根,则可享受八折优惠.请回答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.13.为了防止新冠疫情的进一步传播,提高环境卫生水平,邢台市区对每个社区提出了两种储存生活垃圾的方案.方案一:买分类垃圾桶,需要费用4000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用450元.(1)交费时间为多少个月时,两种方案费用相同?(2)若交费时间为12个月,哪种方案更合适,并说明理由;14.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:若制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?15.某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费800元,每个证书收印刷费0.4元;乙厂收费方式:不超过2000个证书时,每个证书收印刷费1.2元;超过2000个时,2000之内的每个证书印刷费按1.2元收取,超过部分的每个证书印刷费按0.2元收取.若该校印制证书x个.(1)若x不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x超过2000时,甲厂的收费为元,乙厂的收费为元;(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?17.某班将买一些羽毛球和羽毛球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的羽毛球和羽毛球拍,羽毛球拍每副定价48元,羽毛球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒羽毛球,乙店全部按定价的9折优惠.该班要买球拍5副,羽毛球x盒(x不小于5盒).(1)用代数式分别表示去甲、乙两店购买所需的费用.(2)当购买50盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?(3)当购买多少盒羽毛球时,甲乙两店的费用都一样?18.现有甲、乙两个瓷器店,出售茶壶和茶杯,茶壶每只价格20元,茶杯每只5元,已知甲店制定的优惠方法是:买一只茶壶送一只茶杯,乙店为总价的90%付款,现某单位需购买茶壶10只,茶杯若干只(不少于10只):(1)当购买茶杯多少时,两种优惠方法一样?(2)当购买40只茶杯时,请聪明的你去办这件事,你打算怎样购买更省钱?请通过计算说明理由.某学校七年级①、①两个班共103人去科技馆,其中①班有40多人,不足50人,经计算,如果两个班都以班为单位购票,则一共应付1686元.(1)七年级①班学生有多少人?(2)如果两个班联合起来,作为一个团体购票,可以省______元.参考答案: 1.(1)一行人中学生4个,家长8个(2)按团体票购票最划算2.(1)方案二,(2)633.(1)方案二所得工资合算,理由见解析;(2)推销40件产品市,两种方案所得工资一样多.4.250或450.5.(1)方案二.(2)当顾客购买5块该种肥皂时,使用两种方案付费相同6.(1)甲:0.8128x +,乙:0.72144x +;(2)圆珠笔买200支时,到两家文具店所付金额一样多;(3)去甲店买20本笔记本,去乙店买20支圆珠笔,见解析.7.(1)123600x -;7x ;(2)采用方式1直接由厂家门市部出售的利润较多;(3)每月销售720件时,两种销售方式所得利润相等.8.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少9.(1)当0100x <≤时:甲购票费=30x (元),当100x <时:甲购票费=24600x +(元) ;乙购票费27x =(元);(2)当200x =时,两家购票费相同.10.(1)衣服和鞋子单价各是326元和160元;(2)只能在B 超市购买,理由见解析. 11.(1)篮球的单价是20元,排球的单价是15元;(2)选择方案一更省钱,理由见解析 12.(1)150元;240元;(2)有可能;小红购买了11根.13.(1)5个月;(2)方案一14.第二种方案可以多得1500元的利润.15.(1)0.4x+800,1.2x ;(2)800+0.4x ,0.2x+2000;(3)当印制证书8000个时,应该选择乙印刷厂更节省费用,节省了400元;(4)印刷1000或6000个证书时,甲乙两厂收费相同16.(1)七年级(1)班48人,七年级(2)班56人;(2)304(元);(3)购买51张票划算些,见解析17.(1)甲店购买需付款:(12x +180)元,乙店购买需付款:(10.8x +216)元;(2)去乙店购买合算,理由见解析;(3)当购买30盒羽毛球时,甲乙两店的费用都一样. 18.(1)购买60只茶杯时,两店的优惠方法付款一样多;(2)在甲店购买10只茶壶,在乙店购买30只茶杯费用最少.19.(1)甲超市实际费用:0.7x+90;乙超市实际费用:0.75x+50;(2)他应该去乙超市,理由见解析;(3)小亮购买800元的商品时,到两家超市购物所付的费用一样.20.(1)七年级①班有56人;(2)656.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲单独完成要6天,乙单独完成要12天,丙单独完成要15天(1)甲、乙合作几天完成这项工作?(2)甲、乙、丙合作几天完成这项工程?(3)甲、丙合作几天完成这项工作?(4)乙、丙合作几天完成这项工程?3?(5)甲、乙合作几天完成这项工作的43?(6)甲、乙、丙合作几天完成这项工程5(7)甲单独做了2天后,甲乙合作几天完成这项工作?(8)甲单独做了2天后,甲乙丙合作几天完成这项工作?(9)甲、丙合作3天后有其他工作离开,由乙单独完成,一共几天完成这项工作?4,问甲共工作了(10)乙单独做了3天,后甲乙丙合作,完成了该工程的5几天完成这项工程?4,剩下的由丙单独(11)乙单独做了3天,后甲乙合作,完成了该工程的5完成这项工作,问甲、乙、丙各工作了几天?2、某车间接到x件零件加工任务,计划每天加工120件.(1)6天能完成,问总任务是多少件?(2)实际每天比计划多加工20件,7天能完成,问总任务多少件?2,4天能完成,问总任务多少件?(3)实际每天比计划多加工5(4)实际每天比计划多加工20件,结果比计划提前了2天完成,问总任务多少件?1,结果比计划多用了4天完成,问总任务多少(5)实际每天比计划少加工5件?3、某工程,甲单独完成要45天完成,乙单独做要30天完成,若乙先单独做了22天,剩下的由甲去完成,问甲、乙一共用几天可以完成全部工程?4、一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两对合作.(1)求甲、乙合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天施工费为2500元,求完成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队单独完成需7.5小时,乙队单独完成要5小时,现乙队单独先做1小时候,剩余工作由甲、乙两队共同完成,问这项工作还需要多长时间完成?二、配套问题1、一个工厂有32工人,要加工一批螺母和螺栓,一个工人每天可生产120个螺母或80个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28名职工,接到一批方桌生产任务,一个工人每天可制作120条桌腿或40个桌面,1张方桌需要一个桌面和4条桌腿,问,如何安排职工才可使每天完成的桌面和桌腿刚好配套?3、用木料做方桌,每立方米木料可做桌面50个或桌腿300条,一张方桌需要一个桌面和4条桌腿,5立方米的木料敲好可做多少张方桌?4、整理一批档案,由一个人完成需要20天,先计划由一部分人先做2天,3,假设每人的效率都然后再增加2人与他们一起做了8天,完成了这项任务的4一样,具体应先安排多少人工作?5、有一批苹果和一些箱子,如果每个箱子里装6千克,则剩余4千克苹果无箱可装,如果每个箱子装8千克苹果则期中一个箱子再装6千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分成若干小组做手工制作,如果每组5人,则多3人;如果每组6人则少5人,教师计划将同学们分成几组?7、一个工厂有职工660人,要加工一批螺母和螺栓,一个工人每天可生产14个螺母或20个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170名学生参加义务绿化活动.如果每个男生平均一天能挖3个树窝,每个女生平均一天能载7棵树,要使每个树窝都能栽上树,那么该校七年级安排的男生和女生各有多少人?9、学校计划从甲公司购买A,B两种型号的小黑板,购买一块A型小黑板比购买一块B型小黑板多用了20元,且购买5块A型小黑板和4块B型小黑板共需820元.求购买一块购买一块A型小黑板、一块B型小黑板各需要多少元?10、某同学在A、B两家超市发现他看中的运动手环的单价相同,书包的单价也相同.运动手环和书包单价之和是452元,且运动手环的单价比书包的单价的4倍少8元.(1)该同学看中的运动手环和书包的单价各是多少?(2)超市促销,超市A所有商品打8折销售,超市B全场购物满100元返30元,该同学仅有400元钱,如果只在一家超市买两样商品,哪家更划算?11、一群学生去纪念馆参加活动,男生戴白色旅游帽女生戴红色旅游帽.休息时2他们坐在一起发现每位男生看到红色与白色的旅游帽一样多,而每位女生看到白色的旅游帽是红色旅游帽的2倍.这群学生共有多少人?12、为迎接新春,甲村准备美化村道,需采用A,B两种不同类型的灯笼2002.个,且B灯笼的个数是A灯笼的3(1)求,A,B两种灯笼的个数各需多少个?(2)已知A,B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼共花费了多少钱?13、某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?14、某车间有技术工人85人,平均每天每人可加工A种不见16个或B种部件10个,2个A种部件和3个B 种部件配成一套,问:加工A、B两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?15、用白铁皮做罐头盒,每张铁皮可制作盒身25个或制作盒底40个.一个盒身和两个盒底配成一套罐头盒.现有36张白铁皮,用多少张铁皮制盒身,多少张铁皮制盒底可以使盒身和盒底刚好配套?16、某服装厂要做一批某种型号的校服,已知某种布料每3米长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用60米长的这种布料做校服,应分别用多少米布料做上衣和裤子,才能恰好配套?三、行程问题1、A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走80千米;慢车先开1小时,相向而行,快车开出几小时后两车相距210千米?2、A,B两地之间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米;甲车发出25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后,两车相距100千米时,甲车从出发开始共行驶了多长时间?3、一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶1小时后突然1,结果又用了两小时出现故障,修理15分钟后,又追这辆卡车,但速度减小了3才追上这辆卡车,求卡车的速度是每小时多少千米?4、一通讯员骑摩托车需要在规定的时间把文件送到某地,若每小时骑60千米,则早到12分钟;若每小时骑50千米,则要迟到7分钟,求通讯员行驶的路程?5、某船从A地顺流而下到达B地,然后逆流返回,到达A,B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/小时,水流速度为2千米/小时.A,C两地之间的距离为10千米,求A,B两地之间的距离是多少千米?四、球赛积分问题1、小强是七(3)班的篮球队员,在一场篮球比赛中,他一人得了27分(没有罚球得分),已知他投进的2分球比3分球的2倍多3个,若设他投进去的3分球为x个,求他投进的2分球有多少个?2、一次安全知识竞赛中,一共有25道题,答对一道题的10分,不答或答错一道题扣5分.设小明同学在这次竞赛中答对x道题.(1)根据所给条件,完成下表:(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?3、某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,期中该队输了3场,则该队胜多少场?4、我市化学知识竞赛,共25道题,评分规则:答对一道题得5分,答错一道题扣2分,不答不得分,王芳同学在这次竞赛中得了62分,她说有5道题未答,她答对了几道题?四、打折销售问题1、某商品的进价是2000元,标价为3000元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售该商品?2、某商店先从广州以每件15元的价格购进某种商品10件,后又从深圳以每件12.5元的价格购进同种同规格商品40件,如果商店销售这些商品时要获利12%,南无这种商品的售价应定为每件多少元?3、某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,亲标价的8折销售,仍可盈利9%.(1)求这款空调每台的进价使多少元?(2)在这次促销活动中,商场销售了这款空调机100台,问:盈利了多少元?4、某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁每瓶的价格下调了5%.已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费了17.5元,问:这两种饮料在调价前每瓶个多少元?5、某玩具厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相同?(2)若每个月销售量达到1000件时,采取那种销售方式获利较多?6、某商品的进价为2000元,标价为3000元,商店打折销售后仍可获利5%,则售货员最低可以打几折出售此商品?7、体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利260元.(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?8、“五一”期间,某电器按成本价提高30%后标价,在打8折销售,售价为2080元.求该电器的成本价是多少元?9、一种商品连续两次均以10%的幅度降价后,售价为480元,问降价前售价为多少元?10、某商场因换季准备处理一批羊绒衫,若每件羊绒衫按标价的六折出售将亏110元,若按标价的八折出售,每件将赚70元.每件羊绒衫的标间是多少元?进价是多少元?11、新华书店某天内销售完甲乙两种书籍,甲种书籍卖得1500元,乙种书籍卖得1260元,若按两种书的成本分别计算,甲种书籍盈利25%,乙种书籍亏本10%,该书店这一天卖这两种书籍总计是盈利还是亏本?。

相关文档
最新文档