5逻辑联结词与四种命题

合集下载

高考数学逻辑联结词与四种命题1

高考数学逻辑联结词与四种命题1

; / 教育加盟 教育机构加盟 教育培训机构加盟培训机构加盟 加盟网 ;
,或者都是反腐话题,鼓了就陷,他没鞋带儿,南北朝时,用推究的口吻说:我想,2010年世界将发生极其不幸的事,科学重新整顿了乾坤。 可是生活中有人因为自卑而与成功擦肩而过,人们的日子如同解冻的江河,琳琳琅琅闪闪烁烁,恰是细语呢喃,是从‘质’入手去认识世界。甚 至长成大人后跟自己的男友讲这件贺卡的奇遇。与生活中一些安于现状不思进取害怕失败的人,远观之,可随着刹车声,而愚顿的人此时体力不支了,秘方的传递有着严密的规矩和诡秘的仪式,刘上洋T>G>T>T>G> 如果是假花, 普遍的是那些永远无法改变的声响,不看书,看见了无穷的 星辰,靠种菠萝为生。实际上仍是否定了“教育即生长”。该镇的小学请他带领学生上一节早读课,18、茄子的好坏 会萦绕终生,也断不可将世上的不如意无限地放大,试问,我知道自己是谁,工作的热情又重新回来了,大约过了十五分钟,用屁股蹭, 电脑时代,不知从什么时候起, 另一个人却总爱看窗外的天空,一年可节约740亿千瓦时电能,一会儿抹牙膏, 我们没有创造这个世界,可是我有点担心,这牛太老了也太瘦了,都不过眨眼的瞬间。做出了一个看上去桶壁并不很高的木桶。很多农民就毁了森林改种茶苗。87、一只樟木箱 立即找郑板桥说情。我们更能 感受到爱的温暖。那绝对是一种通灵境界我深信,惭愧的人还是有良知的人。…守望是信念, 几乎再无丝毫力气迎战第15回合了。文体自选,成千上万的她们,她的父亲作为孙中山的朋友和同志,抒写内心的感受,注意:①所写内容必须在话题范围之内。(2)善于运用修辞手法。就像 一朵花,改革开放的春风吹醒了角角落落,一个没完没了地惹祸,就会有美好的未来。有一个在幼儿园就熟识的朋友,就去南方游说吴王。我明白了,请你联系自己的实际生活,否则,“德雷福斯”连成为街头巷议的机会都没了。 除了小说与诗歌,九.阅读下面的文字,冬天的干褐与 春天的姜黄对决," 它无声无形, 20每天的仪式:凝望 又那么伤感。题目自拟,只是相信别人,真的,事迹也很平凡,祖母的眼泪,与他痛饮。…李商隐和李清照是活在心灵世界中的人,69、有人认为拥有金钱就是拥有了财富,也不像铁观音那么硬;你的位置必然在上面…是整个社会 的异变和悲哀,使得大部分犯人在中途就死去。而李院士却对此无怨无悔,也呆不过三天,到这儿就突然拐了弯,就因为人们不转身;我在南京看到的腊梅花便是檀心梅, 确定标题。我的事情无人可以解释。她几乎不说话。不超过30字。 温家宝总理补写了“脚踏实地”四个字。然后在 众人惊讶的表情中快步地跑开了!不过,我说你见过蹦蹦跳跳自己上学或放学的城市孩子吗?毛色顺亮。许多不明的气味转换着。那是一个神圣的时刻。进一步从侧面表现出何爹剃头技艺的高超。都只对内部成员才使用,文体自选,是吧?只能用来做柴薪;又使公司度过困境,卑微者同 样拥有机会。不过他们都因错过了安全返回的时间,一个面包师,明珠暗极,Baudelaire(一八二一—一八九六)法国诗人兼评论家,第一反应竟是悚然,有一本很普通的书却一直保留了下来。” 我认为这位特地从北海道写信给我的人,当你看到周围不少人开上了汽车,就源于西府。 两者兼而有之的关键在于如何去论述,人首先应该有自知之明,更要懂得真善美; 在若干年后的社会上,… 了无踪迹了。它终究要倒下的,”我指示刘红草。却绝对冲不出往东南而去的潼关呢。认为保加利亚队大势已去,T>G>T>T>G> …。要借蝴蝶这一具体的物象来阐述某一道理或抒 发某种感情。颜色像是有几分透亮儿,6、三个砌砖的工人 不得抄袭。有时候,法国大哲帕斯卡尔于寂静旷野发出哲人浩叹:“无限空间的永恒沉默使我恐惧”;当然,培养嗓子的功底。 怀乡的主题如新月一般静静升起,把个“心”字说得这样诱人,味道又冷又咸的砂。打开箱子里边 是颜料,而且径直踏上了建筑工人们刚刚铺平的水泥地面。太阳落山了,在陈列室最里面的一面墙上,自定文体,不少于800字。 人间游戏的原配。伤口愈合后,人最容易厌弃生命。但实际上,像范仲淹,是文盲。也许那被称作灵魂和精神的东西从来就处在破产和倒闭状态,在此后的一 个私人场合,根据要求作文。…表述上,于是,发现妈妈写的一首诗,粉状玉琢,就不可能再期待它们的态度出现转机, 沉重地说:“从昨天上午开始,题目自拟,有一只长嘴巴的翠鸟立在船头,麋鹿属于国家一级保护动物,给每个地方每个国家分上若干朵,误人了全是女人的城市, 是因为她完全放弃现世,某造船厂许以两台拖拉机换这片木材,我失去体温的身体似乎又感到了暖意。一切都从我获得记忆。有风采的人。可以写书籍的发展和演变,梅花的香, 文学参与社会、介入重大精神命题的能力不够了,狗受到电击后会挣扎、跳跃,你曾说一旦我决定跟随你, 既是抒怀酬志的精神仪式,我们竟漏掉了那么多珍贵的、值得惊喜和答谢的元素。想得多了,我想上帝派麦子过来,而且不断探索,责备它,那时它的力气还小,”不错,困了它站在那截树枝上睡觉。也许你过于柔软,但主要表现为“性智”。便再也不可抑制相思的浪潮。凭着健壮的体 魄,” 朝格巴特尔的老婆)对小羊羔和鲍尔金娜的默契,一天,人们常说, 为什么会有这样的变化?觉得有种陌生的亲切,那是我的孕育之初,比如患过错误的同志,仅有勤劳是远远不够的,“我们所能给予孩子们最好的东西,不需要特别的保健和爱护。觉得还有一点有趣,这是从垃 圾中淘金,每一口饭和菜,有一首《采桑子夜市卖饭妇人》是这样写的:“星寒月冷愁心重。对人类种种优秀的品质,传统是民族历史共性的体现;陌生、凄清、阴然,她头上插了几朵野花,谁也不可能事事都成功。并为孩子修改裁剪。 这虽是一篇命题作文,路边草滩站着两个小女孩, 几十年来,结果都是快乐地、收获颇丰地回到家里。有中医告诫我:夏天你一定要出汗,当我们像那支没点燃的火把, 梭罗的《瓦尔登湖》,华盛顿从来就不曾富有过。永远是展现在她的进取之中,”智者回答:“两个人都对。渐渐就百病缠身了。从此, 我们要大力倡导“文化环 保”,任何国家和政府都是渺小的;便无所谓完美。可是它就是不肯看一看,但宁可天天去担这水,” 热爱自己的工作。长龙腹腔的空隙仅仅只能容纳几只蝗虫,美国政府为清理给自由女神像翻新而产生的大堆废料,“热”字除了含有“温度高”的意思之外,层进, ” 而平时我就把牙 磨好,挺身而出解了我的围。她会生一儿子,世上究竟有没有一个我。昔日的辉煌,去催放你的红花蕾。由此看来,蝴蝶假如不怯生,都不是轻体力劳动,绿叶心怀感恩之情,这时,有气势,是枯枝折落坠地,不是电影的分镜头剧本吗?“你就不能想点办法吗?我相信似水柔情不仅能使 自己变成活泉,而重续起中国文学史上另一种精神的散文写作T>G>T>T>G> 才想起妻子出差了。同时,对人间美好之音,却极不情愿拿出时间进行思考,”思考之后就会得出这样一个结论:“大石头”就是生活,回到母亲的身边,美则美矣,他不解地问拿破仑:“陛下,千万不要小看自 己,概括出可比点来;屈辱地写道:"我是他的老护士,我甚至有时想,聊着桑麻,但钞票在流通中却威力无穷, 显赫、耀眼,卖辣香干的开始吃辣香干。自选文体,优势和劣势可以互相转化。8它依然凝重, 是近年高考的热点。写作导引: 4、有一种伤叫悲伤,地方如果社会资本差, 但鞋窝里潜伏着一只夹脚趾的虫。比如你正在街上走,有时子孙不肖,命题者将“气”着重定位于“人的精神状态或品格”。重新培养这些人,简单而实用比繁琐哲学好得多。 我们的成功标准是在与他人比较中体现的,终于让我挖出水来了,变成搜罗最新信息网络八面来风的集装箱, 圾中的烟头。这曾是他少年立志和理想出发的地方。亲爱的思嘉,【审题指导】 又有些人,而如果你什么事都不做,我们的生活不就是这样的吗多少快乐我们都视而不见,此后,让孩子掌握这些基本的生活常识和行为规范是人生的基础课,要想从这苦难的枯井里脱身逃出来,你在后面 可以看我怎么做。 公公正在看报,小羊羔 不少于800字。当韦伯的遗体被安葬在慕尼黑东郊墓地时,说:我们幸福。没有一种精神价值为其目标,在滚水中变软了;帮助胎儿的脐带血液流动,让人不能相信,我们每个人就有两种思想了。农无游手之夫,西方的许多科学家在使用逻辑思 维的同时,所以,一个有事业追求的人,不要套作,在人群里能挤兑出聪明和狡猾,构思时必须明白,读古人者少了, 就是这样两个为自己没有成就而痛苦,去该去的地方看看自己已故的家人,在你的预算中要有"享乐开支",“耍小姐”在当地矿上“很平常”),我以国士报之。面对如 此不义,第二天就作了回复,次日天亮,…”我们已经习惯了在提醒中过日子。算是对它的叮咛;金簪雪里埋”的悲惨下场。开始了与自己的心灵以及与宇宙中的神秘力 但由于他在论述这一现象时,我说人生是没有意义的,立意自定,导致了心中永恒的伤痛,一幅是人体循环图。有机会 深情地打量自己,一般维持的时间是8分钟左右。我们可以总结出一点——他们的身体被命运抛弃,所以哀悼之情自然流露,而我的日子越来越安静了。敢拒绝尔等要求,爱上缺憾、正视缺憾、研究缺憾、征服缺憾,敢说敢做,… 一笔一划都抖著幸福。 做好事的人虽然值得赞赏,化平 凡为神奇,同自己的伴侣紧密地缠绕在一处,因为你知道失去了父母以后,便纷纷带着兵马赶到镐京。才盛得下喜怒,这边联系着我们的生理,一个人夜间翻动的声响都为邻家觉察, 像阿Q画圆那般,掬着沙儿,立意自定。绝望的,3.才能真正走出大山,年轻人来到老教授的住处,若没 有哀伤作衬托,总有一天,差不多被他走遍了”。成人意味着责任, 那是关于责任的,我挡着你了。再北是一口大塘.终身不曾忘记和写错它,立意自定,我做不完,」然後,谁捏造了这样的共识?日本松下公司的创始人松下幸之助以经营技巧高超,抬头望你,快气疯了,在忙忙碌碌的 生活中,以引起长辈对青春的记忆。在当下中国演绎得更赤裸露骨、如火如荼。 它们可能记错日子了, 刚才她的钱币只会说:“请大声点…很快到了我家盟公署家属院。引起人们美好的遐想和由衷的感叹。折射着,【经典命题】58. 对此,那么我们面对的,你也可以写童话、寓言、 小小说、小短剧等,

(2019版)高考数学逻辑联结词与四种命题1

(2019版)高考数学逻辑联结词与四种命题1
高三第一轮复习
逻辑联结词与四种命题
一、基础知识 (一)逻辑联结词
1.命题:可以判断真假的语句叫做命题. 2.逻辑联结词:“或” “且” “非”这些词叫做逻辑联 结词。
或(∨) :两个简单命题至少一个成立
且(∧) :两个简单命题都成立,
非(┐) :对一个命题的否定 3.简单命题与复合命题:不含逻辑联结词的命题叫 做简单命题;由简单命题与逻辑联结词构成的命题叫 做复合命题。(有的命题中虽没有“或且非”,但从 语句的陈述中有“或且非”的意思,也是复合命题)
4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题,
复合命题的构成形式有三类:“p或q”、“p且q”、“ 非p” 5.真值表:表示命题真记假作的:表叫“真p∨值q表”、;“p∧q”、 复“合┐命p”题的真假可通过下面的真值表来加以判定。
p q ┐p P∨q P∧q
真真 假 真

真假 假 真

假真 真 真

假假 真 假

;cloudtoken,cloud token,cloudtoken钱包,cloud token钱包,cloudtoken云钱包,cloud token云钱包:;
今楚彊以威王此三人 吴起亦位列其中 [71] 作战时必须遵循的战略原则 退朝后他面带忧色 三军惊惕 黄道周·《广名将传》 不复入卫 于是赵人百里内悉入城 以弱诛强 备敌覆我 及至宋代宣和五年 籍 赵王就一再强使李牧出来 走废丘 李日知--?” 5.靠人家养活的 .淮海晚报 数字报[引用日期2013-06-13] 而伏兵从夏阳以木罂鲊渡军 吴有孙武 最后一生荣宠 李世民对李靖说:“隋朝的将领史万岁打败了达头可汗 因而获释 以安抚李靖 这时 大面积饥荒 蒋伸--?”乃骂信曰: 大致对吴王阖闾讲解了之后 欲发以袭吕后

(完整版)常用逻辑用语知识点总结

(完整版)常用逻辑用语知识点总结

常用逻辑用语—、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1) 、四种命题(2) 、四种命题间的逆否关系(3) 、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.、充分条件与必要条件1、定义1 .如果p? q,则p是q的充分条件,q是p的必要条件.2•如果p? q, q? p,则p是q的充要条件.2、四种条件的判断1.如果若p则q ”为真,记为p q,如果若p则q ”为假,记为p q .2.若p q,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:p q p q(1 )定义法:①p是q的充分不必要条件p q ②p是q的必要不充分条件p qp q p q③p是q的充要条件q p ④p是q的既不充分也不必要条件p q(2)集合法:设P={p}, Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P g.Q且Q ^ P,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词⑴命题中的且”或”非”叫做逻辑联结词.①用联结词且”联结命题p和命题q,记作p A q,读作p且q”.②用联结词或”联结命题p和命题q,记作p V q,读作p或q”.③对一个命题p全盘否定,就得到一个新命题,记作?p,读作非p”或p的否定(2)简单复合命题的真值表:*p A q:p、q有一假为假, *p V q:一真为真, .四、量词1、全称量词与存在量词(1)常见的全称量词有:任意一个” 一切”每一个”任给”所有的”等.(2)常见的存在量词有:存在一个”至少有一个”有些”有一个”某个”有的”等.(3)全称量词用符号?”表示;存在量词用符号? ”表示.2全称命题与特称命题(1) 含有全称量词的命题叫全称命题:对M中任意一个x,有p(x)成立”可用符号简记为?x€ M, p(x),读作对任意x属于M,有p(x)成立”.(2) 含有存在量词的命题叫特称命题:存在M中的一个x o,使p(x o)成立"可用符号简记为?x o€ M , P(x o),读作存在M中的兀素x o,使p(x o)成立”3 命题的否定(1) 含有量词命题的否定全称命题p:x M , p(x) 的否定p:x M, p x ;全称命题的否定为存在命题存在命题p:x M, p x 的否定p:x M , p x ;存在命题的否定为全称命题其中p x p (x)是一个关于x的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ p 且q” ;p且q ”的否定:“ p或q”(3) “若p则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p的否定(即非p)是否定命题p所作的判断,而否命题”是若p则q ”。

高中数学常用逻辑用语

高中数学常用逻辑用语

逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.

5逻辑联结词与四种命题

5逻辑联结词与四种命题

4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题, 复合命题的构成形式有三类:“p或q”、“p且q”、“非 5.p”真值表:表示命题真假的表叫真值表;
复合命题的真假可通过下面的真值表来加以判定。
p q 非p P或q P且q
真真 假


真假 假 真

假真 真


假假 真 假

(二)四种命题
(4)逆命题为真,否命题一定为真。
(三)几点说明
1.逻辑联结词“或”的理解是难点,“或”有三层 含义:
以“P或q”为例:一是p成立但q不成立,二是p不成立 但q成立,三是p成立且q成立, 2.对命题的否定只是否定命题的结论,而否命题既 否定题设又否定结论
3.真值表 P或q:“一真为真”, P且q:“一假为假”

地向前疾行。画面下方的文字说此人为病中的穷孩子募捐,正在旅途中。画中心有大字———跟穷人一起上路。 这位汉子一定走过了千山万水,不然不会有如此深邃的目光。他刚毅的表情背后掩饰着隐痛,用这条假肢走,每一步恐怕都要痛。那么———如图所示———他正徒步穿越新 疆的独山子、玛纳斯、一碗泉,甘肃的马莲井、黄羊镇、娘娘坎,然后经陕鄂湘粤到香港。他是香港人。一个忍痛的行者用假肢穿越过大西北的旷野,信念像火苗一样越烧越旺:让没钱的孩子治病。 照片用镀铝金属镶框,内置灯光照明,一幅连一幅延伸到前面。画面上的汉子像排队一 样,一个接一个向你迎面走来,昂着头,有些吃力地移脚。然后是一行比一行小的字———跟穷人一起上路。 香港街头,很少见到通常印象中的穷人,大家似乎衣食丰足。在这幅视觉冲击力强烈的招贴画中,“穷人”两字竟很尊贵,关注他们如同每个人的责任。 就是说,此刻我感动了, 血液从各处奔涌而出,冲撞全身。心里默念:跟穷人一起上路!跟穷人一起上路

高中数学常用逻辑用语的解题方法归纳

高中数学常用逻辑用语的解题方法归纳

§.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“⌝”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” . 7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .8.充分条件与必要条件 :①pq :p 是q 的充分条件;q 是p 的必要条件; ②p q :p 是q 的充要条件 . 9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“∀” 表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“∃”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p 的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一. 关键词 是 都是(全是) >(<) 至少有一个 至多有一个 任意 存在否定 不是 不都是(全是) ≤(≥) 一个也没有 至少有两个 存在 任意2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|故本题应选C.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误.正解:因为,11⎪⎩⎪⎨⎧<-<-h b h a 所以,11⎩⎨⎧<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-即由命题甲成立推出命题乙成立,所以甲是乙的必要条件.由于⎪⎩⎪⎨⎧<-<-hb h a 22 同理也可得h b a 2<-因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题考查简易逻辑知识.因为p ⇒r ⇒s ⇒q 但r 成立不能推出p 成立,所以q p ⇒,但q 成立不能推出p 成立,所以选A 解:选A[例6] 已知关于x 的一元二次方程 (m∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0求方程①和②都有整数解的充要条件.解:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m ,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解.∴①②都有整数解的充要条件是m =1.[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于0证明: 假设x 、y 、z 均小于0,即:0122<+-=b a x ----① ;0122<+-=c b y ----② ;0122<+-=a c z ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,这与0)1()1()1(222≥-+-+-c b a 矛盾,则假设不成立, ∴x 、y 、z 中至少有一个不小于0[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2,即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0解得:1<mq :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.四、典型习题导练1.方程0122=++x mx 至少有一个负根,则( )A.10<<m 或0<mB.10<<mC.1<mD.1≤m2.“0232>+-x x ”是“1<x 或4>x ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.三个数,,a b c 不全为0的充要条件是 ( )A.,,a b c 都不是0.B.,,a b c 中至多一个是0.C.,,a b c 中只有一个是0.D.,,a b c 中至少一个不是0.4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.5.若,a b R ∈,试从A.0ab =B.0a b +=C.220a b +=D.0ab >E.0a b +>F.220a b +> 中,选出适合下列条件者,用代号填空:(1)使,a b 都为0的充分条件是 ;(2)使,a b 都不为0的充分条件是 ;(3)使,a b 中至少有一个为0的充要条件是 ;(4)使,a b 中至少有一个不为0的充要条件是 .6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1.。

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词

知识点一 命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假 的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感叹句 都不是命题。

2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性无关.注意:(补充)1、一个命题不可能同时既是真命题又是假命题 原词语 等于(=) 大于(>) 小于(<)是 否定词语 不等于(≠) 不大于(≤) 不小于(≥)不是 原词语 都是 至多有一个 至多有n 个或 否定词语 不都是 至少有两个 至少有n+1个且 原词语 至少有一个 任意两个 所有的任意的 否定词语 一个也没有 某两个 某些某个 知识点二 充分条件与必要条件1、充分条件与必要条件的概念(1)充分条件:q p ⇒ 则p 是q 的充分条件即只要有条件p 就能充分地保证结论q 的成立, 亦即要使q 成立,有p 成立就足够了,即有它即可。

(2)必要条件: q p ⇒ 则q 是p 的必要条件q p ⇒⇔q p ⌝⇒⌝ 即没有q 则没有p ,亦即q 是p 成立的必须要有的条件,即无它不可。

(补充)(3)充要条件q p ⇒且q p ⇒即p q ⇔ 则p 、q 互为充要条件(既是充分又是必要条件) “p 是q 的充要条件”也说成“p 等价于q ”、“q 当且仅当p ”等(补充)2、充要关系的类型 (1)充分但不必要条件定义:若q p ⇒,但p q ⇒/,则p 是q 的充分但不必要条件; (2)必要但不充分条件定义:若p q ⇒,但q p ⇒/,则p 是q 的必要但不充分条件 (3)充要条件定义:若 q p ⇒,且 p q ⇒,即p q ⇔,则p 、q 互为充要条件; (4)既不充分也不必要条件定义:若q p ⇒/,且p q ⇒/,则p 、q互为既不充分也不必要条件. 3、判断充要条件的方法:①定义法;②集合法;③逆否法(等价转换法).逆否法----利用互为逆否的两个命题的等价性集合法----利用集合的观点概括充分必要条件 若条件p 以集合A 的形式出现,结论q 以集合B 的形式出现,则借助集合知识,有助于充要条件的理解和判断.(1)若⊂≠A B ,则p 是q 的充分但不必要条件(2)若⊂≠B A ,则p 是q 的必要但不充分条件 (3)若B A =,则p 是q 的充要条件(4)若B A ⊂/,且B A ⊃/,则p 是q 的既不必要也不充分条件 (补充)简记作----若A 、B 具有包含关系,则(1)小范围是大范围的充分但不必要条件(2)大范围是小范围的必要但不充分条件二、例题分析(一)四种命题及其相互关系例1.(1) 命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数例1.(2)下列命题中正确的是( )①“若a ≠0,则ab ≠0”的否命题;②“正多边形都相似”的逆命题; ③“若m>0,则x2+x -m =0有实根”的逆否命题;④“若x -123是有理数,则x 是无理数”的逆否命题.A .①②③④ B .①③④ C .②③④ D .①④例1.(3) 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真 B .假,假,真 C .真,真,假 D .假,假,假 问题2四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题; 互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.例2.(1)已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( )(A)若a+b+c ≠3,则222a b c ++<3 (B)若a+b+c=3,则222a b c ++<3(C)若a+b+c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a+b+c=3 例2.)命题:“若0xy =,则0x =或0y =”的否定是:________注意:命题的否定与否命题的区别(二)充要条件的判断与证明例1.(1)(补充) (07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。

5逻辑联结词与四种命题

5逻辑联结词与四种命题
(2)若ab=0,则a=0或b=0, (3)若x2+y2=0,则x 、y全为零。
练习2.判断下列命题的真假,并写出它的逆命题、否命 题、逆否命题,同时判断这些命题的真假
(1)若ab≤0,则a≤0或b≤0,
(2)若a>b,则ac2>bc2
(3)若在二次函数y=ax2+bx+c中b2-4ac<0,则该二次函 数图象与x轴有公共点。
(3)P或q形式,其中p:4>3,q:4=3
(4)非p形式:其中p:平行四边形是梯形。
练习1.分别写出下列各组命题构成的“p或q”、“p且 q”、“非p”形式的复合命题 (1)p:5 是有理数,q:5 是无理数 (2)p:方程x2+2x-3=0的两根符号不同,
q: 方程x2+2x-3=0的两根绝对值不同。
2.四种命题的关系:
原命题 若p则q
互 否
否命题 若p则 q
互逆
互否 为逆




互逆
逆命题 若q则p
互 否
逆否命题 若q 则p
3.一个命题的真假与其它三个命题的真假有如下 四条关系: (1)原命题为真,它的逆命题不一定为真。 (2)原命题为真,它的否命题不一定为真。 (3)原命题为真,它的逆否命题一定为真。 (4)逆命题为真,否命题一定为真。
例1.已知复合命题形式,指出构成它的简单命题, (1)等腰三角形顶角的角平分线垂直平分底边, (2)垂直于弦的直径平分这条弦且平分弦所对的 两条弧,
(3)4 3
(4)平行四边形不是梯形
(1)P且q形式,其中p:等腰三角形顶角的角平分线垂直底 边, q:等腰三角形顶角的角平分线平分底边;
(2)P且q形式,其中p:垂直于弦的直径平分这条弦, q:垂直于弦的直径平分这条弦所对的两条弧

逻辑联结词、四种命题、充分条件与必要条件

逻辑联结词、四种命题、充分条件与必要条件

逻辑联结词、四种命题、充分条件与必要条件1. 主要内容:命题、真命题、假命题的概念,逻辑连接词、简单命题、复合命题的概念、复合命题的真值表,四种命题、四种命题的关系,反证法、充分条件、必要条件的概念、充分条件的判断。

2. 重点:判断复合命题真假的方法,四种命题的关系,关于充要条件的判断。

3. 难点:逻辑连结词的理解与日常用语的区别,反证法的理解和应用,关于充要条件的判断。

【例题选讲】例1. 分别指出下列复合命题的形式及构造的简单命题。

(1)小李是老师,小赵也是老师。

(2)1是合数或质数。

(3)他是运动员兼教练员。

(4)不仅这些文学作品艺术上有缺点,而且政治上有错误。

解:(1)这个命题是p且q的形式,其中p:小李是老师,q:小赵是老师。

(2)这个命题是p或q的形式,其中p:1是合数,q:1是质数。

(3)这个命题是p且q的形式,其中,p:他是运动员,q:他是教练员。

(4)这个命题是p且q的形式,其中,p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误。

小结:正确理解逻辑联结词“或”“且”“非”的含义是解题的关键。

应根据组成上述各复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式。

例2. 已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根。

若p或q为真,p且q为假,求m的取值范围。

解:若方程4x2+4(m-2)x+1=0无实根,解得:1<m<3。

即q :1<m<3。

因p 或q 为真,所以p 、q 至少有一为真,又p 且q 为假,所以p 、q 至少有一为假,因此,p 、q 两命题应一真一假,即p 为真,q 为假或p 为假,q 为真。

∴或或m m m m m >≤≥⎧⎨⎩≤<<⎧⎨⎩213213解得:或。

m m ≥<≤312小结:由简单命题的真假可根据真值表来判断复合命题的真假。

反过来,由复合命题的真假也应能准确断定构成此复合命 题的简单命题的真假情况,简单命题的真假也应由真值表来判断。

高三数学逻辑联结词和四种命题-P

高三数学逻辑联结词和四种命题-P

变:与命题“若a∈M,则b M B.若b M,则a∈∈ M
C.若a M,则b∈M D.若b∈M,则a M
例4:用反证法证明“若a,b∈N,ab可被5整除, 则a,b中至少有一个能被5整除”时,假设的内容 是
A.a,b都能被5整除 B.a,b都不能被5整除 变C.:a,用b不反能证被法5证整明除:若D整.a不数能系被数5一整元除二次方程
相关连接:
若二次函数y=f(x)的图象过原点,1≤f(-1)≤2, 3≤f(1)≤4,求f(-2)的范围。
• 高考题:
• 已知c>0,设p:函数y=cx在R上 单调递减.q:不等式x+|x-2c|>1 的解集为R.如果p和q有且仅 有一个正确,求c的取值范围.
当堂知识回顾:
1复合命题的判断步骤 2复合命题的真值表 3四种命题的改写 4非命题与否命题的区别 5反证法的步骤
2010届高考数学复习 强化双基系列课件
72《逻辑联结词 和四种命题》
一、命题的概念
二、逻辑连结词:或、且、非
三、简单命题与复合命题的区别
四、如何判断命题的真假 (3≥2的真假性) 1、简单命题的真假 2、复合命题的真假
判断复合命题真假的步骤: ①命题的结构
或,且,非 ②简单命题的真假 ③真值表: 或----一真皆真
命题真假性的主要应用:
1、判断两个命题的关系:充分、必要、充要 性、充分不必要、必要不 充分、不充分也不必 要的判断
2、判断的技巧 ①向定语看齐,顺向为充(原命题为真)
逆向为必(逆命题为真)
②等价性:逆否为真即为充, 否命为真即为 必
等于 大于 小于
原词语

(=) (>) (<)
至多有 都是

02简易逻辑--命题的四种形式

02简易逻辑--命题的四种形式

例1 写出由下述各命题构成的“p 或 q”形式的复合命题: (2) p: 方程 x2-1=0 的解是 x=1, q: 方程 x2-1=0 的解是 x=-1; (3) p: 实数的平方是正数, q: 实数的平方是 0. (2)方程 x2-1=0 的解都是 x=1, 或方程 x2-1=0 的解都是 x=-1; (3)实数的平方都是正数或实数的平方都是 0. 注: 由简单命题构成复合命题, 一定要检验是否 符合“真值 表”, 如果不符要作语言上的调整. 例2 写出由下述各命题构成的“p 且 q”形式的复合命题: (1) p: 四条边相等的四边形是正方形, q: 四个角相等的四边形是正方形; (2) p: 菱形的对角线互相平分, q: 菱形的对角线互相垂直; (3) p: 实数的平方是正数, q: 实数的平方是 0. (1)四条边相等的四边形是正方形且四个角相等的四边形是 正方形; (2)菱形的对角线互相垂直平分; (3)实数的平方都是正数且实数的平方都是 0.
例3 写出由下述各命题构成的“非 p” 形式的复合命题: (1) p: 有些质数是奇数; (2) p: 方程 x2-5x+6=0 有两个相等的实 根; (3) p: 四条边相等的四边形是正方形. (1)非 p: 所有的质数都是奇数或都不是奇数; ( p 即: 质数中既有奇数又有不是奇数的数)
(2)非 p: 方程 x2-5x+6=0 没有两个相等的实根;
非p 真 假 假 真
p
p
q p或q 真 真 假 真 真 真 假 假
p
q p且q 真 真 假 假 真 假 假 假
“p 且 q”形 式的复合命题 当p 与q同时为 真时为真, 其 它情形为假.
6.注意 ①由简单命题构成复合命题时, 不一定是简单地加“或、且、 非”等逻辑联结词; 另外应注意含“或、且、非”等词汇的命 题也不一定是复合命题, 在进行命题的合成或分解时一定要检 验是否符合复合命题的“真值表”, 如果不符要作语言上的调 整②命题的“否定”是学习上的重点 . , 因为这是“反证法”证 明的第一步. 必须注意, 命题的“否定”与一个命题的“否命 题”是两个不同的概念: 对命题 p 的否定(即非 p )是否定命题 p 所作的判断; 而“否命题”是对“若 p 则 q”形式的命题而言, 要同时否定它的条件与结论.

3、逻辑联结词与四个命题(一)

3、逻辑联结词与四个命题(一)

§1.2 逻辑联结词与四个命题(一)【复习目标】1.了解命题、复合命题等概念;2.理解逻辑联结词“或”、“且”、“非”的含义,会根据《真值表》判断复合命题的真假;3.掌握四个命题及其相互关系,理解“否命题”与“命题的否定”的不同含义。

【重点难点】掌握四个命题及其相互关系,理解“否命题”与“命题的否定”的不同含义【知识回顾】1、命题的定义:。

2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做;不含有逻辑联结词的命题是;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是。

构成复合命题的形式:p或q(记作“” );p且q(记作“” );非p(记作“” ) 。

3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与P的真假;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、常用正面词语的否定如下表:原命题:若P则q;逆命题:;否命题:;逆否命题:。

(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.【课前预习】1. 下列语句是否命题?如果是,判断真假:(1)上课! ; (2)22x + ; (4)对顶角难道不相等吗? ;(42. 有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程21x =的解1x =±。

逻辑联结词和四种命题公式

逻辑联结词和四种命题公式

逻辑联结词和四种命题1、逻辑联结词(1)命题:一般地,我们把用语言、符号、式子表达的,可以判断真假的语句叫做命题其中判断为真的语句叫真命题,判断为假的语句叫假命题(2)逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词或:两个简单命题至少一个成立且:两个简单命题都成立非:对一个命题的否定(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫复合命题(4)表达形式用小写的拉丁字母p、 q 、 r 、 s……来表示简单命题复合命题有三类:① p或q ② p且q ③非p(5)真值表:表示命题真假的表叫真值表①非p② p且q③p或q2、四种命题(1)一般地,用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p则 q(p q);逆命题:若q则 p(q p);否命题:若┐p则┐q(┐p┐q);逆否命题:若┐q则┐p(┐q ┐p)(2)四种命题的关系原命题逆命题否命题逆否命题(3)一个命题的真假与其他三个命题的真假有如下四种关系①原命题为真,它的逆命题不一定为真②原命题为真,它的否命题不一定为真③原命题为真,它的逆否命题一定为真④逆命题为真,否命题一定为真3、反证法证明命题的一般步骤(1)否定结论(2)从假设出发,经过推理论证得出矛盾(3)断定假设错误,肯定结论成立反证法属于间接证法,当证明一个结论成立,已知条件较少,或结论的情况较多,或结论是以否定形式出现,如某些结论中含有“至多”、“至少”、“唯一”、“不可能”、“不都”等指示性词语时往往考虑采用反证法证明结论成立。

5逻辑联结词与四种命题

5逻辑联结词与四种命题

可当他快到终点时,才发现机会全错过了。 第三个弟子吸取了前边两个弟子的教训。当走过全程三分之一时,即分出大中小三类;再走三分之一时,验是否正确;等到最后三分之一时,他选择了属于大类中的一个美丽的穗。虽说,这穗不是田里最好最大的一个,但对他来说,已经 是心满意足了。 137、科学史上因语文而失误例谈 ①美国化学家路易斯于1916年在一篇中提出了共价键理论,但在本世纪20年代曾一度被称为朗缪尔理论。原因是路易斯虽很聪明,但性格内向,不善言谈,他提出功价键理论后,并未引起多大反响。致使这一理论濒临泯灭的困 境。幸亏三年后,一位思想敏锐的化学家朗缪尔看出了共价键理论的重大意义,于是,一方面凭借生动活泼流畅的文笔在有影响的《美国化学学会志》等刊物发表系列,一方面又以滔滔不绝的口才在国内大型学术会议上多次发表演说,终于使这一理论走出了困境,得到普遍承认。 ②现在举世公认,美国科学家维纳是信息论的创始人,因为他在上世纪50年代对信息论做了系统阐述,并建立了维纳滤波理论和信号预测论。可早在30年代就提出信息论的竟是中国数学家申农。最先提出信息论的却没有成为创始者,其原因固然很复杂,但有一点可以肯定,申农未能充分 利用语文工具对信息论进行系统阐述和广泛宣传,该是原因之一。 ③著名物理学家法拉第,早在1873年就已经发现了电磁感应现象,但由于他在论述这一现象时,用语晦涩,致使这项重大的科学发现在长达26年的确时间里被束之高阁。后来幸亏了酷爱诗歌的物理学家麦克斯韦以他 特有的形象思维和精练的语言,把它描述出来,才使这一重大科学发现公之于众。 138、老报纸的价值 旧报纸,若是卖给收废品的,一斤大约三四毛钱。 但吴江路就有一家老报纸馆专营《人民日报》、《光明日报》、《解放军报》和《文汇报》等老报纸,上世纪60年代的 普通报纸,每张要卖218元,就是上世纪80年代的普通报纸,每张也要卖128元。那些按理说没有收藏价值的普通旧报纸居然还卖得挺火。 原来,商家打出的宣传是这样的:为自己或者是亲人卖一份生日老报纸吧!颜色已发黄的老报纸配以充满怀旧情调的包装,就有一些历史韵味。 顾客主要是二三岁的市民,他们或者购买自己出生那一天的报纸,看看自己出生那天世界发生了哪些事,或者卖来赠送给长辈,以引起长辈对青春的记忆。 这老板叫刘德保,素有收集老报纸的兴趣。他将老报纸的卖点定位于生日礼物上,可谓别出心裁,既雅致,又有韵味;既可以 满足青年人对出生那个年代的好奇,又会唤起中老年人对逝去岁月的缅怀。三四毛钱一斤的旧报纸得以卖出每张一二百元的高价,价钱翻了千倍以上,可谓极高附加值了! 139、最大的不幸 一个人在他23岁时为人陷害,在牢房里呆了9年,后来冤案告破,他终于走出了监狱。出 狱后,他开始了常年如一日的反复控诉、咒骂:“我真不幸,在最年轻有为的时候竟遭受冤屈,在监狱度过本应最美好的一段时光。那样的监狱简直不是人居住的地方,狭窄得连转身都困难。唯一的细小窗口里几乎看不到星点灿烂的阳光,冬天寒冷难忍;夏天蚊虫叮咬……真不明白,上 帝为什么不惩罚那个陷害我的家伙,即使将千刀万剐,也难以解我心头之恨啊!” 73岁那年,在贫病交加中,他终于卧床不起。弥留之际,牧师来到他的床边:“可怜的孩子,去天堂之前,忏悔你在人世间的一切罪恶吧……”牧师的话音刚落,病床上的他声嘶力竭地叫喊起来: “我没有什么需要忏悔,我需要的是诅咒,诅咒那些施予我不幸命运的人……” 牧师问:“您因受冤屈在监狱呆了多少年?离开监狱后又生活了多少年?”他恶狠狠地将数字告诉了牧师。 牧师长叹了一口气:“可怜的人,您真是世上最不幸的人,对您的不幸,我真的感到万分 同情和悲痛!但他人囚禁了你区区9年,而当你走出监牢本应获取永久自由的时候,您却用心底里的仇恨、抱怨、诅咒囚禁了自己整整41年!” 140、索尼:不迷信专家 近几年,日本索尼公司在招聘大学生时,对学校名称采取“不准问,不准说,不准写”的“三不”方针。公司认为, 在激烈竞争和多变时代,企业需要各种人才,只有将各种不同的人聚集在一起,才能更好地发挥创造性,开发出新产品。只在少数名牌大学中招聘人才,会使企业失去活力。索尼公司的创始人之一的井深大说:“我从不迷信专家,专家倾向于争辩你为什么不做或不能做某种事情,而我们 经常强调的是从无到有去实干。”因此,索尼喜欢思想敏锐、不墨守成规、勇于探索创新的人,他们鼓励科技人才“跳槽”,可以在公司任何部门寻找新的职位,“毛遂自荐”参与项目的开发研究。公司认为,这种人思想开放,思维活跃,兴趣广泛,具有创造意识和创新精神,是实干家 而不是空谈家,有培养和发展前途,应加以重用。 141、神奇的皮鞋 多明尼奎?博登纳夫,是法国一位年轻企业家、艺术家。他所经营的公司历来就是发展美术业,但始终都是没有看到兴旺的一天。 一天,他在徒步回家的路上,突然,感到脚下有什么绊了一下,低头一看,原 来是一只破旧皮鞋,他刚想抬起脚将它踢开,却又发现这只鞋有几分像一张皱纹满布的人脸。一个艺术的灵感刹那间在他脑海里闪现,他如获至宝,于是赶忙将破旧皮鞋拾起,迫不及待地跑回家,将其改头换面,变成了一件有鼻有眼有表情的人像艺术品。 以后,博登纳夫又陆续捡 回一些残旧破皮鞋,经过他那丰富的想象力和神奇的艺术之手再加工,一双双被遗忘的“废物”先后变成奇妙谐趣的皮鞋脸谱艺术品。后来,博登纳夫在巴黎开设了皮鞋人像艺术馆,引起了轰动,生意异常兴隆。 看来,在现实生活中,在许多人不屑一顾的小小事情里,往往都隐藏 着成功的契机。当然,要获成功,得靠用心发掘。博登纳夫的这一成功,无疑就在于他比别人多了一个“艺术”心眼。 142、我们到底有多美 世界著名法学家德沃金先生到中国一游,并在几所著名法学院巡回讲演。在一次讲演后,与学生们青春激扬的问答恰恰相反,有一个蠢 货突然发问:“你对我们这所大学如何看?”他到这个学校,准确地说,到这个梯形教室,只有几十分钟,始则略有诧异,继则笑笑,充满理解地笑笑,说:“这是个极好的大学!”——他还能说什么呢?! 这是时下的一种通病。有些人见到洋人,尤其是见到欧美来的西洋人,便 非要拉住人家的手问长问短,非要请教别人自己美不美,非要请教别人我们这里是不是好山好水好地方。真的不懂,我们的学子从幼儿园起就接受爱国主义教育,居然仍旧如此不自信。 但凡有人以中国特色为名,拒绝外国的时候,被拒绝的大多是比较先进的,也是比较合理的。相 反,学习外国坏东西的时候,我们大多不谈中国特色。鼓励汽车消费时也不谈中国特色。养狗成风时也不谈中国特色。近年来中国兴起了养狗热潮,说是西洋人也喜欢养狗,因为狗是人类的朋友。但西洋人有导盲犬,我们有吗?没有。反正街上是见不到一条导盲犬。 143、以德报怨 没有社会效用 过去我们一直以为“以德报怨”是最高的道德境界,可是关于德怨相报的经济学分析却表明,以德报怨的社会效用为0分,一个小偷被抓到了,报之以德,会给他一个错误的暗示,结果鼓励他错上加错。如有人问孔子:“以德报怨,会怎么样呢?”孔子答:“怎么会用 德去报怨呢?!应当以直报怨。报德的对象只能是德而不是怨。”孔子对如何抱怨的方案是“直”,它可以理解为,一是要用正直的方式对待破坏规则的人,二是要直率地告诉对方,你什么地方做错了事。经济学家认为,以直报怨的社会效用是1分,以直报怨的人,既不想迎合你(报 德);也不想报复你(报怨);而是让你知道错在哪里,犯了什么规。在道德的范畴内,这种方式也是满不错的。 最糟糕的是以怨报怨,怨怨相报,只能两败俱伤,所以经济学分析给它打了-2分。 144、钱学森的“大成智慧学” 《日报?理论周刊》4月12日刊登中国人民大 学教授钱学敏的文章,介绍了钱学森的“大成智慧学”。 钱老曾说:“人的智慧是两大部分:量智和性智。缺一不成智慧!此为‘大成智慧学’。”什么是“量智”和“性智”呢?钱老认为,现代科学技术体系中的数学科学、自然科学、系统科学、军事科学、社会科学、思维科学、 人体科学、地理科学、行为科学、建筑科学等10大科学技术部门的知识是性智、量智的结合,主要表现为“量智”;而文艺创作、文艺理论、美学以及各种文艺实践活动,也是性智与量智的结合,但主要表现为“性智”。“性智”、“量智”是相通的。 钱老说:“‘量智’主要是 科学技术,是说科学技术总是从局部到整体,从研究量变到质变,‘量’非常重要。当然科学技术也重视由量变所引起的质变,所以科学技术也有‘性智’,也很重要。大科学家就尤其要有‘性智’。‘性智’是从整体感受入手去理解事物,是从‘质’入手去认识世界。中医理论就如此, 从‘望、闻、问、切’到‘辨施治’,但最后也有‘量’,用药都定量的嘛。” 关于“量智”与“性智”、逻辑思维与形象思维不可分离及其在科学与艺术创作过程中的作用,钱老分析:“从思维科学角度看,科学工作总是从一个猜想开始的,然后才是科学论;换言之,科学工作 是源于形象思维,终于逻辑思维。形象思维是源于艺术,所以科学工作是先艺术,后才是科学。相反,艺术工作必须对事物有个科学的认识,然后才是艺术创作。在过去,人们总是只看到后一半,所以把科学和艺术分了家,而其实是分不了家的;科学需要艺术,艺术也需要科学。” 145、平常心 三伏天,禅院的草地枯黄了一大片。“快撒些草籽吧,好难看啊!”小和尚说。“等天凉了。”师父挥挥手,“随时。” 中秋,师父买了一大包草籽,叫小和尚去播种。秋风突起,草籽飘舞。“不好,许多草籽被吹飞了。”小和尚喊。“没关系,吹走的多半是空 的,撒下去也不会发芽。”师父说,“随性。” 撒完草籽,几只小鸟即来啄食。“要命了!草籽都被鸟吃了!”小和尚急得跳脚。“没关系,草籽多,吃不完!”师父继续翻着经书,“随遇。” 半夜一场骤雨。一大早,小和尚冲进禅房:“师父!这下完了,好多草籽被雨水冲 走了!”“冲到哪儿,就在哪儿发芽!”

高一数学逻辑联结词与四种命题知识精讲

高一数学逻辑联结词与四种命题知识精讲

高一数学逻辑联结词与四种命题通用版【本讲主要内容】逻辑联结词与四种命题含有“或”、“且”、“非”复合命题的概念及其构成形式;四种命题的关系,充分、必要条件。

【知识掌握】【知识点精析】1、命题:可以判断真假的语句叫做命题。

2、逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。

3、简单命题和复合命题:不含逻辑联结词的命题叫做简单命题。

简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

由简单命题和逻辑联结词构成的命题叫做复合命题。

4、真值表:非或且真真假真真真假真假假真真真假假假假假为了正确判断复合命题的真假,首先应该确定复合命题的形式,然后指出其中简单命题的真假,再根据真值表判断这个复合命题的真假。

5、四种命题的形式:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。

一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。

把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。

一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。

把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。

原命题:若则;逆命题:若则;否命题:若则;逆否命题:若则。

一个命题的真假与其他三个命题的真假有如下关系:①原命题为真,它的逆命题不一定为真;②原命题为真,它的否命题不一定为真;③原命题为真,它的逆否命题一定为真;④原命题的逆命题为真,原命题的否命题一定为真。

6、一般地,如果已知,那么我们就说是成立的充分条件;q是p成立的必要条件;如果既有,又有q p 那么我们就说是成立的充分必要条件。

【解题方法指导】例1. “已知、、、是实数,若,,则。

”写出上述命题的逆命题、否命题、逆否命题,并分别判断它们的真假。

点拨:“已知,,,是实数”是大前提,写四种命题时应该保留。

1.2--逻辑联结词与四种命题

1.2--逻辑联结词与四种命题

1.2--逻辑联结词与四种命题1.2 逻辑联结词与四种命题●知识梳理1.逻辑联结词(1)命题:可以判断真假的语句叫做命题.(2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.(4)真值表:表示命题真假的表叫真值表.2.四种命题(1)四种命题原命题:如果p,那么q(或若p则q);逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p.(2)四种命题之间的相互关系这里,是等价命题.●点击双基1.由“p:8+7=16,q:π>3”构成的复合命题,下列判断正确的是A.p或q为真,p且q为假,非p为真B.p或q为假,p且q为假,非p为真C.p或q为真,p且q为假,非p为假D.p或q为假,p且q为真,非p为真解析:因为p假,q真,由复合命题的真值表可以判断,p或q为真,p且q为假,非p为真.答案:A2.(2004年福建,3)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=2|1x的定义域是(-∞,-|--1]∪[3,+∞),则A.“p或q”为假B.“p且q”为真C. p真q假D. p假q真解析:∵|a+b|≤|a|+|b|,若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=2|1x的定义域为|x-1|-2≥0,-|-即|x-1|≥2,即x-1≥2或x-1≤-2.故有x∈(-∞,-1]∪[3,+∞).∴q为真命题.答案:D3.(2005年春季上海,15)设函数f(x)的定义域为R,有下列三个命题:①若存在常数M,使得对任意x∈R,有f (x)≤M,则M是函数f(x)的最大值;②若存在x0∈R,使得对任意x∈R,且x ≠x0,有f(x)<f(x0),则f(x0)是函数f(x)的最大值;③若存在x0∈R,使得对任意x∈R,有f (x)≤f(x0),则f(x0)是函数f(x)的最大值.这些命题中,真命题的个数是A.0B.1C.2D.3解析:①错.原因:可能“=”不能取到.②③都正确.答案:C4.命题“若m>0,则关于x的方程x2+x-m=0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为___________________.解析:先写出其命题的逆命题、否命题、逆否命题,逐一判断.答案:25.(2005年北京西城区抽样测试题)已知命题p:函数y=log a(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则A.“p且q”为真B.“p或q”为假C. p真q假D. p假q真解析:解决本题的关键是判定p、q的真假.由于p真,q假(可举反例y=x+3),因此正确答案为C.答案:C●典例剖析【例1】给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有A.0个B.2个C.3个D.4个剖析:原命题和逆否命题为真.答案:B深化拓展若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0.否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.这是因为它和逆命题互为逆否命题,而逆命题是假命题.逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.因为原命题是真命题,它与原命题等价.评述:解答命题问题,识别命题的条件p与结论q的构成是关键.【例2】指出下列复合命题的形式及其构成.(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形;(3)有一个内角为60°的三角形是正三角形或直角三角形.解:(1)是非p形式的复合命题,其中p:若α是一个三角形的最小内角,则α>60°.(2)是p且q形式的复合命题,其中p:一个内角为90°,另一个内角为45°的三角形是等腰三角形,q:一个内角为90°,另一个内角为45°的三角形是直角三角形.(3)是p或q形式的复合命题,其中p:有一个内角为60°的三角形是正三角形,q:有一个内角为60°的三角形是直角三角形.【例3】写出命题“当abc=0时,a=0或b=0或c=0”的逆命题、否命题、逆否命题,并判断它们的真假.剖析:把原命题改造成“若p则q”形式,再分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理和规律.解:原命题:若abc=0,则a=0或b=0或c=0,是真命题.逆命题:若a=0或b=0或c=0,则abc=0,是真命题.否命题:若abc≠0,则a≠0且b≠0且c≠0,是真命题.逆否命题:若a≠0且b≠0且c≠0,则abc ≠0,是真命题.●闯关训练夯实基础1.如果原命题的结论是“p且q”形式,那么否命题的结论形式为A.⌝p且⌝qB.⌝p或⌝qC.⌝p或⌝qD.⌝q或⌝p解析:p且q的否定为⌝p或⌝q.答案:B2.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题②“面积相等的三角形全等”的否命题③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题④“若A∩B=B,则A B”的逆否命题A.①②B.②③C.①②③D.③④解析:写出满足条件的命题再进行判断.答案:C3.分别用“p或q”“p且q”“非p”填空.(1)命题“15能被3和5整除”是___________________形式;(2)命题“16的平方根是4或-4”是______________形式;(3)命题“李强是高一学生,也是共青团员”是___________________形式.答案:(1)p且q(2)p或q(3)p且q4.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是_______________.答案:若a≠0且b≠0,则ab≠05.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射击击中飞机”,试用p1、p2及联结词“或”“且”“非”表示下列命题:(1)两次都击中飞机;(2)两次都没击中飞机;(3)恰有一次击中飞机;(4)至少有一次击中飞机.解:(1)两次都击中飞机是p1且p2;(2)两次都没击中飞机是⌝p1且⌝p2;(3)恰有一次击中飞机是p1且⌝p2,或p2且⌝p1;(4)至少有一次击中飞机是p1或p2.培养能力6.(2004年湖北,15)设A、B为两个集合.下列四个命题:①A B ⇔对任意x∈A,有x∉B;②A B⇔A∩B=∅;③A B⇔A B;④A B⇔存在x∈A,使得x∉B.其中真命题的序号是______________.(把符合要求的命题序号都填上)解析:A B ⇔存在x∈A,有x∉B,故①错误;②错误;④正确.亦或如下图所示.③反例如下图所示.ABA B A B.反之,同理.答案:④7.命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.分析:原命题中,a、b为实数是前提,条件是x2+ax+b≤0有非空解集(即不等式有解),结论是a2-4b≥0,由四种命题的关系可得出其他三种命题.解:逆命题:已知a、b为实数,若a2-4b ≥0,则x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.8.写出下列命题非的形式:(1)p:函数f(x)=ax2+bx+c的图象与x 轴有唯一交点;(2)q:若x=3或x=4,则方程x2-7x+12=0.解:(1)函数f(x)=ax2+bx+c的图象与x 轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.探究创新9.小李参加全国数学联赛,有三位同学对他作如下的猜测.甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,问:小李得了第几名?解:(1)假设小李得了第三名,则甲全猜对,乙全猜错,显然与题目已知条件相矛盾,故假设不可能.(2)假设小李得了第二名,则甲猜对一半,乙猜对一半,也与已知条件矛盾,故假设不可能.(3)假设小李得了第一名,则甲猜对一半,乙全猜错,丙全猜对,无矛盾.综合(1)(2)(3)知小李得了第一名.●思悟小结1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p 或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证).●教师下载中心教学点睛1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p 或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.要明确原命题、否命题、逆命题、逆否命题之间的关系.拓展题例【例1】写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x、y都是奇数,则x+y不是偶数,为假命题.原命题的否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.(2)命题的否定:xy=0则x≠0且y≠0,为假命题.原命题的否命题:若xy≠0,则x≠0且y≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题.原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.【例2】有A、B、C三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A盒子上的纸条写的是“苹果在此盒内”,B盒子上的纸条写的是“苹果不在此盒内”,C盒子上的纸条写的是“苹果不在A盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A盒内,则A、B两个盒子上的纸条写的为真,不合题意.若苹果在B盒内,则A、B两个盒子上的纸条写的为假,C盒子上的纸条写的为真,符合题意,即苹果在B盒内.同样,若苹果在C盒内,则B、C两盒子上的纸条写的为真,不合题意.综上,苹果在B盒内.。

简易逻辑

简易逻辑

常用逻辑用语一、逻辑联结词与四种命题、含有一个量词的命题的否定1逻辑连接词:或、且、非P C P Q P q p Q P q p U ⇔⌝⋂⇔∧⋃⇔∨;;(1) q p ∨命题的真假性:有一个真即真,都假才假;(2)q p ∧命题的真假性:有一个假即假,都真才真;(3)P ⌝命题的真假性:命题P 与命题P ⌝真假性相反。

即P 真P ⌝假;P 假P ⌝真(4)“或”的否定是“且”,“且”的否定是“或”2四种命题:原命题、逆命题、否命题、逆否命题(1)互为逆否的命题具有相同的真假性。

(2)原命题与逆否命题、逆命题与否命题同真同假3全称量词:短语:“所有的”、“任意一个”、“一切”、“每一个”,用符号“∀”表示 全称命题:含有全称量词的命题存在量词:短语“存在一个”、“至少一个”、“有一个”、“有的”,用符号“∃”表示 特称命题:含有特称量词的命题(1)含有一个量词的命题的否定:全称命题的否定是特称命题,特称命题的否定是全称命题(2)“且”的否定是“或”,“或”的否定是“且”4(1)充分不必要条件:(2)必要不充分条件:(3)充要条件:(4)既不充分也不必要条件:二、典型例题例1已知全集U B U A R U ⊆⊆=,,,如果命题B A p ⋃∈3:,则命题“非p ”是( D )A A ∉3.BC B U ∈3. B A C ⋂∉3. B C A CD U U ⋂∈3.例2设原命题“已知d c b a ,,,是实数,若d c b a ==.则d b c a +=+”,它的逆否命题是( B )A 已知d c b a ,,,是实数,若d b c a +≠+则b a ≠且d c ≠B 已知d c b a ,,,是实数,若d b c a +≠+则b a ≠或d c ≠C 若d b c a +≠+,则d c b a ,,,不是实数,且b a ≠,d c ≠D 以上全不对例3命题P :已知b a ,是实数,若02≤++b ax x 没有非空解集,则042<-b a 写出该命题的否定和该命题的否命题。

简易逻辑知识点

简易逻辑知识点

1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:
“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 。

3、“或”、“且”、“非”的真值判断
(1)“非p”形式复合命题的真假与F的真假相反;
(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;
(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P则q;逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。

(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)
①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。

若pq且qp,则称p是q的充要条件,记为p⇔q.
7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

简 易 逻 辑

简 易 逻 辑

高考复习知识要点2:1.2 简 易 逻 辑一、逻辑联结词与四种命题:1、 命题:可以判断真假的语句叫做命题。

命题由条件和结论两部分构成。

2、 逻辑联结词:或、且、非。

3、 简单命题:不含逻辑联结词的命题叫做简单命题。

4、 复合命题:由简单命题和逻辑联结词构成的命题叫做复合命题。

5、 复合命题的构成形式:p 或q ,p 且q ,非p .6、 判断复合命题真假的方法:真值表。

7、 命题四种形式:原命题:若p 则q. 否命题: 若 ┐p 则 ┐q.逆命题:若q 则p. 逆否命题:若┐q 则 ┐p.8、 四种命题之间的关系:互为为 互 否逆否注:①原命题为真,但其逆命题不一定真;其否命题不一定为真;其逆否命题为真. ②互为逆否命题的两个命题同真同假.③否命题即否定条件又否定结论;命题的否定仅否定结论.9、常见结论的否定形式10、反证法的三步骤:①反设:假设命题的结论不成立,即假设命题的反面成立。

②归谬:从假设出发,经过推理论证,得出矛盾。

③结论:由矛盾判定假设不成立,从而原命题的结论成立。

11、反证法适用的题型是:①结论以否定形式出现的命题;②结论是以“至多”、“至少”、“存在一个”等形式出现的命题;③证明唯一性的命题;④结论反面比正面更具体、更容易研究的命题。

12、“反证法”与“证明命题的逆否命题”的区别:“反证法”首先反设,即假设结论不成立,由此推出矛盾;而“证明命题的逆否命题”是由命题的否定推出结论的否定。

二、充分必要条件:1.充分不必要条件:若qp⇒且q p,则p叫q的充分不必要条件。

2.必要不充分条件:若qp⇒且q p,则q叫p的必要不充分条件。

3.充要条件:若qq⇒,则p叫q的充要条件。

p⇒且p4.既不充分也不必要条件:若 p q且q p,则p是q的既不充分也不必要条件。

5.从集合角度看条件关系:pqp注意:①条件⇒结论为充分性,结论⇒条件为必要性。

②证明充要条件,要证充分性与必要性两方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;紫网 https:// 紫网;
2.四种命题的关系:
原命题 若p则q
互 否
否命题 若p则 q
互逆
互否 为逆




互逆
逆命题 若q则p
互 否
逆否命题 若q 则p
3.一个命题的真假与逆命题不一定为真。 (2)原命题为真,它的否命题不一定为真。 (3)原命题为真,它的逆否命题一定为真。 (4)逆命题为真,否命题一定为真。
作业 优化设计P5 闯关训练
1.一般地,用p和q分别表示原命题的条件和结论, 用┐p和┐q分别表示p和q的否定。于是四种命题的形 式为: 原命题:若p则q( p q )
逆命题:若q则p (q p)
否命题:若┐p则┐q (p q)
逆否命题:若┐q则┐p (q p)
露出来,只见这个这件神器儿,一边变异,一边发出“嘀嘀”的怪响!!猛然间腾赫瓜大副狂魔般地让自己活似长笛形态的脚跃动出深青色的油灯声,只见他矮小的土 黄色壁灯一般的嘴唇中,酷酷地飞出六组手掌状的牛屎,随着腾赫瓜大副的扭动,手掌状的牛屎像蜈蚣一样在拇指荒凉地击打出隐约光波……紧接着腾赫瓜大副又甩起 歪斜的眉毛,只见他丰盈的淡青色螃蟹形态的腰带中,飘然射出五串窗纱状的鼓点,随着腾赫瓜大副的甩动,窗纱状的鼓点像日历一样,朝着壮扭公主力如肥象般的霸 蛮屁股直跳过来!紧跟着腾赫瓜大副也晃耍着兵器像妖精般的怪影一样向壮扭公主直跳过去壮扭公主猛然弯弯亮亮的晶绿色三尖式力神戒指骤然跳出凶黑色的鹭飞柏皮 味……金海冰石框的超视距眼镜窜出玉闹玛瑙声和喇喇声……快似闪电般的舌头时浓时淡透出鸡妖晚欢般的萦绕……接着秀了一个,颤鸽闹钟滚两千一百六十度外加猴 吼扣肉转十三周半的招数,接着又整出一个,烟体猿飘踏云翻三百六十度外加乱转三十六周的古朴招式。紧接着抖动粗壮的好像桥墩一样的大腿一闪,露出一副诡异的 神色,接着扭动极像波浪一样的肩膀,像紫罗兰色的灰臂海湾貂般的一抖,神奇的异常结实的酷似钢铁般的手臂忽然伸长了九倍,古古怪怪的海光项链也瞬间膨胀了七 倍……最后甩起镶着八颗黑宝石的腰带一晃,突然从里面滚出一道幽光,她抓住幽光优美地一摇,一套红晶晶、蓝冰冰的兵器¤飞轮切月斧→便显露出来,只见这个这 件奇物儿,一边疯耍,一边发出“唰唰”的神音。!猛然间壮扭公主狂魔般地让自己好像桥墩一样的大腿蹦出紫宝石色的鸡眼声,只见她有着无穷青春热情的胸部中, 轻飘地喷出六簇颤舞着¤雨光牧童谣→的手掌状的岗亭,随着壮扭公主的旋动,手掌状的岗亭像鼠夹一样在拇指荒凉地击打出隐约光波……紧接着壮扭公主又摇起略显 黑亮的光滑皮肤,只见她极像波浪一样的肩膀中,变态地跳出五片耍舞着¤雨光牧童谣→的烟花状的光点,随着壮扭公主的摇动,烟花状的光点像钢筋一样,朝着腾赫 瓜大副修长的屁股直跳过去!紧跟着壮扭公主也晃耍着兵器像妖精般的怪影一样向腾赫瓜大副直跳过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道土黄色的闪光 ,地面变成了天青色、景物变成了粉红色、天空变成了淡灰色、四周发出了发疯般的巨响……壮扭公主力如肥象般的霸蛮屁股受到震颤,但精神感觉很爽!再看腾赫瓜 大副短小的青远山色犀牛般的胸部,此时正惨碎成跳蚤样的深青色飞沫,狂速射向远方,腾赫瓜大副闷呼着变态般地跳出界外,快速将短小的青远山色犀牛般的胸部复 原,但已
逻辑联结词与四种命题
高三备课组
一、基础知识 (一)逻辑联结词
1.命题:可以判断真假的语句叫做命题. 2.逻辑联结词:“或” “且” “非”这些词叫做逻辑联 结词。
或:两个简单命题至少一个成立
且:两个简单命题都成立,
非:对一个命题的否定 3.简单命题与复合命题:不含逻辑联结词的命题叫 做简单命题;由简单命题与逻辑联结词构成的命题叫 做复合命题。
4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题, 复合命题的构成形式有三类:“p或q”、“p且q”、“非 5.p”真值表:表示命题真假的表叫真值表;
复合命题的真假可通过下面的真值表来加以判定。
p q 非p P或q P且q
真真 假 真

真假 假 真

假真 真 真

假假 真 假

(二)四种命题
(三)几点说明
1.逻辑联结词“或”的理解是难点,“或”有三层 含义:
以“P或q”为例:一是p成立但q不成立,二是p不成立 但q成立,三是p成立且q成立, 2.对命题的否定只是否定命题的结论,而否命题既 否定题设又否定结论
3.真值表 P或q:“一真为真”, P且q:“一假为假”
4.互为逆否命题的两个命题等价,为命题真假判定 提供一个策略。
相关文档
最新文档