遗传算法基本理论与方法

合集下载

遗传算法

遗传算法

1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)

改善 (独立于问题的) 否
终止?
终止? 是 结束

结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。

遗传算法的基本原理与应用

遗传算法的基本原理与应用

遗传算法的基本原理与应用1. 引言遗传算法是一种模拟自然界中生物进化过程的优化算法,它广泛应用于解决各种优化问题。

本文将介绍遗传算法的基本原理和常见应用。

2. 遗传算法的基本原理遗传算法基于达尔文的进化理论,通过模拟生物群体中的遗传、交叉和变异等基因操作,完成对问题空间的搜索和优化。

2.1 遗传算法的基本流程遗传算法的基本流程包括初始化种群、评价适应度、选择、交叉、变异和更新种群等步骤。

1.初始化种群:随机生成初始种群,每个个体表示问题的一个解。

2.评价适应度:根据问题的目标函数,计算每个个体的适应度。

3.选择:根据个体的适应度,选择优秀的个体进入下一代种群。

4.交叉:随机选择两个个体,通过染色体交叉产生新的个体。

5.变异:对新个体的染色体进行变异操作,引入新的基因。

6.更新种群:使用新的个体更新当前种群。

7.重复步骤2-6,直到满足停止条件。

2.2 遗传算法的核心概念在遗传算法中,有几个核心概念需要理解。

•染色体:个体的染色体由基因组成,每个基因表示问题的一个变量。

•适应度函数:用于评价个体的优劣程度,通常是问题的目标函数。

•选择算子:根据个体的适应度选择优秀个体进入下一代。

•交叉算子:通过染色体交叉产生新的个体。

•变异算子:对个体的染色体进行变异操作,引入新的基因。

3. 遗传算法的应用遗传算法在许多领域都有广泛的应用。

以下列举几个常见的应用领域。

3.1 组合优化问题遗传算法可以用于解决组合优化问题,如旅行商问题、背包问题等。

通过遗传算法的搜索和优化能力,可以找到近似最优的解决方案。

•旅行商问题:通过遗传算法优化旅行商的路径,使得旅行总距离最短。

•背包问题:通过遗传算法选择物品放入背包,使得总价值最大且不超过背包容量。

3.2 机器学习遗传算法可以用于机器学习中的模型选择和参数优化。

•模型选择:通过遗传算法从候选模型中选择最佳模型。

•参数优化:通过遗传算法搜索模型的最佳参数配置。

3.3 排班优化遗传算法可以应用于企业员工排班问题,优化排班方案,提高员工满意度和企业效益。

遗传算法的基本原理与流程

遗传算法的基本原理与流程

遗传算法的基本原理与流程遗传算法是一种模拟生物进化过程的优化算法,它通过模拟自然选择、交叉和变异等过程,逐步搜索最优解。

本文将介绍遗传算法的基本原理与流程。

一、基本原理遗传算法的基本原理是基于达尔文的进化论和孟德尔的遗传学理论。

它将问题的解表示为一个个体的染色体,染色体由基因组成。

每个基因代表问题的一个变量或决策。

通过改变基因的组合,可以得到不同的解。

而适应度函数则用来评估每个个体的适应程度,即解的优劣程度。

遗传算法的核心思想是通过模拟自然选择、交叉和变异等过程,逐步优化解的质量。

在自然选择中,适应度高的个体有更大的概率被选择为父代,而适应度低的个体则有较小的概率被选择。

交叉操作模拟了生物的基因交换过程,将两个父代个体的染色体片段进行交叉,生成新的个体。

变异操作则模拟了基因突变的过程,通过改变染色体中的基因值,引入新的解。

二、流程遗传算法的流程一般包括初始化、选择、交叉、变异和更新等步骤。

1. 初始化:首先,需要确定问题的解空间和染色体编码方式。

然后,随机生成一组初始个体作为种群。

2. 选择:根据适应度函数,选择适应度较高的个体作为父代。

常见的选择方法有轮盘赌选择、锦标赛选择等。

3. 交叉:从父代中选取两个个体进行交叉操作,生成新的个体。

交叉操作可以是单点交叉、多点交叉或均匀交叉等。

4. 变异:对新生成的个体进行变异操作,引入新的解。

变异操作可以是位变异、插入变异或交换变异等。

5. 更新:根据适应度函数,选择新生成的个体和原始个体中适应度较高的个体,更新种群。

以上步骤可以迭代执行,直到满足终止条件,例如达到最大迭代次数或找到满意的解。

三、应用与优势遗传算法广泛应用于组合优化、函数优化、机器学习等领域。

它具有以下优势:1. 全局搜索能力:遗传算法能够在解空间中进行全局搜索,避免陷入局部最优解。

2. 并行性:由于遗传算法的并行性,可以同时处理多个个体,加快搜索速度。

3. 适应性:遗传算法能够自适应地调整搜索策略,根据不同问题的特点进行优化。

遗传算法的使用方法和技巧指南

遗传算法的使用方法和技巧指南

遗传算法的使用方法和技巧指南遗传算法是一种启发式优化算法,它模拟了自然界中的生物进化过程来解决问题。

它具有强大的搜索能力和全局优化能力,在各个领域都有广泛的应用。

本文将介绍遗传算法的基本原理、使用方法以及一些重要的技巧指南。

一、遗传算法的基本原理遗传算法基于生物进化的思想,通过模拟人工选择、交叉和变异等过程来生成和更新解的种群,并利用适应度函数对种群进行评估和选择,以期望通过迭代的方式找到最优解。

遗传算法的基本流程如下:1. 初始化种群:随机生成一组个体作为初始种群。

2. 适应度评估:根据问题的特定要求,计算每个个体的适应度值。

3. 选择操作:利用适应度值选择父代个体进行繁殖,常用的选择算法有轮盘赌选择和竞争选择等。

4. 交叉操作:通过交叉运算生成新的后代个体,交叉操作能够保留父代的有益特征。

5. 变异操作:对交叉后的个体进行基因的随机变异,增加种群的多样性。

6. 替换操作:根据一定的规则,用新生成的后代个体替换原始种群中的一部分个体。

7. 终止条件判断:根据迭代次数或者达到某个预定义的解的条件,判断是否终止迭代。

8. 返回最优解。

二、遗传算法的使用方法为了正确有效地使用遗传算法,我们需要遵循以下几个步骤:1. 理解问题:首先,要准确理解问题的特性和要求,包括确定问题的目标函数、约束条件等。

只有对问题有清晰的认识,才能设计合适的遗传算法。

2. 设计编码方案:将问题的解表示为染色体的编码方案,更好的编码方案可以减少解空间的搜索范围。

常用的编码方式有二进制、浮点数、整数等。

3. 确定适应度函数:根据问题的特点,设计合适的适应度函数用于度量个体的优劣。

适应度函数应能够将问题的目标转化为一个数值,使得数值越大越好或者越小越好。

4. 选择操作:选择操作决定了如何根据适应度值选择父代个体。

常用的选择算法有轮盘赌选择、竞争选择、排名选择等。

轮盘赌选择是普遍应用的一种方法,根据个体的适应度值按比例选择。

5. 交叉操作:交叉操作决定了如何生成新的后代个体。

遗传算法基本概念

遗传算法基本概念

遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。

遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。

二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。

其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。

1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。

常用的编码方式有二进制编码、实数编码和排列编码等。

2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。

适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。

3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。

常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。

4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。

常用的交叉方法有单点交叉、多点交叉和均匀交叉等。

5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。

常用的变异方法有随机变异、非一致性变异和自适应变异等。

三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。

具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。

2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。

3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。

4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。

5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。

遗传算法的基本原理和求解步骤

遗传算法的基本原理和求解步骤

遗传算法的基本原理和求解步骤遗传算法呀,就像是一场生物进化的模拟游戏呢。

它的基本原理其实是从生物遗传学那里得到灵感的哦。

我们把要解决的问题看作是一个生物种群生存的环境。

在这个算法里,每个可能的解就像是种群里的一个个体。

这些个体都有自己独特的“基因”,这个“基因”就代表了解的一些特征或者参数啦。

比如说,如果我们要找一个函数的最大值,那这个函数的输入值可能就是个体的“基因”。

然后呢,遗传算法会根据一定的规则来判断这些个体的“好坏”,就像大自然里判断生物适不适合生存一样。

这个“好坏”是通过一个适应度函数来衡量的,适应度高的个体就像是强壮的生物,更有机会生存和繁衍后代呢。

那它的求解步骤可有趣啦。

第一步是初始化种群。

就像是在一个新的星球上创造出一群各种各样的小生物。

我们随机生成一些个体,这些个体的“基因”都是随机设定的。

接下来就是计算适应度啦。

这就像是给每个小生物做个健康检查,看看它们有多适合这个环境。

然后是选择操作。

这就好比是大自然的优胜劣汰,适应度高的个体就有更大的机会被选中,就像强壮的动物更有可能找到伴侣繁衍后代一样。

再之后就是交叉操作啦。

选中的个体之间会交换一部分“基因”,就像生物繁殖的时候基因的混合,这样就可能产生出更优秀的后代呢。

最后还有变异操作。

偶尔呢,某个个体的“基因”会发生一点小变化,就像生物突然发生了基因突变。

这个变异可能会产生出一个超级厉害的个体,也可能是个不咋地的个体,不过这也给整个种群带来了新的可能性。

通过这样一轮一轮的操作,种群里的个体就会越来越适应环境,也就是我们要找的解会越来越接近最优解啦。

遗传算法就像是一个充满惊喜和探索的旅程,在这个旅程里,我们让这些“数字生物”不断进化,直到找到我们满意的答案呢。

遗传算法的基本原理和方法

遗传算法的基本原理和方法

遗传算法的基本原理和⽅法遗传算法的基本原理和⽅法⼀、编码编码:把⼀个问题的可⾏解从其解空间转换到遗传算法的搜索空间的转换⽅法。

解码(译码):遗传算法解空间向问题空间的转换。

⼆进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的⼆进制代码之间有很⼤的汉明距离,使得遗传算法的交叉和突变都难以跨越。

格雷码(Gray Code):在相邻整数之间汉明距离都为1。

(较好)有意义的积⽊块编码规则:所定编码应当易于⽣成与所求问题相关的短距和低阶的积⽊块;最⼩字符集编码规则,所定编码应采⽤最⼩字符集以使问题得到⾃然的表⽰或描述。

⼆进制编码⽐⼗进制编码搜索能⼒强,但不能保持群体稳定性。

动态参数编码(Dynamic Paremeter Coding):为了得到很⾼的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到⼀个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这⼀过程,直到达到要求的精度为⽌。

编码⽅法:1、⼆进制编码⽅法缺点:存在着连续函数离散化时的映射误差。

不能直接反映出所求问题的本⾝结构特征,不便于开发针对问题的专门知识的遗传运算算⼦,很难满⾜积⽊块编码原则2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有⼀个码位是不同的,其余码位都相同。

3、浮点数编码⽅法:个体的每个基因值⽤某⼀范围内的某个浮点数来表⽰,个体的编码长度等于其决策变量的位数。

4、各参数级联编码:对含有多个变量的个体进⾏编码的⽅法。

通常将各个参数分别以某种编码⽅法进⾏编码,然后再将他们的编码按照⼀定顺序连接在⼀起就组成了表⽰全部参数的个体编码。

5、多参数交叉编码:将各个参数中起主要作⽤的码位集中在⼀起,这样它们就不易于被遗传算⼦破坏掉。

评估编码的三个规范:完备性、健全性、⾮冗余性。

⼆、选择遗传算法中的选择操作就是⽤来确定如何从⽗代群体中按某种⽅法选取那些个体遗传到下⼀代群体中的⼀种遗传运算,⽤来确定重组或交叉个体,以及被选个体将产⽣多少个⼦代个体。

遗传算法的详解及应用

遗传算法的详解及应用

遗传算法的详解及应用遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传过程的算法。

在人工智能和优化问题中得到了广泛的应用。

本文将详细介绍遗传算法的基本原理和优化过程,并探讨它在实际应用中的价值和局限性。

一、遗传算法的基本原理遗传算法的基本原理是通过模拟生物进化的过程来寻找一个问题的最优解。

在遗传算法中,优秀的解决方案(也称为个体,Individual)在进化中拥有更高的生存几率,而劣质的解决方案则很快被淘汰。

在遗传算法的过程中,每个个体由若干个基因组成,每个基因代表某种特定的问题参数或者状态。

通过遗传算法,我们可以找到问题最优的解或者其中一个较优解。

遗传算法的基本流程如下:1. 初始化群体(Population):首先,我们需要随机生成一组初始解作为群体的个体。

这些个体被称为染色体(chromosome),每一个染色体都由一些基因(gene)组成。

所以我们可以认为群体是由很多染色体组成的。

2. 选择操作(Selection):选择运算是指从群体中选出一些个体,用来繁殖后代。

其目的是让优秀的个体留下更多的后代,提高下一代的平均适应度。

在选择操作中,我们通常采用轮盘赌选择(Roulette Wheel Selection)法、锦标赛(Tournament)法、排名选择(Ranking Selection)法等方法。

3. 交叉操作(Crossover):交叉运算是指随机地从两个个体中选出一些基因交换,生成新的染色体。

例如,我们可以将染色体A和B中的第三个基因以后的基因交换,从而产生两个新的染色体。

4. 变异操作(Mutation):变异运算是指随机改变染色体中的个别基因,以增加多样性。

例如,我们随机将染色体A的第三个基因改变,从而产生一个新的染色体A'。

5. 适应度评估(Fitness Evaluation):适应度评估是指给每一个个体一个适应度分数,该分数是问题的目标函数或者优化函数。

遗传算法的原理与实现

遗传算法的原理与实现

遗传算法的原理与实现遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法。

它基于通过模拟遗传过程实现问题求解的思想,广泛应用于优化问题、机器学习、人工智能等领域。

本文将介绍遗传算法的基本原理与实现方法。

一、原理介绍1.1 遗传算法的基本概念遗传算法是由美国计算机科学家John Holland于1975年提出的,主要基于生物进化理论,以自然选择、遗传遗传和变异为基础。

它通过模拟自然界的进化过程,在解决复杂问题时搜索全局最优解或近似最优解。

1.2 基因编码遗传算法中的基本单位是染色体,染色体由一串基因组成。

基因编码是将待解决问题的参数转化为染色体上的一串二进制码或实数值,以便进行遗传操作。

1.3 适应度函数适应度函数(Fitness function)用于评价染色体的优劣程度。

它根据问题的性质设计,能够将每个染色体映射为一个实数值,表示其在解空间中的优化程度。

1.4 选择操作选择操作是基于适应度函数,按照染色体适应度高低进行选择,优秀的染色体被选中,普通的染色体可能也有一定概率被选中,而较差的染色体会被淘汰。

选择操作中常用的方法有轮盘赌选择和锦标赛选择。

1.5 交叉操作交叉操作是模拟自然界的杂交过程,用于生成新的个体。

在交叉操作中,从两个父代染色体中随机选择一点(交叉点),将两条染色体按照交叉点分隔,交叉生成两个新的个体。

1.6 变异操作变异操作是引入新的个体差异的过程。

在变异操作中,随机地选择染色体上的一个基因位,进行基因值的突变。

变异操作的目的是增加解的多样性,防止陷入局部最优解。

二、实现方法2.1 初始化种群遗传算法首先需要初始化一个种群,种群中的每个个体即为一个染色体,染色体通过基因编码来表示问题的解空间。

通常使用随机生成的初始解来初始化种群。

2.2 评估适应度对种群中的每个个体,使用适应度函数来评估其优劣程度。

适应度越高,个体在选择中的概率越大。

通过评估适应度,可以进一步确定种群中的优秀个体。

遗传算法基本理论及实例

遗传算法基本理论及实例

耳录一、遗产算法的由来•错误!未定义书签。

二、遗传算法的国内外研究现状错误! 未定义书签。

三、遗传算法的特点•错误!未定义书签。

四、遗传算法的流程•错误!未定义书签。

五、遗传算法实例.错误!未定义书签。

六、遗传算法编程.错误!未定义书签。

七、总结......... 错误!未定义书签。

附录一:运行程序错误!未定义书签遗传算法基本理论与实例一、遗产算法的由来遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。

20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。

很多学者对尖于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术一一生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。

John教授及其学生首先提出的遗传算法就是一个重要的发展方向。

遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。

按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。

生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。

各生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。

具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。

,直至消亡。

达尔文把这一过程和现象叫做“自然选择,适者生存”。

按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。

不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。

经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的基本规律。

遗传算法由美国的John教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

《遗传算法》课件

《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。

遗传算法的基本原理和要点

遗传算法的基本原理和要点

3
二、遗传算法的工作示意图
4
三、遗传算法的基本构成
遗传算法的基本构成通常包含以下五部分: (1)求解问题或解的遗传编码 (2)产生初始种群的规则 (3)评价个体或染色体优劣的适值或评价函数 (4)产生子代的遗传操作 (5)控制进化过程的各参数设置
5
一、遗传编码 1.二进制编码:不能有效解决许多实际问题,有明显缺陷。 2.实数编码:用实数或浮点数表示个体,对函数优化问题最有效。 3.整数或字母排列编码:用1-n的自然数,A或a-Z或z的字母的排列构成 问题的解的个体。根据是否允许重复分成顺序编码或非顺序编码。常见 于优化组合问题。 4.一般数据结构编码:对于复杂的优化问题,需要用n维数据或更复杂的 结构表示染色体。
遗传算法的基本原理和要点
1
一、遗传算法简介
1.遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法。其基
本思想基于Darwin的进化论和Mendel的遗传学说。
2.由密西根大学Holland教授创建于1975年。
3.特点:不易陷入局部最优,具备很好的全局搜索能力和很快的收
13
7
三、选择操作 是指按某种方法从父代种群中选取一些个体,遗传到下一代种群。通常 以适值大小为依据。适值越大越有可能进化为问题的最优解。适值大小 可以直接以问题目标函数值的大小来表示。
包含三个方面:
1.采样空间 2.采样机理 3.选择概率
8
1.采样空间 由两个因素来确定:大小和成分(父代与子代) 令pop_size为种群大小,off_size为子代大小,规则的采样空间为pop_size ,含有所有的子代与部分父代,扩大的采样空间大小pop_size+off_size, 包含所有的父代与子代。

人工智能入门课件第5章遗传算法

人工智能入门课件第5章遗传算法

5.4.2 交叉操作(crossover)
交叉的具体步骤为:
1. 从交配池中随机取出要交配的一对个体;
2. 根据位串长度L,对要交配的一对个体,随 机选取[1,L-1]中一个或多个的整数k作为 交叉点;
3. 根据交叉概率pc(0<pc≤1)实施交叉操作,配 对个体在交叉点处,相互交换各自的部分内 容,从而形成新的一对个体。
N
pi 1
i 1
2.基于排名的选择
(1)线性排名选择
首先假设群体成员按适应值大小从好到坏依次排列
为x1,x2,…,xN,然后根据一个线性函数分配选 择概率pi。
设线性函数pi=(a-b·i/(N +1))/N,i=1,
2,…,N,其中a,b为常数。由于
N
pi
1
,易得,
b=2(a-1)。又要求对任意i=1,2,…i1,N,有pi>0,
5.2.3 实数编码
为了克服二进制编码的缺点,对于问题的变量 是实向量的情形,直接可以采用十进制进行编码, 这样可以直接在解的表现形式上进行遗传操作,从 而便于引入与问题领域相关的启发式信息以增加系 统的搜索能力
例3 作业调度问题(JSP)的种群个体编码常用 m×n的矩阵Y=[yij],i=1,2,…,m,j=1, 2,…,n(n为从加工开始的天数,m为工件的 优先顺序)。 yij表示工件i在第j日的加工时间。 下表是一个随机生成的个体所示。
一种方法是为参与交换的数增加一个映射如下:
将此映射应用于未交换的等位基因得到:
T~1 234 | 751| 68 T~2 136 | 275 | 84 则为合法的。
5.2.2 Gray编码
Gray编码即是将二进制码通过如下变换进行转

遗传算法的基本原理和理论

遗传算法的基本原理和理论

遗传算法的基本原理和理论
遗传算法是一种模拟生物进化过程的优化算法。

其基本原理和理论可以概括为以下几个方面:
1. 适应度评估:遗传算法首先需要确定一个适应度函数来度量每个个体的优劣程度。

适应度函数可以根据问题的具体情况来设计,一般取值越大表示个体越好。

2. 初始化种群:通过随机生成的方式初始化一个初始种群。

一个种群由多个个体组成,每个个体代表了问题的一个可能解。

3. 选择操作:通过适应度函数对种群中的个体进行评估,然后按照一定的选择策略,如轮盘赌选择、锦标赛选择等,选择一部分个体作为父代个体参与下一代的繁殖。

4. 交叉操作:从父代个体中选择两个或多个个体,通过交叉操作产生子代个体。

交叉操作的方式可以是单点交叉、多点交叉、均匀交叉等。

5. 变异操作:对于新生成的子代个体,以一定的概率进行变异操作。

变异操作可以是基于随机变异、局部搜索或其他方式。

6. 重复迭代:上述步骤不断重复进行,直到达到停止条件,如达到最大迭代次数、找到满足要求的解等。

7. 结果输出:遗传算法迭代结束后,输出最好的个体作为问题的最优解。

遗传算法的理论基础主要包括遗传学的一些基本原理和理论,如遗传进化、基因、染色体、交叉、突变等概念。

此外,还基于优化算法的理论,利用遗传算子(选择、交叉和变异)对种群进行优化搜索。

同时,遗传算法也受到了达尔文的自然选择和适者生存的思想的启发。

总的来说,遗传算法通过选择、交叉和变异等操作,在种群中进行代代迭代,通过适应度评估和进化操作的方式,不断搜索解空间,寻找问题的最优解。

遗传算法的基本原理与方法

遗传算法的基本原理与方法

遗传算法的基本原理与方法一一笔记遗传算法的实现有6个主要因素:参数的编码、初始种群的设定、适应度函数的设计、遗传操作、算法掌握参数的设定、约束条件的处理。

基因gene染色体chromosome群体population复制reproduction交叉crossover变异mutation 适应性fitnessSGA基本遗传算法(SimpleGenelicAlgorilhm)遗传算子GeneticOperatorSGA基本步骤1.染色体编码与解码2.个体适应度的检测评估3.遗传算子(选择运算使用比例选择算子、交叉运算使用单点交叉算子、变异运算使用基本位变异算子或者匀称变异算子)4.运行的主要参数:M群体规模T终止条件PC交叉概率Pm变异概率。

优化问题的基本遗传算法构造过程:1.确定决策变量和约束条件2.建立优化模型3.确定编码方法4.确定解码方法5.确定个体评价方法6.设计遗传算子和确定遗传算法的运行参数。

一、编码(CodingandDecoding)编码:把一个问题的可行解从其解空间转换到遗传算法所能处理的搜寻空间的转换方法。

解码:由遗传算法解空间向问题空间的转换。

二进制编码的缺点之一是HammingCliff海明悬崖:某些相邻整数的二进制代码间有很大的海明距离,使得交叉和突变都难以跨越。

DeJOng依据模式定理,提出的编码准则:1、积木块规章:编码应易于生成与所求问题相关的短距和低阶的积木块。

2、最小字符集规章:编码应采纳最小字符集以使问题得到自然的表示和描述。

主要的编码方法有:二进制编码、格雷码、浮点数编码、多参数级联编码、多参数交叉编码。

编码的评估策略:完备性、健全性、非冗余性二、选择选择是在群体中选择生命力强的个体产生新的群体的过程。

依据每个个体的适应度值大小选择,适应度较高的个体被遗传到下一代群体的概率较大。

这样使得群体中个体的适应度值接近最优解。

常用的选择算子:轮盘赌选择(RoUletteWheelSelection)>随机竞争选择(StOChaStiCTournament),最佳保留选择、无回放随机选择、确定式选择、无回放余数随机选择、匀称选择、最优保存策略、随机联赛选择、排挤选择(小生境常用)。

遗传算法基本理论及实例

遗传算法基本理论及实例

目录_一、遗产算法得由来.............. 1s1EuF。

二、遗传算法得国内外研究现状.... 2PSccg。

三、遗传算法得特点.............. 3zIzxZ。

四、遗传算法得流程.............. 5aQKoM。

五、遗传算法实例................ 9X8gLI。

六、遗传算法编程............... 13rskUm。

七、总结 ...................... 15GEzax。

附录一:运行程序................ 16t4NAL。

遗传算法基本理论与实例一、遗产算法得由来遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行得计算机模拟研究。

20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学与人工系统得新思想、新方法。

很多学者对关于从生物进化与遗传得激励中开发出适合于现实世界复杂适应系统研究得计算技术——生物进化系统得计算模型,以及模拟进化过程得算法进行了长期得开拓性得探索与研究。

John H、Holland 教授及其学生首先提出得遗传算法就就是一个重要得发展方向。

遗传算法借鉴了达尔文得进化论与孟德尔、摩根得遗传学说。

按照达尔文得进化论,地球上得每一物种从诞生开始就进入了漫长得进化历程。

生物种群从低级、简单得类型逐渐发展成为高级复杂得类型。

各种生物要生存下去及必须进行生存斗争,包括同一种群内部得斗争、不同种群之间得斗争,以及生物与自然界无机环境之间得斗争。

具有较强生存能力得生物个体容易存活下来,并有较多得机会产生后代;具有较低生存能力得个体则被淘汰,或者产生后代得机会越来越少。

,直至消亡。

达尔文把这一过程与现象叫做“自然选择,适者生存”。

按照孟德尔与摩根得遗传学理论,遗传物质就是作为一种指令密码封装在每个细胞中,并以基因得形式排列在染色体上,每个基因有特殊得位置并控制生物得某些特性。

不同得基因组合产生得个体对环境得适应性不一样,通过基因杂交与突变可以产生对环境适应性强得后代。

第七讲遗传算法

第七讲遗传算法

四、遗传算法应用举例 1
于是,得第三代种群S3: s1=11100(28), s2=01001(9) s3=11000(24), s4=10011(19)
四、遗传算法应用举例 1
第三代种群S3中各染色体的情况
染色体
适应度 选择概率 估计的 选中次数
四、遗传算法应用举例 1
首先计算种群S1中各个体
s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011)
的适应度f (si) 。 容易求得
f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
群体的染色体都将逐渐适应环境,不断进化,最后收敛到 一族最适应环境的类似个体,即得到问题最优解。
一、遗传算法概述
与传统的优化算法相比,遗传算法主要有以下几 个不同之处
遗传算法不是直接作用在参变量集上而是利用参变量集 的某种编码 遗传算法不是从单个点,而是从一个点的群体开始搜索; 遗传算法利用适应值信息,无须导数或其它辅助信息; 遗传算法利用概率转移规则,而非确定性规则。

结束程序
计算每个个体的适应值
以概率选择遗传算子
选择一个个体 选择两个个体进行 选择一个个体进行 复制到新群体 交叉插入到新群体 变异插入到新群体
得到新群体
四、遗传算法应用举例 1
例1 利用遗传算法求解区间[0,31]上的二次函数 y=x2的最大值。
Y
y=x2
31 X
四、遗传算法应用举例 1
分析
s1’’=11001(25), s2’’=01100(12) s3’’=11011(27), s4’’=10000(16)

遗传算法的基本原理和优化方法

遗传算法的基本原理和优化方法

遗传算法的基本原理和优化方法遗传算法是一种模拟生物进化过程的优化方法,它模仿生物基因的变异、交叉和与环境的适应等特征,在多维空间中搜索最优解。

本文将详细介绍遗传算法的基本原理和优化方法,以及应用场景和优缺点。

一、基本原理遗传算法的基本原理是通过模拟自然选择,将每个解看作个体,将问题转化为优化个体的适应度,不断迭代,直到找到最优解。

遗传算法的实现包括解码、变异、交叉和选择四个步骤。

解码:将候选解转化为适应度函数可以处理的形式,通常是二进制编码。

变异:对个体染色体进行变异,引入随机性,增加探索性,避免陷入局部最优解。

交叉:对个体染色体进行交叉,产生新的个体,并保留原有染色体中优秀的特征。

选择:根据染色体适应度大小进行筛选,保留优秀个体,淘汰劣秀个体。

二、优化方法遗传算法的优化方法主要包括参数调整、多目标优化和约束优化三个方面。

参数调整:在遗传算法中,有很多参数需要调整,例如种群大小、变异率、交叉率等。

如何选择合适的参数可以大幅提升算法的性能。

多目标优化:多目标优化是指尝试优化多个目标函数,通常会出现一些矛盾的目标。

遗传算法可以用多个适应度函数来表示多个目标,同时生成具有多目标的优化解集。

约束优化:约束优化是指在解决问题中加入一些限制条件,通常存在矛盾。

例如,在选课问题中,学生有时间限制和课程容量限制等约束。

遗传算法可以将这些约束条件引入适应度函数,从而产生可行解。

三、应用场景遗传算法可以应用于很多场景,例如工程设计、拟合分析、图像处理等。

工程设计:在产品设计领域,遗传算法经常用于优化产品参数,比如设计飞机的翼型和大小、优化燃油效率等。

拟合分析:在拟合数据的问题中,遗传算法可以用来寻找最优曲线和最小二乘拟合。

图像处理:对于图像处理中的问题,遗传算法可以用于优化图像处理算法,例如图像分割、滤波和特征提取等。

四、优缺点遗传算法的优点在于它可以自适应地搜索解空间,在寻找全局最优解和局部最优解有较好表现。

同时,遗传算法突出了把优秀的特征从一代迁移到下一代,有很强的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:基本遗传算法的操作是以个体为对象,只使用选择、交叉和变异遗传算子,遗传进化操作过程的简单框架。

模式定理和积木块假设是解释遗传算法有效性的理论基础,理论分析与实际应用都表明基本的遗传算法不能处处收敛于全局最优解,因此基本遗传算法有待进一步改进。

关键词:遗传算法;遗传算法的改进
1.标准遗传算法
基本遗传算法包括选择、交叉和变异这些基本遗传算子。

其数学模型可表示为:
sag=(c,e,p0,n,φ,г,ψ,t)
其中c为个体的编码方法;e为个体适应度评价函数;p0为初始种群;n为种群大小;φ为选择算子;г为交叉算子;ψ为变异算子;t为遗传运算终止条件;
2 遗传算法基本方法及其改进
2.1编码方式
编码方式决定了个体的染色体排列形式,其好坏直接影响遗传算法中的选择算子、交叉算子和变异算子的运算,也决定了解码方式。

二进制编码
二进制编码使用的字符号{0,1}作为编码符号,即用一个{0,1}所组成的二进制符号串构成的个体基因型。

二进制编码方法应用于遗传算法中有如下优点:
1)遗传算法中的遗传操作如交叉、变异很容易实现,且容易用生物遗传理论来解释;
2)算法可处理的模式多,增强了全局搜索能力;
3)便于编码、解码操作;
4)符合最小字符集编码原则;
5)并行处理能力较强。

二进制编码在存着连续函数离散化的映射误差,不能直接反应出所求问题的本身结构特征,不便于开发专门针对某类问题的遗传运算算子。

2.2初始种群的设定
基本遗传算法是按随机方法在可能解空间内产生一个一定规模的初始群体,然后从这个初始群体开始遗传操作,搜索最优解。

初始种群的设定一般服从下列准则:1)根据优化问题,把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定合适的初始群体。

2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。

该过程不断迭代,直到初始群体中个体数目达到了预先确定的种群大小。

2.3选择算子的分析
选择算子的作用是选择优良基因参与遗传运算,目的是防止有用的遗传信息丢失,从而提高全局收敛效率。

常用的遗传算子:
(1)轮盘赌选择机制
轮盘赌选择也称适应度比例选择,是遗传算法中最基本的选择机制,每个个体被选择进入下一代的概率为这个个体的适应度值占全部个体适应度值之和的比例。

但是轮盘赌选择机制选择误差较大,不是所有高适应度值的个体都能被选中,适应度值较低但具有优良基因模式的个体被选择的概率也很低,这样就会导致早熟现象的产生。

(2)最优保存选择机制
最优保存选择机制的基本思想是直接把群体中适应度最高的个体复制到下一代,而不进行配对交叉等遗传操作。

具体步骤如下:
1)找出当前群体中适应度值最高和最低的个体的集合;
2)若当代群体中存在适应度值比迄今为止最好个体的适应度高的个体,则用此个体作为新的迄今为止的最好个体;
3)用迄今为止的最好个体将当代群体中的最差个体替换掉;
最优保存选择机制的全局搜索能力不强,虽然对单峰性质优化问题的空间搜索具有较高的效率,但对多峰性质空间的搜索效率很差,因此该方法只能作为辅助方法使用。

2.4 交叉算子分析
交叉算子在遗传算法中起着核心的作用,是产生新个体的主要方法。

在设计交叉算子时,既要尽量保护具有优良性状的模式,又要能有效地产生出一些新的优良模式,主要包括:确定交叉点的位置;确定基因交换的方式。

二进制编码下的交叉算子分析:
点式交叉算子:
在已经两两配对好的个体中随机选取一个或多个交叉点,然后交换对位的字串。

其具体操作步骤如下:
1)采用随机的方法对个体进行两两配对;
2)在配对的个体中,采用随机的方法设置一个或者多个交叉点;
3)依据设定的原则进行染色体交换,形成新的个体。

一致交叉算子:
一致交叉算子通过设定屏蔽字(mask)的方式来决定两个配对个体的某些基因被继承。

其具体操作步骤如下:
2.5 变异算子分析
变异算子模拟基因突变而得到新个体的现象。

变异算子作为遗传算法的辅助性算子,其主要功能是使种群在进化过程中维持多样性、防止早熟。

变异算子可以加强遗传算法解的局部随机搜索能力,与交叉算子结合共同完成对搜索空间搜索,使遗传算法能够快速完成寻优过程,最终收敛于最优解。

(1)二进制编码下的变异算子分析:
基本变异算子:
基本变异算子是指随机生成一个或多个变异位置,然后对其对应码值取反。

具体操作过程:先指定一个变异概率pm,然后在(0,1)之间取一组随机数,其长度与编码长度相同。

然后将随机数小于变异概率pm的位置上的个体基因值取反。

(2)实数编码下的变异算子分析
均匀变异算子:
均匀变异算子中为个体编码中指定变异位置的概率是均匀分布概率的。

设{xi}为父代个体,发生变异为分量xk,若:
为符合概率分布的随机数,则在均匀变异算子作用下产生的后代个体yk为;均匀变异算子能够使搜索点在整个搜索空间上移动,从而增加群体的多样性,使算法处理更多的模式,适合遗传算法的初期运算。

其缺点是随机搜索空间内的点,对某一重点区域进行局部搜索很难得到实现。

(2)非均匀变异算子:非均匀变异算子是在所选编码附近进行小范围变化,以扰动后的结果作为变异后的新基因值。

设{xi}为执行变异的父代个体,其中分量xk发生变异,若,则采用非均匀变异算子产生的后代个体yk为:
且为符合非均匀概率分布的一个随机数。

只要随着进化代数t的增加,δ(t,y)接近0的概率也增加,在遗传算法运行后期可进行局部搜索。

变异概率自适应地随进化的进行而逐步减小,在计算后期可实现在重点区域的局部搜索。

2.6 适应度函数分析
(1)基本的适应度函数
根据适应度值为非负的条件,直接以实际问题的目标函数转化为适应度函数。

当目标函数为最大化问题时,取
当目标函数为最小化问题时,取
这种表达方式会使得某些待求解的函数在函数值的分布上相差很大,种群的平均性能不能被这种情况下得到的平均适应度值所体现,影响算法性能。

(2)适应度函数的变换
线性变换法
线性变换可用下式表示:
式中,f(x)为原来的适应度函数,f*(x)为经过线性拉伸变换后的适应度函数。

系数a和b的值的设定需要满足以下条件:保持变换前后的适应度的平均值不变;为控制适应度值最大的个体在下一代中的复制,应该使得变换后适应度最大值应与原适应度平均值是一个指定倍数c的关系。

式中,favg为平均适应度,fmax为最大适应度,c为最佳个体的期望复制数,一般为1.0~2.0,当群体规模大小为50~100时,一般取值1.2~2.0。

为了避免种群内某些个体适应度远低于平均值而出现变换后适应度值为负的情况,可以进行另一种变换:
结论
本文介绍了基本遗传算法的基本原理与实现方式。

对遗传算法的理论进行了深入分析,并对遗传算法的各个步骤提出了改进方法。

相关文档
最新文档