重庆大学高等数学总复习题三

合集下载

重庆大学高等数学习题3-2

重庆大学高等数学习题3-2

A 组1.用洛必达法则求下列极限:(1)02lim 1cos xxx e e x -→+-- (2)arctan 2lim 1x x xπ→+∞-(3)0cos lim sin x x e x x x →- (4)011limcot ()sin x x x x→- (5)10(1)lim xx x ex→+- (6)210sin lim ()x x x x +→ (7)011lim()sin x x x→- (8)sin 0lim xx x +→(9)lim(1)xx a x→∞+ (10)n 其中n 为正整数解析:考查洛必达法则的应用,洛必达法则主要应用于00,∞∞型极限的求解,当然对于一些能够化简为00,∞∞型极限的同样适用,例如00010⋅∞==∞等等,在求解的过程中,同样可以利用前面已经学到的极限的求解方法,例如等价无穷小、两个重要极限 解:(1)本题为型极限的求解,利用洛必达法则求解得 0002lim lim lim 21cos sin cos x x x x x x x x x e e e e e e x x x---→→→+--+===- (2)本题为型极限的求解,利用洛必达法则求解得 22221arctan 12lim lim lim 1111x x x x x x x x x π→+∞→+∞→+∞--+===+-(3)本题为0型极限的求解,利用洛必达法则求解得000cos sin 1lim lim lim sin sin cos 0x x x x x e x e x x xx x x →→→-+===∞+ (4)先化简,得2300011cos sin sin sin limcot ()lim lim lim sin sin sin sin x x x x x x x x x x xx x x x x x x x x →→→→----=⋅==型极限的求解,利用洛必达法则求解得23220001sin 1cos 12lim lim lim 336x x x xx x x x x x →→→--=== (5)化简1ln(1)00(1)lim limx x xx x x e eexx+→→+--=型极限的求解,利用洛必达法则求解得 0ln(1)ln(1)ln(1)lim 220002000ln(1)(1)ln(1)1lim lim lim(1)(1)ln(1)1ln(1)1ln(1)lim lim lim 222x x x x xxx x x x x x x xx e e x x x x e e x x x x x x x x x e e e e x x x →+++→→→→→→-+--+++=⋅=+-++-+--+====-(6)1∞型极限的求解,首先利用lne ,然后利用洛必达法则求解得222220002322000sin sin sin sin ln ln 11ln 11lim lim lim 001sin cos 112limlimlim 336sin lim ()lim x x x x x x x x x xxx x x x x x x x x x x x x x xxxx e eeexeeee+++→→→+++++→→→⎛⎫⎛⎫⎛⎫+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭→→----========(7)∞-∞型极限的求解,先化简再利用洛必达法则求解得2200000111sin sin 1cos 2lim()lim lim lim lim 0sin sin 22x x x x x xx x x x x x x x x x x x→→→→→----==== (8)00型极限的求解,先利用lne 化简,再利用洛必达法则求解得22002001ln lim limsin cos 1limlimsin ln sin cos sin sin 0lim lim 1x x x x xx xx x x x xx x x xxx x x e e eee++→→++→→++---→→======(9)1∞型极限的求解,先利用重要极限二化简lim(1)lim(1)lim(1)x x a a x a a ax x x a a a e x x x⋅⋅→∞→∞→∞+=+=+= 当然也可以先化简,再利用洛必达法则求解222ln()ln lim1[ln()ln ]1111limlim112limlim()2lim(1)lim()lim x x x x x x a xx x x x a x x x x x x a x x a x ax axax x a xxx aa x a e e x x eeeee →∞→∞→∞→∞→∞+-+-→∞→∞→∞--++--++++========(10)0∞型极限的求解,先化简,利用洛必达法则求解1ln212lim(2)lim lim1nn n nn n n nn e e→∞→∞→∞====2.已知21lim5sinxx bx cxπ→++=,求b,c的值解析:考查洛必达法则的应用,已知1limsin0xxπ→=,要使极限存在,则21lim()0xx bx c→++=同时可以利用洛必达法则求解解:根据上述分析得10b c++=21122lim limsin cosx xx bx c x b bx xππππ→→++++==-则25bπ+=-,解得52bπ=--则51cπ=+B组1.求下列极限(1)2222lim(1)(1cos)x x x xxxxe xe e ee x→+-+--(2)2lim(arctan)xxxπ→+∞⋅(3)1lnlim(cot)xxx+→(4)1111lim()x x xxxa b ca b c+++→++++(5)1limln1xxx xx x→--+(6)11112limnxx x xnxa a an→∞⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦L,其中12,,,0na a a>L解析:考查极限的求解,求解极限的方法包括洛必达法则、等价无穷小、两个重要极限还可以利用换元求解,下面结合实例说明解:(1)型极限的求解,先化简再利用洛必达法则求解222200023220022(2)(2)(23)(3)lim lim lim11(1)(1cos)22(44)(4)(84)(5)1lim lim333x x x x x x x xxx x xx x x xx xxe xe e e x e x e x e x ee x x x xx e x e x e x ex→→→→→+-+-++-++==--⋅-++-++===(2)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解222221221arctan ln arctan lim lim121ln arctan 12limarctan 12lim (arctan )lim x x x xx x x xx xx x x x x x x eeeeeππππππ→+∞→+∞→+∞⋅+⋅⋅-⋅→+∞→+∞-⋅-+⋅=====(3)0∞型极限的求解,先化简为型极限,再利用洛必达法则求解00csc cot cot lim 1ln cot 1lim 1sin ln ln 0lim(cot )lim x x x x x x xxxxxx x x e ee e +→+→++---→→====(4)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111110ln(ln ln ln )1111limln ln ln 1lim()lim ()x x x x x x x x x x a b c a b ca ab bc c x x x a b c a b cxxab cx x a a b b c ca b c a b ca b cab c ee a b cea b c +++++++++→+++++++++++⋅++++→→++++++++==++==(5)型极限的求解,直接利用洛必达法则求解 ln 2ln ln 111121[(ln 1)](ln 1)1limlim limlim211ln 1ln 11x x xx xx xx x x x e x x x e x ex x x x x x x x →→→→++--+-====---+-+- (6)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111122222121111221112111ln ln ln ln 111lim1112lim ln lim lim x x x n n xxxn x x xn x x x a a a a a a n x x x a a a n n a a a nxx x x n nxnx x x a a a a a a eene→∞→∞⎛⎫---⎛⎫ ⎪⋅⋅+⋅⋅++⋅⋅⎛⎫⎪ ⎪⎪+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++ ⎪⎝⎭⎪⎪⎝⎭⎝⎭-→∞→∞⋅+⎡⎤+++⎢⎥==⎢⎥⎢⎥⎣⎦=L L L L 112ln ln 12x x n n a a a na a a ⎛⎫ ⎪⋅++⋅ ⎪⎝⎭=L L 2.评论函数1(1),0()0,0xx x f x e x ⎧⎡⎤+⎪⎢⎥>⎪⎢⎥=⎨⎢⎥⎣⎦⎪⎪≤⎩在点0x =处的连续性解析:考查函数的连续性,只需证明0(0)lim ()x f f x →=解:已知(0)0f =01ln(1)lim00(1)1lim ()lim 1x x xxx x x f x e e e+→+++→→+==⋅=则函数在点0x =处不连续性。

重庆大学高数(工学下)期末试题一(含答案)

重庆大学高数(工学下)期末试题一(含答案)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。

重大社2024《高等数学》教学课件高数复习

重大社2024《高等数学》教学课件高数复习

D. 2
D. (2xln x x)dx
1.
lim
n
3n2 5n 1 2n2 n 6 =
(D

A. 1
B. 0
C.
6
e e 1
2. lim(1+2x)3x ( B )
lim 2 x 1 x0 3 x
2 3
x0
D. 3 2
A.
e
3 2
B.
e
2 3
3. 设 y 2x3 10 , 则 y(x) ( C
11.[cu(x)] cu(x) 或cu;
12. d(c) 0 1 dx
13. d loga x x ln a
14.
1 x
dx
ln x C
15. (5x2 x 1)dx
; ; ;
3 5
;53
x3
1 2
x2
x
C
三、计算题(本大题共4个小题,每小题10分,共40分,请写出必要的过程)
11.求下列极限的值
x 3 1 的定义域是( A
3 x
)3x
3 x
0 0
B. 3,3
C. 3,3
x 3 x 3
D. 3,3
2.
lim(1
x
2 )(3 x
5 x
6 x2
)
(
A
)
A. 3
B. 0
3. 函数 y ln x2 , 则 dy ( C
①②
C. 1
)y
1 x2
2x
A. 2xdx
B. 2xln xdx
C. 2 dx x
1)
lim
x2
x3 x2
3x2 x

重庆大学高等数学习题3-1

重庆大学高等数学习题3-1

A 组1.验证拉格朗日中值定理对函数32452y x x x =-+-在区间[0,1]上的正确性 解析:考查拉格朗日中值定理的应用,只需在[0,1]内找出一点使得=0y ',证明:已知函数在[0,1]内连续,在(0,1)内可导,则其满足拉格朗日中值定理的两个条件 令()y y x =,则(1)2y =-,(0)2y =-又因为2()12101y x x x '=-+,令[(1)(0)]()(10)y y y x '-=-,即()0y x '=,解得1,21052412x ±==则存在(0,1)ξ∈,使得(1)(0)()(10)y y y ξ'-=-2.证明方程3220x x C -+=在区间[0,1]上不可能有两个不同的实根,其中C 为任意常数 解析:考查罗尔定理的应用,本题可以利用反证法来证明证明:设32()2f x x x C =-+,假设存在两点1x ,2x (12x x >),使得12()()0f x f x == 则在12[,]x x 内,满足罗尔定理,即存在12(,)x x ξ∈,使得()0f ξ'=2()34f x x x '=-,令()0f x '=,解得0x =,x =(不在所设区间内,舍去) 若0ξ=,则1x ,2x 中必有一个不存在,与所设假设不符 则方程3220x x C -+=在区间[0,1]上不可能有两个不同的实根3.若方程10110n n n a x a x a x --+++=L 有一个正根0x x =,证明:方程12011(1)0n n n a nx a n x a ---+-++=L 必有一个小于0x 的正根解析:考查罗尔定理的应用,判断利用哪个中值定理可以通过所得条件得出,设1011()n n n f x a x a x a x --=+++L ,则由已知条件可得0()(0)0f x f ==,这样满足罗尔定理的第三个条件证明:设1011()n n n f x a x a x a x --=+++L ,0()(0)0f x f == 且12011()(1)n n n f x a nx a n x a ---'=+-++L根据罗尔定理可知,存在一点0(0,)x ξ∈,使得()0f ξ'=即12011(1)0n n n a nxa n x a ---+-++=L 必有一个小于0x 的正根4.设2350a b -<,证明:方程532340x ax bx c +++=有唯一的实根解析:考查连续函数的性质,分析题干所给条件,2350a b -<正是判断函数53()234f x x ax bx c =+++导数根的存在性的依据,而lim ()x f x →-∞=-∞,lim ()x f x →+∞=+∞,则可以判断函数的根的唯一性证明:设53()234f x x ax bx c =+++,42()563f x x ax b '=++令2t x =,2()563f t t at b '=++(0t ≥)而222(6)543366012(35)0a b a b a b -⋅⋅=-=-<则2()5630f t t at b '=++=没有实数解,且lim ()x f x →+∞'=+∞因此可得()0f x '>恒成立,方程532340x ax bx c +++=有唯一的实根 5.设0a b >>。

重庆大学出版社高等数学题库参考答案

重庆大学出版社高等数学题库参考答案

第五章不定积分1(直接积分法、换元积分法)一、单选题1.设)(x f 是可导函数,则⎰'))((dx x f 为(A ).A.)(x fB.C x f +)(C.)(x f 'D.C x f +')(2.函数)(x f 的(B )原函数,称为)(x f 的不定积分.A.任意一个B.所有C.唯一D.某一个3.⎰=+=)(,2cos )(x f C x e dx x f x则(A ).A.)2sin 22(cos x x e x -B.C x x e x +-)2sin 22(cosC.x e x 2cosD.x e x2sin4.函数x e x f =)(的不定积分是(B ). A.x e B.c e x + C.x ln D.c x +ln5.函数x x f cos )(=的原函数是(A ). A.c x +sin B.x cos C.x sin - D.c x +-cos6.函数211)(x x f -=的原函数是(A ).A.c x x ++1 B.x x 1- C.32x D.c xx ++12 7.设x 2是)(x f 的一个原函数,则[]='⎰dx x f )((B )A.x 2B.2C.2x D.-28.若ce dx e xx +=⎰,则⎰xd e x22=(A )A.c ex+2 B.c e x + C.c e x +-2 D.c e x +-29.函数x x f sin )(=的原函数是(D ) A.c x +sin B.x cos C.x sin - D.c x +-cos10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=(B )A.)(x fB.0C.)(x FD.)(x f ' 11.函数211)(xx f +=的原函数是(A ) A.c xx +-1B.x x 1-C.32xD.c x x ++1212.函数211)(x x f -=的原函数是(A ) A.c xx ++1 B.x x 1- C.32x D.c x x ++1213.若函数)(x f 、)(x g 在区间),(b a 内可导,且)()(x g x f '=',则(B ) A.)()(x g x f = B.C x g x f +=)()(C.)()(x g x f ≠D.不能确定)(x f 与)(x g 之间的关系 14.若)()(x f x F =',则下列等式成立的是(B ). A.C x f dx x F +='⎰)()( B.⎰+=C x F dx x f )()(C.⎰+=C x f dx x F )()(D.C x F dx x f +='⎰)()(15.经过点)1,0(-,且切线斜率为x 2的曲线方程是(D ). A.2x y = B.2x y -= C.12+=x y D.12-=x y 二.填空题 1.)25ln(2125x d x dx --=-.2.)1(212x d xdx --=.3.C aa dx a xx +=⎰ln .4.设)(x f 是连续函数,则dxx f dx x f d )()(=⎰.5.xx cos 2+的原函数是x x sin 2+.6.]4)3[(21)3(2---=-x d dx x .7.C x xdx +=⎰7sin 717cos .8.)1(ln 3133-=x x a d adx a .9.)3(cos 313sin x d xdx -=.10.C x dx x x +=⎰2ln 21ln .11.C x dx x +=⎰4341.12.)C 41(2222+-=--x x e ddx xe .13.C x xdx x +=⋅⎰2sin 21sin cos .14.C x dx x +=+⎰3arctan 319112. 15.C x x dx x +-=⎰)sin (212sin 2.16.⎰+='C x f dx x f )2(21)2(.17.设⎰+=.)()(C x F dx x f ,若积分曲线通过原点,则常数)0(F C -=.18.)3(arctan 31912x d x dx=+. 19.)(2122x x e d dx xe =.20.已知xx f C x dx x f 2sin )(,sin )(2=+=⎰则.21.设)()()(21x f x F x F 是、的两个不同的原函数,且=-≠)()(,0)(21x F x F x f 则有 C.22.C x x dx x x +-=+-⎰222111 23.Ce dx e xxx +-=⎰1121.24.)1ln(21122-=-x d dx x x .25.若x x f sin )(的导函数是,则)(x f 的原函数为Cx +-sin .26.设)(3x f x 为的一个原函数,则dxx x df 23)(=.27.)2cos 41(812sin x d xdx -=28.x x sin 2+的一个原函数是x x cos 313-.29.)3(cos 33sin x d dx x -=.30.Cx xdx +-=⎰cos ln tan .31.()C x dx x +--=-⎰)21sin(2121cos .32.Cx xdx +=⎰tan sec 2. 33.C x x dx +-=⎰3cot 313sin 2.34.设x 2是)(x f 的一个原函数,则⎰='])([dx x f 2.三.判断题 1.⎰+=cx xdx cos sin (×)2.x x e dx e =⎰(×)3.⎰-=.cos sin x xdx (×)4.⎰+-=cx xdx cos sin (√)5.)21sin()]21[sin(x dx x -=-⎰(×)6.⎰+-=c x xdx sin cos (×)四.计算题1.求不定积分dx x x ⎰+21.解:原式=C x x d x ++=++⎰23222)1(31)1(1212.求不定积分dx x ⎰-31.解:原式=C x +--3ln3.求不定积分⎰+dx e e xx 1.解:原式=C e e d e x x x ++=++⎰)1ln()1(11 4.求不定积分⎰+-dx x x x )3sin 21(.解:原式=C x x x +++ln 3cos 225.求不定积分⎰-dx xe x 2.解:原式=C e x +--221 6.求不定积分dx x x⎰+12.解:原式=C x ++)1ln(2127.求不定积分dx x x ⎰+2)72(.解:原式=C xx x ++⋅+7ln 24914ln 1422ln 24 8.求不定积分⎰+dx x 10)12(.解:原式=C x ++11)12(2219.求不定积分⎰+-dx xx x )1)(1(.解:原式=C x x x x x +-+-221522210.求不定积分⎰xdx 2sin .解:原式=C x x +-2sin 4121 11.求不定积分⎰dx xx 22cos sin1.解:原式=C x x +-cot tan 12.求不定积分dx x ⎰+321.解:原式=C x ++32ln 2113.求不定积分xdx x arctan 112⎰+.解:原式=C x +2)(arctan 21 14.求不定积分⎰-dx x x 4313.解:原式=C x +--41ln 43 15.求不定积分⎰+dx x 2411.解:原式=C x +2arctan 21 16.求不定积分⎰+dx x x)5(3.解:原式=C x x++5ln 5414 17.求不定积分⎰-dx e x5.解:原式=C e x +--551五.应用题1.设一质点作直线运动,已知其加速度为t t a sin 3122-=,如果0=t 时3,500-==s v , 求(1)t v 与的函数关系;(2)t s 与的函数关系.解:32sin 3)(2sin 3)2cos 34()(2cos 34)(cos 34)sin 312()(43,04335,032-++=−−−→−+++=++=++=−−→−++=-=-====⎰⎰t t t t s c t t t dt t t t s t t t v C t t dt t t t v s t v t2.求经过点(0,0),且切线斜率为x 2的曲线方程. 解:20,022x y C x xdx y y x =−−−→−+====⎰3.一物体由静止开始运动,t 秒末的速度是23t (米/秒),问(1)在3秒末物体与出发点之间的距离是多少?(2)物体走完360米需多长时间? 解:设运动方程为:30,032)(3)(t t S C t dt t t S S s t =−−→−+=====⎰(1)当3=t时,27)3(=S (米)(2)当.360360)(33秒=⇒==t t t S4.一曲线过原点且在曲线上每一点),(y x 处的切线斜率等于3x ,求这曲线的方程. 解:40,0434141x y C x dx x y y x =−−−→−+====⎰ 5.已知物体由静止开始作直线运动,经过t 秒时的速度为180360-t (米/秒),求3秒末物体离开出发点的距离. 解:t t t S C t tdt t S s t 180180)(180180180)-60t 3()(20,02-=−−→−+-====⎰.当3=t时,1080)3(=S (米).6.求经过点)1,(e ,且切线斜率为x 1的曲线方程.解:x y C x dx xy y e x ln ln 11,=−−→−+====⎰.7.求经过点(0,0),且切线斜率为211x+的曲线方程.解:x y C x dx x y y x arctan arctan 110,02=−−−→−+=+===⎰.第五章不定积分2一.单选题1.下列分部积分法中,dv u ,选择正确的是(A ).A.⎰==xdxdv x u xdx x 2sin 2sin ,, B.xdxdv u xdx ln ,1,ln ==⎰C.dxx dv e u dx e x x x22,,==--⎰D.xdx dv e u dx xe xx==⎰,,2.⎰⎰-=)(2arctan d 2arctan Axd x x x x .A.x arctan2B.x arctan4C.x arctan2-D.x arctan4-3.=⎰2-4d x x (A).A.C x +2arcsinB.C x +arcsinC.Cx +2arccos D.C x +arccos二.判断题1.分部积分法u v uv v u d d ⎰-=⎰的关键是恰当的选择u 和v d ,使u v d ⎰应比v u d ⎰容易积分.(√)2.若被积函数中含有22a x ±,则可利用三角函数代换法化原积分为三角函数的积分.(√)三.填空题 1.Cx dx x ++=+⎰1211.2.设)(x f 有一原函数⎰+-='Cx dx x f x x x cos )(,sin 则.3.C x x x xdx x +-=⎰2241ln 21ln .4.)3(arcsin 31912x d xdx =-.5.Cx x e dx e x x x ++-=⎰)22(22.6.⎰++-=C x x x xdx x 3sin 913cos 313sin .四.计算题1.求不定积分⎰-dx x x232.解:原式=Cx x d x +--=---⎰2223231)32(321612.求不定积分⎰dxx ex22.解:原式=C x x e x ++-)21(2122 3.求不定积分⎰++dxx x 11.解:C x x C t t dt t t t x +--+=+-=-=+⎰1)1(3232)22(132232原式4.求不定积分⎰+)1(x x dx.解:cx C t dt t t x +=+=+=⎰arctan 2arctan 21222原式5.求不定积分⎰xdxx 2sin .解:原式=C x x x ++-2sin 412cos 21 6.求不定积分⎰+dx e x x 5)2(.解:原式=C x e x ++)59(515 7.求不定积分dxxex⎰-4.解:原式C x e x ++-=-)16141(48.求不定积分⎰++dxx 111.解:原式[]C x x +++-+=)11ln(129.求不定积分⎰+-dxx 1211.解:原式[]C x x +-+++=112ln12-10.求不定积分dxex⎰+11.解:原式=C e e xx +++-+1111ln11.求不定积分⎰xdxxln 2.解:原式C x x +-=)31(ln 313 12.求不定积分dx x x ⎰-1.解:原式C x x +---=)1arctan 1(213.求不定积分⎰---dxx x 22112.解:原式C x x +-=)(arcsin 214.求不定积分⎰dx a x x 2)1,0(≠>a a .解:原式C aa x a x a x++-=)ln 2ln 2ln (32215.求不定积分dxx⎰-2941.解:原式C x +=23arcsin 31 16.求不定积分dxx ⎰sin .解:原式C x x x ++=sin 2cos -217.求不定积分⎰xdx x 3cos .解:原式C x x x ++=3cos 913sin 31 18.求不定积分dxx x ⎰+2.解:原式C x x ++-+=2123)2(4)2(32五.应用题(增加题)第六章定积分一.单选题 1.)(240Ddx x =-⎰A.⎰⎰-+-4220)2()2(dxx dx x B.⎰⎰-+-422)2()2(dxx dx x C.⎰⎰-+-422)2()2(dxx dx x D.⎰⎰-+-422)2()2(dxx dx x2.=⎰a adx x f )((C)A.大于0B.小于0C.等于0D.不能确定 3.⎰⎰--=+1111)()(dx x f dx x f (C)A.大于0B.小于0C.等于0D.不能确定 4.定积分⎰badxx f )(是(D )A.一个原函数B.()x f 的一个原函数C.一个函数族D.一个常数 5.定积分⎰badxx f )(的值的大小取决于(C)A.)(x fB.区间[]b a ,C.)(x f 和[]b a ,D.都不正确 6.定积分⎰badxx f )(的值的大小取决于(C)A.)(x fB.区间[]b a ,C.)(x f 和[]b a , D.无法确定 7.⎰⎰=-3234)()(dx x f dx x f (A)A.⎰42)(dxx f B.⎰24)(dxx f C.⎰43)(dxx f D.⎰32)(dxx f8.下列命题中正确的是(C )(其中)(),(x g x f 均为连续函数) A.在[]b a ,上若)()(x g x f ≠则dxx g dx x f ba ba⎰⎰≠)()( B.⎰⎰≠babadtt f dx x f )()(C.若)()(x g x f ≠,则⎰⎰≠dxx g dx x f )()( D.⎰=badxx f dx x f d )()(9.=⎰dx x f dxd ba )((B) A.)(x f B.0 C.)(x f ' D.)(x F 10.若1)(=x f ,则⎰=badx x f )((C)A.1B.b a -C.a b -D.0 11.定积分⎰badxx f )(是(B )A.任意的常数B.确定的常数C.)(x f 的一个原函数D.)(x f 的全体原函数 12.若⎰=+12)2(dx k x ,则=k (B)A.-1B.1C.1/2D.0 13.=-⎰dx x 5042(C)A.11B.12C.13D.14 二.判断题1.函数在某区间上连续是该函数在该区间上可定积分的必要条件.(×)2.a b dx ba -=⎰0.(×)3.⎰='badx x f 0))((.(×)4.x xdx dx d ba sin sin ⎰=.(×)三.填空题1.设)(x f '在[]b a ,上连续,则)()()(a f b f dx x f b a-='⎰.2.C dx xxx +=⋅⎰6ln 6321. 3.4111022π-=+⎰dx x x .4.ee dx x e x-=⎰2121.5.设⎰⎰==52515)(,3)(dx x f dx x f ,则2)(21-=⎰dx x f .6..0113=⎰-dx x .7.若)(x f 在[]b a ,上连续,且⎰=ba dx x f 0)(,则[]a b dx x f ba-=+⎰1)(.8.由曲线22+=x y ,直线3,1=-=x x 及x 轴围成曲边梯形的面积352)2(312=+=⎰-dx x A . 9..0sin 12=⎰dx x dx d .10.11ln4141=+-⎰-dx xx.11.1)1sin(212=⎰dx xx ππ. 12.32112=⎰-dx x .13.0cos 11⎰-=xdx x .14.利用定积分的几何意义填写定积分的值π41112=-⎰dx x . 15.22sin sin x dt t dx d x⎰=.16..0sin 222=⎰-xdx x .17..0113=⎰-dx x .18. 的值为积分.21ln 1⎰edx x x 19.2)253(22224⎰⎰=++-dx dx x x .20.11-=⎰e dx e x . 21.431=⎰-dx .22.⎰1212ln xdxx 的值的符号为负.四.计算题 1.求定积分.⎰+411xdx 解:原式)32ln 1(2+=2.求定积分⎰-124x dx.解:原式6arcsin 10π==x3.求定积分⎰-+-01)32)(1(dxx x .解:原式21-=4.求定积分dxx⎰--2121211解:原式3arcsin 2121π==-x5.求定积分⎰-+12511x dx 解:原式=2ln 54)511ln(5112=⎥⎦⎤⎢⎣⎡+-x6.求定积分dx x ⎰+9411解:原式[])2ln 1(2)1ln(232+-=-+-=t t7.求定积分dxex⎰-1.解:原式eex1101-=-=- 8.求定积分dxx ⎰212解:原式3712313==x 9.求定积分θθπd ⎰402tan 解:原式[]4104tan ππθθ-=-=10.求定积分.dx xx ⎰+402sin 12sin π解:原式232ln 04)sin 1ln(=+=πx 11.求定积分dxx x ⎰-ππ23sin .解:原式=012.求定积分()dxxx ⎰--2121221arcsin .解:原式=324)(arcsin 31321213π=-x 13.求定积分dxx x ⎰+911.解:原式2ln 213)1ln(2=+=x14.求定积分dxex x⎰12.解:原式201)22(2-=+-=e x x ex15.求定积分⎰+104)1(x dx 解:原式24701)1(31-3=+=-x 16.求定积分dxxe x ⎰2.解:原式102)1(2+=-=e x ex17.求定积分⎰-1dxxe x .解:原式e x ex2101)1(--=+=-18.求定积分dx x ⎰⎪⎭⎫⎝⎛+πππ33sin .解:原式0)3cos(3=+-=πππx19.已知⎩⎨⎧≤<-≤≤=31,210,)(2x x x x x f ,计算⎰20)(dx x f .解:原式⎰⎰-=-+=2110261)2(dx x dx x 20.求定积分()dx x x +⎰194.解:原式627149)2132(223=+=x x21.求定积分⎰1arctan xdxx .解:原式=214)arctan arctan (21102-=⎥⎦⎤⎢⎣⎡+-πx x x x22.求定积分⎰1arcsin xdx .解:原式1201)1arcsin (2-=-+=πx x x23.求定积分⎰262cos ππudu.解:原式836)2sin 21(2162-=+=πππu u 24.求定积分()dx x x x ⎰+2sin π.解:原式18sin cos 2122+=⎥⎦⎤⎢⎣⎡+-=ππx x x x25.求定积分dx x x ⎰-121221.解:原式[]41cot sin 24πππ-=--=t t t x26.求定积分dx x x 1sin 1212⎰ππ.解:原式11cos12==ππx27.求定积分dx x ⎰+11210.解:原式10ln 4950110ln 21012==+x 28.求定积分xdxx ⎰23cos sin π解:原式410cos 41-24==πx29.求定积分⎰124dx x x .解:原式10ln 710ln 810=⎥⎦⎤⎢⎣⎡=x 30.求定积分dx x x e⎰-1ln 1.解:原式21ln 21ln 12=⎥⎦⎤⎢⎣⎡-=ex x31.求定积分dxx x ⎰+31)1(1.解:原式[]6arctan 2312π==t t x32.求定积分xdxx cos sin 23⎰π.解:原式410sin 4124==πx33.求定积分⎰--1321dx x .解:原式[]5ln 2ln -13=-=-x34.求定积分dx x x x ⎰++21222)1(12解:原式4212arctan 1arctan 21π-+=⎥⎦⎤⎢⎣⎡-=x x 35.求定积分⎰+21ln 1e x x dx.解:原式[])13(2ln 1221-=+=e x36.求定积分dxe x x ⎰22.解:原式)1(21214202-=⎥⎦⎤⎢⎣⎡=e e x37.求定积分dxx ⎰20sin π.解:原式10cos 2=-=πx38.求定积分⎰++10)32)(1(dx x x .解:原式2112521032=⎥⎦⎤⎢⎣⎡++=x x x39.求定积分dttet ⎰-1022.解:原式212112---=⎥⎥⎦⎤⎢⎢⎣⎡-=e e t 40.求定积分dx x x ⎰+102212.解:原式[]22)arctan (210π-=-=x x41.求定积分⎰πsin xdxx .解:原式[]ππ=+-=0sin cos xx x42.求定积分dx x xe⎰12ln .解:原式311ln 313==e x43.求定积分⎰2cos sin 3πxdxx .解:原式230sin 2322==πx44.求定积分()⎰ωπωω20sin 为常数tdt t 解:原式2022sin 1cos 12ωπωωωωωω-=⎥⎦⎤⎢⎣⎡+-=t t t45.求定积分dxx ⎰230cos π.解:原式[][]3sin sin 23220=-=πππx x46.求定积分dxx ⎰--2221.解:原式43131231213113123=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=---x x x x x x47.求定积分⎰+331211dx x .解:原式[]6arctan 331π==x48.求定积分⎰+161 4x x dx .解:原式23ln 2)1ln(2142124+=⎥⎦⎤⎢⎣⎡++-=t t t t x五.应用题1.已知生产某产品x (百台)时,总收入R 的变化率x R -='8(万元/百台),求产量从从1(百台)增加到3(百台)时,总收入的增加量.解:由已知x R -='8得总收入的增加量为:12218)8(R3131312=⎥⎦⎤⎢⎣⎡-=-='=⎰⎰x x dx x dx R2.试描画出定积分⎰ππ2cos xdx所表示的图形面积,并计算其面积.解:[]1sin cos 22=-=-=⎰ππππx xdx S .(图形略)3.试描画出定积分⎰ππ2sin xdx 所表示的面积图形,并计算其面积.解:[]1cos sin 22=-==⎰ππππx xdx S .(图形略)4.计算曲线3x y =,直线3,2=-=x x 及x 轴所围成的曲边梯形面积.解:49741413402433023=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-=--⎰⎰x x dx x dx x S.(图形略) 5.计算抛物线24x y -=与x 轴所围成的图形面积. 解:24x y -=与x 轴的交点为(-2,0),(2,0)6.已知生产某产品x (百台)时,总成本C 的变化率为x C +='2(万元/百台),求产量从1(百台)增加到3(百台)时总成本的增加量.解:.8212)2(31312=⎥⎦⎤⎢⎣⎡+=+=⎰x x dx x C7.计算函数x y sin 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4cos 222sin 22020=-==⎰x xdxy8.计算函数x y cos 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4sin 222cos 2202===⎰x xdxy第七章定积分的应用一.单选题1.变力使)(x f 物体由],[b a 内的任一闭区间]d ,[x x x +的左端点x 到右端点x x d +所做功的近似值为(C).A.)(x df -B.)(dx fC.dx x f )(D.dx x f )(- 2.一物体受连续的变力)(x F 作用,沿力的方向作直线运动,则物体从a x =运动到b x =,变力所做的功为(A).A.⎰b a x x F d )( B.⎰ab x x F d )( C.⎰-ab x x F d )( D.⎰-ba x x F d )(3.将曲线2x y =与x 轴和直线2=x 所围成的平面图形绕y 轴旋转所得的旋转体的体积可表示为=y V (C ).A.dxx ⎰24π B.⎰4ydyπ C.()dyy ⎰-44π D.()dyy ⎰+44π二.判断题 1.定积分⎰badxx f )(反映在几何意义上是一块[a,b]上的面积.(╳)2.已知边际利润求总利润函数可用定积分方法.(√) 三.填空题 1.计算曲线x y sin =与曲线2π=x 及0=y 所围成的平面图形的面积可用定积分表示为⎰=2sin πdxA .2.抛物线3x y =与x 轴和直线2=x 围成的图形面积为⎰23dxx .3.由曲线2x y =与直线1=x 及x 轴所围成的平面图形,绕x 轴旋转所的旋转体的体积可用定积分表示为⎰=14dxx V x π.四.计算题1.求抛物线3x y =与x 轴和直线3=x 围成的图形面积.2.把抛物线ax y 42=及直线)0(>=b b x 所围成的图形绕x 轴旋转,计算所得旋转体的体积.3.一边长为a m 的正方形薄板垂直放入水中,使该薄板的上边距水面1m ,试求该薄板的一侧所受的水的压力(水的密度为33kg/m 10,g 取2m/s 10).4.计算抛物线2x y =与直线轴和x x x 3,1=-=所围成的平面图形绕x 轴旋转所得到的旋转体体积.5.由22x y x y ==和所围成的图形绕x 轴旋转而成的旋转体体积.6.求由曲线x y 1=与直线x y =及2=x 所围成的图形的面积.7.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积.8.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.9.用定积分求底圆半径为r ,高为h 的圆锥体的体积.10.计算曲线3x y =和x y =所围成的图形面积.11.计算抛物线24x y -=与x 轴所围成的图形面积.12.求曲线2x y =与x y =所围成的图形的面积。

重庆大学---高等数学总复习总结资料

重庆大学---高等数学总复习总结资料

高等数学常用公式导数公式:基本积分表:axxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(sec)(22='='⋅-='⋅='-='='222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxx+-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==CaxxaxdxCshxchxdxCchxshxdxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxCtgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxaxaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxCxtgxdx+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsinln21ln211csclncscseclnsecsinlncosln22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-CaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式:和差角公式: 和差化积公式:倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx xx xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg 反三角函数性质: arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

重庆大学高等数学习题3-5

重庆大学高等数学习题3-5

A 组1.求下列函数的极值:(1)(y x =-; (2)422y x x =-+解析:考查函数的极值,极值点可能为两类点,一类是驻点,一类是无定义点,求出这两类点后,再利用极值的两个充分条件进行判断解:(1)y '==0y '=,驻点1x =,且存在不可导点1x =-因为当(1,1)x δ∈---时,()0f x '>;(1,1)x δ∈--+,()0f x '<当(1,1)x δ∈-时,()0f x '<;(1,1)x δ∈+,()0f x '>则极大值(1)0f -=,极小值(1)f =-(2)32444(1)y x x x x '=-+=-- 0y '=,驻点0x =,1x =±2124y x ''=-+ 因为180x y =±''=-<,040x y =''=>则极大值(1)1f -=,(1)1f -=,极小值(0)0f =2.设函数1()sin sin 33f x a x x =+在点3x π=处取得极值,求参数a ,并求出其极值 解析:考查函数的极值,根据极值存在的必要条件,对于可导函数,极值点一定为驻点,即()03f π'= 解:()cos cos3f x a x x '=+,()1032a f π'=-=,解得2a =()2sin 3sin3f x x x ''=--,因为()03f π''=<则存在极大值()3f π=3.若函数221()1ax bx a f x x +++=+在点x =(0f =,求a 与b 的值,再求函数()f x 的极大值解析:已知极值点和极值,求解函数中的未知量,即可以得到两个方程,求解出两个未知数 解:2222222(2)(1)2(1)2()(1)(1)ax b x x ax bx a x bx b f x x x ++-+++--+'==++因为函数在点x =(0f '=,又因为(0f =,得13)0161(31)04b b a a ⎧+=⎪⎪⎨⎪-++=⎪⎩,解得12a b ⎧=⎪⎨⎪=⎩此时2222221)(()(1)(1)x x f x x x --+'==++ 令()0f x '=,可得另一个驻点x =因为当x δ∈时,()0f x '<;)x δ∈+,()0f x '>则存在极大值2f = 4.试求a ,b 的值,使得函数432()2432x a b f x x x x =+++在点2x =-处取得极值,在x ξ=(2ξ≠-)处有()0f ξ'=,但()f x 在点x ξ=处不取得极值解析:求解函数中的未知量,分析题干解:32()2f x x ax bx '=+++,2()32f x x ax b ''=++观察()f x ',已知函数()0f x '=至少存在两个根2x =-,x ξ=,根据三次多项式解的个数,还存在第三个根,设x ζ=32()(2)()()(2)(22)2f x x x x x x x ξζξζξζξζξζ'=+--=+--+--+则22222a b ξζξζξζξζ=--⎧⎪=--⎨⎪=⎩,消去ζ得12212a b ξξξξ⎧=--⎪⎪⎨⎪=--⎪⎩又因为()f x 在点x ξ=处不取得极值,则()0f ξ''=,即2320a b ξξ++= 综上解得2(2)(1)0ξξξ+-=,即1ξ=±,2ξ=-(舍去)当1ξ=-时,解得45a b =⎧⎨=⎩;当1ξ=时,解得03a b =⎧⎨=-⎩5.求下列函数在所给定区间上的最大值和最小值(1)4225y x x =-+,[2,2]x ∈-;(2)y x =+[5,1]x ∈-解析:考查最值的求解,最值点一般为极值点或者定义域端点,因此只需求出这几点的函数值,然后比较求解解:(1)344y x x '=-,2124y x ''=-令0y '=,得0x =,1x =± 因为180x y =±''=>,040x y =''=-<则极大值为(0)5f =,极小值为(1)4f ±=,且(2)13f ±=则函数在所给定区间上的最大值为(2)13f ±=,最小值(1)4f ±=(2)1y '== 令0y '=,得34x =因为(5)5f -=-+35()44f =,(1)1f = 则函数在所给定区间上的最大值为35()44f =,最小值(5)5f -=-+6.设可导函数()y f x =由方程3233232x xy y -+=所确定,求()f x 的极值解析:考查隐函数的极值求解,和一般的极值求解步骤是一样的,求导、求驻点、确定极值的类型解:对方程3233232x xy y -+=两边同时对x 求导,得 22233660x y xyy y y ''--+=,解得2222()x y y xy y -'=- 令0y '=,得x y =±当x y =时,无解;当x y =-时带入方程3233232x xy y -+=中,解得2x =-,此时2y =, 对方程2222()x y y xy y -'=-两边同时对x 求导,得 222222222222(22)()2()()()(2)4()2()x yy xy y x y xy y x yy x y y xy yy y xy y xy y xy y ''''-------+-''==---- 2,2104x y y =-=''=>,则存在极小值(2)2f -=,不存在极大值 7.将长为a 的铁丝切成两段,一段围成正方形,另一段围成圆形,问当这两段铁丝各为多长时,正方形与圆形面积之和最小?解析:考查最值的实际性应用,解题步骤为分析题干,设变量列数学表达式,求最值解:设围成正方形的铁丝长为x ,则围成圆形的铁丝长为a x -,正方形与圆形面积之和为()y f x = 则2222()()()()4244x a x x a x f x πππ--=+=+(0x >) (1)()222x a x x a f x πππ-+-'=-=,1()2f x ππ+''= ()0f x '=,解得1a x π=+ 因为()01a f π''>+,则存在极小值()1a f π+,本题中即为最小值 因此当围成正方形的铁丝长为1a π+,则围成圆形的铁丝长为1a ππ+,正方形与圆形面积之和最小B 组1.求下列函数的极值:(1)cos x y e x =; (2)1x y x =解析:考查函数的极值,先求驻点或无定义点,后判断极值的类型解:(1)(cos sin )x y x x e '=-,2sin x y xe ''=-令0y '=,得4x k ππ=+24240k x k y ππππ+=+''=<,(21)4(21)40k x k y ππππ++=++''=>则存在极大值24242k x k y ππππ+=+=,极小值24(21)42k x k y ππππ+=++= (2)121ln x x y x x -'=⋅ 令0y '=,得x e =当x e >时,0y '<;当x e <时,0y '> 则存在极大值1e x e ye == 2.证明不等式(1)若2x ≤,则332x x -≤;(2)若01x ≤≤,且1p >,则11(1)12p p p x x -≤+-≤解析:考查不等式的证明,利用函数的导数证明,其关键在于判断函数的单调性,所以首先构造函数,如题(1)可以设3()3f x x x =-,然后判断在给定区间的取值范围证明:(1)设3()3f x x x =-([2,2]x ∈-) 2()33f x x '=-,()60f x x ''=-<令()0f x '=,解得驻点为1x =±,因为(1)0f ''<,()0f x ''>,则存在极大值(1)2f =,极小值(1)2f -=-而(2)2f -=,(2)2f =-,则函数()f x 的最大值为2,最小值为2- 则332x x -≤(2)设()(1)p pf x x x =+-([0,1]x ∈) 1111()(1)[(1)]p p p p f x px p x p x x ----'=--=--当1x x >-,即112x ≥>时,11(1)0p p x x ---->,即()0f x '> 当1x x <-,即102x >≥时,11(1)0p p x x ----<,即()0f x '< 则存在极小值111()22p f -=,且(0)(1)1f f == 又因为11112112p p p -->⇒>⇒<即函数()f x 的最大值为1,最小值为112p - 则11(1)12p p p x x -≤+-≤3.讨论方程ln x ax =的实根个数,其中0a >解析:考查函数根的个数,可以设函数()ln f x x ax =-,现在本题的关键就在于弄清楚当a 取不同的值,函数的取值范围和走势解:设函数()ln f x x ax =-((0,)x ∈+∞)11()ax f x a x x -'=-=,21()f x x''=- 令()0f x '=,解得驻点1x a =,则存在极大值1()ln 1f a a=-- 且00lim ()lim(ln )x x f x x ax →→=-=-∞,lim ()lim (ln )x x f x x ax →+∞→+∞=-=-∞ (因为ln 1lim lim 0x x x ax ax→+∞→+∞==) 即在1(0,)a 上函数为单调递增的,在1[,)a +∞上函数为单调递减的当ln 10a --<,即1a e<时,函数()0f x =无界,即ln x ax =无实根当ln 10a --=,即1a e=时,即ln x ax =有一个实根 当ln 10a -->,即1a e >时,即ln x ax =有两个实根 4.证明:如果函数()f x 在0x x =点处具有n 阶连续的导数,且(1)()0000()0,()0,,()0,()0n n f x f x f x f x -'''===≠L则(1)当n 为奇数时,0x x =不是极值点;(2)当n 为偶数时,0x x =是极值点,且当()0()0n f x <时,0x x =是极大值点;当()0()0n f x >时,0x x =是极小值点(3)利用上述结果求函数43()345f x x x =-+的极值解析:综合题,根据题干可以想到泰勒公式,因此可以先在0x x =处进行n 阶泰勒展开,然后进行讨论证明:(1)对函数()f x 在0x x =处进行n 阶泰勒展开,得 ()000000()0000()()()()()()[()]!()()()[()]!n n n n n n f x f x f x f x x x x x o x x n f x f x x x o x x n '=+-++-+-=+-+-L 则()10000()()()()!n n f x f x f x x x x x n --≈-- 当n 为奇数时,00()()f x f x x x --在0x 的去心领域内不变号,即不存在极值点 (2)当n 为偶数时,00()()f x f x x x --在0x 的去心领域内变号,即存在极值点 当()0()0n f x <时当0x x <时,00()()0f x f x x x ->-;当0x x >时,00()()0f x f x x x -<- 即0x x =是极大值点同理可得,当()0()0n f x >时,0x x =是极小值点(3)43()345f x x x =-+,32()1212f x x x '=-,2()3624f x x x ''=-()7224f x x '''=-令()0f x '=,得驻点0x =,1x =当0x =时,(0)0f '=,(0)0f ''=,(0)240f ''=-<即3n =为奇数,则0x =不是极值点当1x =时,(1)0f '=,(1)120f ''=>即2n =为偶数,则1x =是极值点,且为极小值,即存在极小值(1)4f =5.当实数a 满足什么条件时方程2xe x a -=有实根?解析:考查方程的根的情况,和题3类似,转化为求解函数的最值问题解:设()2x f x e x a =-- (,)x ∈-∞+∞ ()2x f x e '=-,()0x f x e ''=>令()0f x '=,解得驻点ln 2x =则存在极小值(ln 2)22ln 2f a =--且当ln 2x <时,函数()f x 为递减的;当ln 2x >时,函数()f x 为递增的则当(ln 2)22ln 20f a =--≤,即22ln 2a ≥-时()0f x =,即方程2x e x a -=有实根6.要做一个体积是常量V 的有盖圆柱形铁桶,问底半径r 为多大时,铁桶表面积才最小(即用料最省)?并求此最小表面积解析:考查最值的实际应用,列出方程求解最值即可,要注意自变量的取值范围解:设表面积为()S S r =,铁桶的高为h ,已知2V r h π= 则222()222V S r rh r r rπππ=+=+ (0,)r ∈+∞ 22()4V S r r r π'=-+,34()4V S r r π''=+令()0S r '=,解得驻点r =存在极小值322V rSrπ+===h=则当底直径与高相等时,铁桶表面积才最小,此时最小表面积为7.设有一小圆锥内接于确定的大圆锥内,小圆锥的顶点恰好在大圆锥底面中心,且它们的轴线重合,试证明:当小圆锥的高等于大圆锥高的三分之一时,小圆锥体积最小解析:考查最值的实际应用,本题涉及立体几何的知识,可以画图理解,然后设变量求最值证明:设小圆锥和大圆锥的底面半径分别为r,R;高分别为h,H。

高等数学1-2答题上传(作业) 重庆大学练习库及答案

高等数学1-2答题上传(作业)  重庆大学练习库及答案

1、函数,若在处连续,则=______
正确答案是:0
2、设曲线过,且其上任意点的切线斜率为,则该曲线的方程是__________ 正确答案是:
3、设则 __________。

正确答案是:36
4、设,则______
正确答案是:
5、已知在区间上单调递减,则的单调递减区间是______ 。

正确答案是:
6、=______
正确答案是:1
四、计算题(共 2 题、0 / 16 分 )
1、利用基本积分公式及性质求积分。

正确答案是:原式=
2、求。

正确答案是:=ln 1-ln 2=-ln 2.
牛顿-莱布尼兹公式
1、验证拉格朗日定理对函数在区间[0,1]上的正确性.
正确答案是:
因为在[0,1]上连续,在(0,1)内可导,满足拉格朗日定理的条件. 由得
解得,即存在使得拉格朗日定理的结论成立.
六、证明题(共 1 题、0 / 20 分 )
1、利用极限存在准则证明:。

正确答案是:∵
且,,由夹逼定理知
用夹逼准则。

重庆大学高等数学习题3-8

重庆大学高等数学习题3-8

A 组1.计算等边双曲线1xy =在点(1,1)处的曲率解析:考查曲线某点的曲率,所给函数为隐函数,可以利用直角坐标方程的曲率公式计算 解:1y x =,则21y x '=-,32y x''= 333332242222221[1()][1()](1)y x x k y x x''==='++-+ 当1x =,1y =时,曲率为k =2.求出抛物线2y ax bx c =++(0a ≠)的最大曲率解析:考查曲率的最值,首先要求出曲率的函数表达式,然后就转化为求解函数最值问题 解:函数的定义域为(,)-∞+∞,设()k f x =2y ax b '=+,2y a ''=3322222()[1()][1(2)]y a k f x y ax b ''==='+++23322(2)2()[1(2)]a ax b f x ax b -⋅+'==++()0f x '=,2b x a=-当2b x a >-时,0k <;当2b x a<-时,0k > 则在2bx a=-处为极大值,此时224bx ab yc a=-=-则在抛物线的顶点2(,)24b b c a a--取得最大曲率22b x ak a =-=3.求抛物线24y x =上点(1,2)P 处的曲率半径解析:考查曲线某点的曲率,所给函数为隐函数,可以先求出一阶和二阶导数,然后根据直角坐标方程的曲率公式计算解:对方程24y x =两边同时对x 求导,得24yy '=,解得2y y'=又对上述方程求导,得2324y y y y'-''==- 则曲率33322224()2[1()][1()]y y k f x y y''==='++,28y k ==曲率半径为1p k==B 组1.求曲线3cos x a t =,3sin y a t =在点0t t =处的曲率解析:考查参数方程曲率求解,按照曲率求解解:2()3cos sin x t a t t '=-,2()3sin cos y t a t t '=23()3[2cos sin cos ]x t a t t t ''=--+,23()3[2sin cos sin ]y t a t t t ''=-32222242422442322424222223()()()(){[()][()]}9(2sin cos cos sin )9(sin cos 2sin cos )(9sin cos 9sin cos )9sin cos 123sin cos 3sin 2(3sin cos )x t y t x t y t k x t y t a t t t t a t t t t a t t a t t a t t a t t a ta t t ''''''-=''+--+-=+===在点0t t =处的曲率为023sin 2k a t =2.求对数螺线n r ae θ=(0a >,0n >)在点(,0)a 处的曲率解析:考查曲率的求解,本题告诉的是对数螺线,可以化为参数方程再求解解:化为参数方程为cos cos sin sin n n x r n ae n y r n ae n θθθθθθ⎧==⎪⎨==⎪⎩,在点(,0)a 处,0r a θ=⎧⎨=⎩ 则()(cos sin )n x ane n n θθθθ'=-,()(sin cos )n y ane n n θθθθ'=+2()[(cos sin )(sin cos )]2sin n n n x an ne n n e n n n n an e n θθθθθθθθθ''=-+--=-2()[(sin cos )(cos sin )]2cos n n n y an ne n n e n n n n an e n θθθθθθθθθ''=++-=3222232232322222222223232222()()()(){[()][()]}2cos(cos sin)2sin(sin cos){(cos sin)(sin cos)}2(2)n nn nnnx y x ykx ya n e n n n a n e n n na n e n n a n e n na n ea n eθθθθθθθθθθθθθθθθθθθθθθ''''''-=''+-++=-++==3.证明:曲线xy acha=在点(,)x y处的曲率半径为2ya解析:考查曲率的求解,本题告诉的是双曲余弦函数,其中2x xe echx-+=,则本题可以利用直角坐标方程的曲率公式求解证明:已知()2x xa aay e e-=+111()()22x x x xa a a aay e e e ea a--'=-=-,1111()()22x x x xa a a ay e e e ea a a--''=+=+则曲率为3322221()21[1()][1()]4x xa ax xa ae eayky e e--+''=='++-因为2x xa aye ea-+=,22224()()44x x x xa a a aye e e ea---=+-=-则3322222222121214[1(4)]()4yy aa aka yy ya a⋅===+-曲率半径为21ypk a==。

重庆大学高数(下)期末试题11(含答案)

重庆大学高数(下)期末试题11(含答案)

重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分一、 选择题(每小题3分,共18分)1. 设,yu xy x =+则22u x ∂=∂__________.答案:32.y x难度等级:1;知识点:偏导数.2. 已知级数1nn n a x ∞=∑满足11lim ,3n n na a +→∞=且lim 2,n n n ab →∞=则级数1n n n b x ∞=∑的收敛半径为__________.答案:3.难度等级:2;知识点:幂级数分析:1111111limlim 2, 3.233n n n n n n n n n n b b a a R b a a b +++→∞→∞+==⨯⨯== 3. 若曲线上任一点(,)x y 处的切线斜率等于(1),yx-+且过点(2,1),则该曲线方程是__________.答案:14.2y x x =-+难度等级:2;知识点:一阶线性微分方程4. 设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)__________.Lxy y dx x x dy -+-=⎰答案:18.π-难度等级:2;知识点:格林公式分析:利用格林公式可化为被积函数为2-的二重积分,而积分区域面积为9,π故得.5. 设()f t 具有连续导数, (0)0,(0)1,f f '=={}2222(,,)|,x y z x y z t Ω=++≤则1lim40I f d t t V π==⎰⎰⎰+Ω→__________. 答案:1.命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密难度等级:2;知识点:三重积分6. 求以向量23a m n =+和4b m n =-为边的平行四边形的面积为 ,其中,m n 是互相垂直的单位向量. 答案:11.难度等级:2;知识点:向量代数.分析:为了便于计算,令,m i n j ==,则23a i j =+,4b i j =-,230(0,0,11),140i j ka b ⨯==--平行四边形的面积为20011a b ⨯=+=二、填空题(每小题3分,共18分)7. 设非零向量,,a b c 满足条件0a b c ++=,则a b ⨯().=(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯ 答案:(B).难度等级:1;知识点:向量代数分析:在0a b c ++=的两边左乘以b得到()0,b a b c b ⨯++=⨯0,b a b b b c ⨯+⨯+⨯=即0.a b b c -⨯+⨯=于是.a b b c ⨯=⨯8. 设函数z f x y =(,)在点(,)x y 00处沿任何方向有方向导数,则z f x y =(,)在点(,)x y 00处().(A)偏导数存在(B)可微 (C)偏导数不一定存在 (D)偏导数连续 答案:(C).难度等级:2;知识点:偏导数与方向导数分析:函数z =(0,0)处沿任何方向的方向导数均为1,但偏导数不存在,所以应选(C).9. 微分方程22x y y '''=的通解是().(A)1221ln(1)C x y x C C -=--+ (B) 1211ln(1)C x x y C C C -=--+ (C)12211ln(1)C x x y C C C -=-+ (D) 12211ln(1)C x x y C C C -=--+ 答案: (D).难度等级:2;知识点:可降阶微分方程分析:方程为二阶非线性方程.令,u y '=则方程降为一阶方程22,x u u '=这是变量可分离方程.分离变量得22,du dxu x=积分得111.C u x =+将u y '=代入并积分可得12211,ln(1)C x x y C C C -=--+故应选(D).10.曲线2,x t y z t ===在点(4,8,16)处的法平面方程为().(A) 8132x y z --=- (B) 8140x y z ++= (C)x-y+8z=124 (D) 8116x y z +-=答案:(B).难度等级:1;知识点:多元微分学在几何上的应用 分析:法平面的法向量就是曲线的切向量,为(1,1,8),n =所以法平面方程为:(4)(8)8(16)0.x y z -+-+-=即 8140.x y z ++= 与(A)、(B)、(C)、(D)比较后知,应选B).11. 设有一分布非均匀的曲面,∑其面密度为(,,),x y z ρ则曲面∑对x 轴的转动惯量为().(A)xdS ∑⎰⎰ (B)(,,)x x y z dS ρ∑⎰⎰(C)2x dS ∑⎰⎰ (D)22()(,,)y z x y z dS ρ∑+⎰⎰答案:(D).难度等级:1;知识点:曲面积分的应用分析:A,C 明显不对,B 被积函数不对,D 是转动惯量. 12. 设流速场{0,0,1},v =则流过球面2222x y z R ++=的流量值为().(A)0 (B)24R π (C)334R π (D)1 答案:(A).难度等级:2;知识点:第二型曲面积分的应用.分析:通量00.dxdy dV ∑ΩΦ===⎰⎰⎰⎰⎰三、 计算题(每小题6分,共24分)13. 求微分方程3dy y dx x y =+的通解. 难度等级:2;知识点:一阶线性微分方程.分析 方程为一阶非线性方程,需变形为一阶线性方程求解.解 方程改写为21dx x y dy y-=, 这是关于()x x y =的一阶线性非齐次方程,故通解为2()dydyyyx ey edy C -⎰⎰=+⎰ 21()2y y C =+即32y x Cy =+.14. 设(,)z z x y =由方程(,)0f y x yz -=所确定,其中f 具有二阶连续偏导数,求22zx∂∂.难度等级:2;知识点:隐函数的高阶偏导数. 分析 由方程(,,)0F x y z =所确定的隐函数的偏导数xzFz x F ∂=-∂,求出zx∂∂后再对x 求偏导数即可得22z x ∂∂.解11221f f z x yf y f -∂=-=∂ 21112221221222()()1z zf yf f f yf f z x x x y f ∂∂-+--+∂∂∂=⋅∂ 211121221232222f f f f fyf yf yf=-+-15.将函数()ln(f x x =+展成关于x 的幂级数. 难度等级:2;知识点:函数展开成幂级数分析:有对数,反三角函数需要求导后展开,然后逐项积分解:()f x '====0(21)!!(1).(2)!!n nn n x n ∞=-=-∑20(21)!!(),.(2)!!n n n f x x x R n ∞=-'⇒==∈∑ 21(21)!!()(1),.(2)!!21n knn n x f x dx x R n n +∞=-'⇒=-∈+∑⎰21(21)!!()(1),.(21)(2)!!nn n n f x x x R n n ∞+=-⇒=-∈+∑16. 计算2232(()(2),xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰其中∑为上半球体0z ≤≤表面的外侧.难度等级:2;知识点:高斯公式分析:题设曲面为封闭曲面,利用高斯公式,再用球面坐标化为三次积分.解: 2232(()(2)xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰222()x y z dxdydz Ω=++⎰⎰⎰222205sin 2.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17. 设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求函数),(y x z z =的极值点和极值.难度等级:3;知识点:多元函数极值解:方程0182106222=+--+-z yz y xy x 两边分别对,x y 求偏导数得到26220,(1)6202220.(2)x x y y x y yz zz x y z yz zz ---=⎧⎪⎨-+---=⎪⎩令00x yz z =⎧⎪⎨=⎪⎩得260,62020x y x y z -=⎧⎨-+-=⎩即3.x yz y =⎧⎨=⎩ 代入方程0182106222=+--+-z yz y xy x 得 3.y =±因此有两个驻点(9,3),(9,3).--相应的函数值为3, 3.-方程(1),(2)两边再次分别对,x y 求偏导数得到22222()20(3)622220(4)20422()20.(5)xx x xxx xy y x xy y yy y yy yz z zz z yz z z zz z yz z zz ⎧---=⎪⎪-----=⎨⎪----=⎪⎩将9,3,3,0,0x y x y z z z =====代入(3),(4),(5)得到21150,,,0.623xx xy yy A z B z C z AC B ==>==-==->故点(9,3)是(,)z z x y =的极小值点,极小值(9,3) 3.z = 同样将9,3,3,0,0x y x y z z z =-=-=-==代入(3),(4),(5)得到 21150,,,0.623xx xy yy A z B z C z AC B ==-<====--> 故点(9,3)--是(,)z z x y =的极大值点,极大值(9,3) 3.z --=-18. 计算23,ydx xzdy yz dz Γ-+⎰其中Γ为圆周222, 2.x y z z +==若从z 轴的正向看去,这圆周是取逆时针方向.难度等级:2,知识点:斯托克斯公式,曲面积分的概念,二重积分的性质分析:曲线的参数方程不易写出,积分路径为闭,用斯托克斯公式化为对面积的曲面积分.解:取∑为平面2z =被Γ所围成的部分的上侧,∑的法线向量为(0,0,1),n =其方向余弦为(cos ,cos ,cos )(0,0,1).αβγ=于是23ydx xzdy yz dz Γ-+⎰2cos cos cos 3(3)dS x y z yxzyzz dSαβγ∑∑∂∂∂=∂∂∂-=--⎰⎰⎰⎰ 2245520.x y dSdxdy π∑+≤=-=-=-⎰⎰⎰⎰五、证明题(每小题6分,共12分)19. 证明下列第二类曲线积分的估计式: .L xdx ydy LM +≤⎰其中L 为积分路径L 的弧长,M 为函数22y x +在L 上最大值.难度等级:3;知识点:第二类曲线积分分析:将题设积分转化为对弧长的积分,再进行估值,并注意将被积函数表成向量的点积.证明:设路径L 上的单位切向量为(cos ,sin ).αα利用两类曲线积分的联系可得(cos sin )LL xdx ydyx y dsαα+=+⎰⎰cos sin {,}{cos ,sin }LLx y ds x y dsαααα≤+=⋅⎰⎰.LMdsML =≤=⎰⎰20. 设函数)(0x f 在),(+∞-∞内连续,10()(),1,2,.xn n f x f t dt n -==⎰证明:(1)1001()()(),1,2,;(1)!xn n f x f t x t dt n n -=-=-⎰ (2)对于区间),(+∞-∞内的任意固定的,x 级数()∑∞=1n n x f 绝对收敛.难度等级:3;知识点:无穷级数 证明:(1)由函数)(0x f 在),(+∞-∞内连续,1011000()(),1,2,()();(0)lim ()0,,(0)0(2).xn n nn xk x f x f t dt n f x f x f f t dt f k --→=='=⎧⎪⇒⎨===≥⎪⎩⎰⎰11()()(1)!xn f t x t dt n -⇒--⎰ 1101()()(1)!xn x t df t n -=--⎰ 1110102101(()()()())(1)!1()()(2)!xn x n xn x t f t f t d x t n f t x t dt n ---=----=--⎰⎰().n f x ==(2) 函数0()f t 在t x ≤上连续,⇒存在0()0,,()().M x t x f t M x >∀≤≤由(1),1001001()()()(1)!1()()()(1)!xn n xn n f x f t x t dt n f x f t x t dt n --=--⇒=--⎰⎰10()()()().(1)!!n xn n M x x M x f x x t dt n n -⇒≤-=-⎰ 由于0()!nn M x x n ∞=∑收敛,故级数()∑∞=1n n x f 绝对收敛.六、应用题 (每小题8分,共16分)21. 设均匀柱体密度为,ρ占有闭区域222,,{()|,0,}x y z x y R z h Ω=+≤≤≤ 求它对于位于点00,0(),)(M a a h >处单位质量的质点的引力. 分析:由空间物体引力公式和对称性,利用直角坐标计算即可 解:由柱体的对称性可知, 沿x 轴与y 轴方向的分力互相抵消, 故0,x y F F ==而 2223/2[()]z z aF G dv x y z a ρΩ-=++-⎰⎰⎰2222223/20()[()]hx y R dxdyG z a dzx y z a ρ+≤=-++-⎰⎰⎰ 2223/2000()[()]hRrdrG z a dz d r z a πρθ=-+-⎰⎰⎰012()[hG z a dz a z πρ=--⎰2[G h πρ=-22. 按P.F.Verhulst 人口增长规律:当人口数充分大时,大致按有机增长规律随时间成正比例增长(设比例系数为a ).如考虑到疾病和其它原因,有一个与人口数的平方成反比的的负增长率(设比例系数为b ).已知0t =时,人口数为0,x 求在时刻t 时的人口数(),x t 并问当t →∞时人口数如何?难度等级:3;知识点:常微分方程模型,可分离变量的微分方程的初值问题.分析:只需将二阶导数表示出来就可证之. 解:据题意可得如下初始值问题200.t dx ax bxdtx x =⎧=-⎪⎨⎪=⎩ 将方程分离变量,积分得020,xt x dxdt ax bx =-⎰⎰ 即有 00()1ln.()x a bx t ax a bx -=-解出x 得000.atatax e x a bx bx e=-+ 而且,当t →∞时,.a x b→。

第三章复习与习题课

第三章复习与习题课

又 lim y , lim y ,
x10
x10
x 1 为曲线 y 的铅直渐近线;
lim y , lim y ,
x10
x10
x 1 为曲线 y 的铅直渐近线;
a
lim
x
y x
lim
x
1(x x
x
x2
) 1
1,
b
lim(
x
y
ax)
lim(
x
y
x)
lim
x
x x2
1
0,
直线 y x 为曲线 y 的斜渐近线.
m f (0), f (1), f (2) M
m M f (0) f (1) f (2) 3
由介值定理, 至少存在一点 c[0,2] ,使
f (c) 1 f (0) f (1) f (2) 3
f (c) f (3) 1,且 f (x)在[c,3]上连续,在(c, 3)内可导, 由罗尔定理知, 必存在 (c, 3) (0, 3),使 f ( ) 0.
例8. 设函数 f (x) 在[ 0, 3 ]上连续, 在( 0, 3 )内可导, 且
f (0) f (1) f (2) 3, f (3) 1,试证必存在 (0,3),使
f ( ) 0.
证: 因 f (x) 在[0, 3]上连续, 所以在[ 0, 2 ]上连续, 且在 [ 0, 2 ]上有最大值 M 与最小值 m, 故
即有
例7. 设实数
满足下述等式
a0
a1 2
an n 1
0
证明方程
在 ( 0 , 1) 内至少有一
个实根 .
证: 令 F (x) a0 a1x an xn , 则可设

高等数学1-3答题上传(作业) 重庆大学练习库及答案

高等数学1-3答题上传(作业)  重庆大学练习库及答案

三、填空题(共 7 题、0 / 14 分 )
1、设则 __________。

正确答案是:36
2、设函数在x = 0处连续,则 __________
正确答案是:-1
3、 = ______
正确答案是:2
4、广义积分_________。

正确答案是:1/2
5、当时,求函数的阶Taylor公式为________。

正确答案是:
6、 _______
正确答案是:
Taylor公式
7、函数的极小值是______
正确答案是:0
四、计算题(共 2 题、0 / 24 分 )
1、求幂函数(为任意实数)的导数。

正确答案是:
当,已有. 现在在两边取对数,则有, 即 . 两边对求导数(做中间变量),有 , .
即 .
2、求函数的定义域。

正确答案是:
要使函数有意义,必须

所以函数的定义域是.
定义域是使得函数有意义的一切实数的集合。

五、综合题(共 1 题、0 / 22 分 )
1、讨论函数在与点处的连续性?正确答案是:
(1)求的表达式:
①当时,
②当时,
③当时,

(2)讨论在点处的连续性:
∴不存在,在点处不连续
(3)讨论在点处的连续性:。

重大高数期末试题及答案

重大高数期末试题及答案

重大高数期末试题及答案第一章:微分学1. 求函数$f(x)=3x^2-2x+5$的导数。

解答:对于函数$f(x)=3x^2-2x+5$,利用导数的定义可以求得其导数为$f'(x)=6x-2$。

2. 计算曲线$y=e^x$在点$(0,1)$处的切线方程。

解答:首先求得曲线$y=e^x$的导数为$y'=e^x$。

然后通过点斜式切线方程的公式$y-y_1=y'(x-x_1)$,代入点$(0,1)$和导数$y'=e^x$,可得切线方程为$y-1=e^x(x-0)$。

第二章:积分学1. 计算定积分$\int_0^1 (2x^3-3x^2+4x-1)dx$。

解答:对于多项式函数$2x^3-3x^2+4x-1$,我们可以按照幂次递减的顺序进行积分。

首先对$x^3$进行积分可得$\frac{1}{4}x^4$,对$x^2$进行积分可得$\frac{1}{3}x^3$,对$x$进行积分可得$2x$,对常数$-1$进行积分可得$-x$。

将这些结果依次代入积分的上下限进行计算,最终得到定积分的结果为$\int_0^1 (2x^3-3x^2+4x-1)dx=\frac{1}{4}-\frac{1}{3}+2-1=\frac{5}{12}$。

2. 求解微分方程$\frac{dy}{dx}=2x$,其中$y(0)=3$。

解答:对于微分方程$\frac{dy}{dx}=2x$,我们可以通过直接积分的方法求解。

对方程两边同时进行积分可得$y=x^2+C$,其中$C$为常数。

由于已知$y(0)=3$,代入初始条件可得$3=0^2+C$,解得$C=3$。

于是原微分方程的解为$y=x^2+3$。

第三章:级数1. 判断级数$\sum_{n=1}^\infty \frac{1}{n^2}$的收敛性。

解答:对于级数$\sum_{n=1}^\infty \frac{1}{n^2}$,我们可以利用比较判别法来判断其收敛性。

重庆大学出版社高等数学题库参考答案(供参考)

重庆大学出版社高等数学题库参考答案(供参考)

第五章 不定积分1(直接积分法、换元积分法)一、单选题1.设)(x f 是可导函数,则⎰'))((dx x f 为( A ).A.)(x fB.C x f +)(C.)(x f 'D.C x f +')(2.函数)(x f 的( B )原函数,称为)(x f 的不定积分.A.任意一个B.所有C.唯一D.某一个 3.⎰=+=)(,2cos )(x f C x e dx x f x则( A ).A.)2sin 22(cos x x e x -B.C x x e x +-)2sin 22(cosC.x e x 2cosD. x e x2sin4.函数x e x f =)(的不定积分是( B ).A.x eB.c e x +C.x lnD.c x +ln 5.函数x x f cos )(=的原函数是 ( A ).A.c x +sinB.x cosC.x sin -D.c x +-cos 6.函数211)(xx f -=的原函数是( A ).A.c x x ++1 B.x x 1- C.32xD.c x x ++12 7.设x 2是)(x f 的一个原函数,则[]='⎰dx x f )(( B )A. x 2B.2C.2x D.-2 8.若c e dx e x x +=⎰, 则⎰xd e x22=( A )A.c ex+2 B.c e x + C.c e x +-2 D.c e x +-29.函数x x f sin )(=的原函数是( D )A.c x +sinB.x cosC.x sin -D.c x +-cos 10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=( B )A.)(x fB.0C.)(x FD.)(x f ' 11.函数211)(xx f +=的原函数是( A ) A.c xx +-1B.x x 1-C.32xD.c x x ++1212. 函数211)(xx f -=的原函数是( A ) A.c xx ++1B.x x 1-C.32xD.c x x ++1213.若函数)(x f 、)(x g 在区间),(b a 内可导,且)()(x g x f '=',则( B ) A.)()(x g x f = B.C x g x f +=)()(C.)()(x g x f ≠D. 不能确定)(x f 与)(x g 之间的关系 14.若)()(x f x F =',则下列等式成立的是( B ). A.C x f dx x F +='⎰)()( B.⎰+=C x F dx x f )()( C.⎰+=C x f dx x F )()( D.C x F dx x f +='⎰)()( 15.经过点)1,0(-,且切线斜率为x 2的曲线方程是( D ).A.2x y =B. 2x y -=C. 12+=x yD. 12-=x y 二.填空题1.)25ln(2125x d x dx --=-.2.)1(212x d xdx --=.3.C aa dx a xx+=⎰ln .4.设)(x f 是连续函数,则dx x f dx x f d )()(=⎰.5.xx cos 2+的原函数是x x sin 2+.6.]4)3[(21)3(2---=-x d dx x .7.C x xdx +=⎰7sin 717cos .8.)1(ln 3133-=x x a d adx a .9.)3(cos 313sin x d xdx -=.10.C x dx x x +=⎰2ln 21ln .11.C x dx x +=⎰4341.12.)C 41(2222+-=--x x e ddx xe .13.C x xdx x +=⋅⎰2sin 21sin cos . 14.C x dx x +=+⎰3arctan 319112.15.C x x dx x +-=⎰)sin (212sin 2. 16.⎰+='C x f dx x f )2(21)2(.17.设⎰+=.)()(C x F dx x f ,若积分曲线通过原点,则常数)0(F C -=.18.)3(arctan 31912x d x dx=+. 19.)(2122x x e d dx xe =.20.已知xx f C x dx x f 2sin )(,sin )(2=+=⎰则.21.设)()()(21x f x F x F 是、的两个不同的原函数,且=-≠)()(,0)(21x F x F x f 则有 C .22.C x x dx x x +-=+-⎰222111 23.Ce dx e xxx +-=⎰1121.24.)1ln(21122-=-x d dx x x .25.若x x f sin )(的导函数是,则)(x f 的原函数为Cx +-sin .26.设)(3x f x 为的一个原函数,则dxx x df 23)(=.27.)2cos 41(812sin x d xdx -=28.x x sin 2+的一个原函数是x x cos 313-.29.)3(cos 33sin x d dx x -=.30.Cx xdx +-=⎰cos ln tan .31.()C x dx x +--=-⎰)21sin(2121cos .32.Cx xdx +=⎰tan sec 2. 33.C x x dx +-=⎰3cot 313sin 2.34.设x 2是)(x f 的一个原函数,则⎰='])([dx x f 2 . 三.判断题 1.⎰+=cx xdx cos sin ( × ) 2.xx edx e =⎰( × )3.⎰-=.cos sin x xdx ( × ) 4.⎰+-=cx xdx cos sin ( √ ) 5.)21sin()]21[sin(x dx x -=-⎰( × ) 6.⎰+-=cx xdx sin cos ( × )四.计算题1.求不定积分dx x x ⎰+21. 解:原式=C x x d x ++=++⎰23222)1(31)1(1212.求不定积分dx x ⎰-31. 解: 原式=C x +--3ln3.求不定积分⎰+dx e e x x 1. 解:原式=C e e d exx x++=++⎰)1ln()1(11 4.求不定积分⎰+-dx xx x)3sin 21(. 解: 原式=C x x x +++ln 3cos 22 5.求不定积分⎰-dx xe x 2. 解: 原式=C e x +--2216.求不定积分dx x x⎰+12. 解: 原式=C x ++)1ln(2127.求不定积分dx x x ⎰+2)72(. 解: 原式=C x x x ++⋅+7ln 24914ln 1422ln 24 8.求不定积分⎰+dx x 10)12(. 解: 原式=C x ++11)12(2219.求不定积分⎰+-dx xx x )1)(1(. 解: 原式=C x x x x x +-+-221522210.求不定积分⎰xdx 2sin . 解: 原式=C x x +-2sin 4121 11.求不定积分⎰dx xx 22cos sin1. 解: 原式=C x x +-cot tan 12.求不定积分dx x ⎰+321. 解: 原式=C x ++32ln2113.求不定积分xdx xarctan 112⎰+. 解: 原式=C x +2)(arctan 21 14.求不定积分⎰-dx x x 4313. 解: 原式=C x +--41ln 43 15.求不定积分⎰+dx x 2411. 解: 原式=C x +2arctan 21 16.求不定积分⎰+dx x x)5(3. 解: 原式=C x x++5ln 5414 17.求不定积分⎰-dx e x 5. 解: 原式=C e x+--551五.应用题1.设一质点作直线运动,已知其加速度为t t a sin 3122-=,如果0=t 时3,500-==s v , 求(1)t v 与的函数关系; (2)t s 与的函数关系. 解:32sin 3)(2sin 3)2cos 34()(2cos 34)(cos 34)sin 312()(43,04335,032-++=−−−→−+++=++=++=−−→−++=-=-====⎰⎰t t t t s c t t t dt t t t s t t t v C t t dt t t t v s t v t2.求经过点(0,0),且切线斜率为x 2的曲线方程.解:20,022x y C x xdx y y x =−−−→−+====⎰3.一物体由静止开始运动,t 秒末的速度是23t (米/秒),问(1)在3秒末物体与出发点之间的距离是多少? (2)物体走完360米需多长时间?解:设运动方程为:30,032)(3)(t t S C t dt t t S S s t =−−→−+=====⎰(1)当3=t 时,27)3(=S (米)(2)当.360360)(33秒=⇒==t t t S4.一曲线过原点且在曲线上每一点),(y x 处的切线斜率等于3x ,求这曲线的方程. 解:40,0434141x y C x dx x y y x =−−−→−+====⎰ 5.已知物体由静止开始作直线运动,经过t 秒时的速度为180360-t (米/秒),求3秒末物体离开出发点的距离.解: t t t S C t t dt t S s t 180180)(180180180)-60t 3()(20,02-=−−→−+-====⎰.当3=t 时,1080)3(=S (米).6.求经过点)1,(e ,且切线斜率为x 1的曲线方程.解:x y C x dx xy y e x ln ln 11,=−−→−+====⎰. 7.求经过点(0,0),且切线斜率为211x+的曲线方程.解:x y C x dx x y y x arctan arctan 110,02=−−−→−+=+===⎰. 第五章 不定积分2一.单选题1.下列分部积分法中, dv u ,选择正确的是( A ). A.⎰==xdxdv x u xdx x 2sin 2sin ,, B.xdxdv u xdx ln ,1,ln ==⎰C.dxx dv e u dx e x x x22,,==--⎰D.xdxdv e u dx xe xx==⎰,,2.⎰⎰-=)(2arctan d 2arctan Axd x x x x .A.x arctan2B.x arctan4C.x arctan2-D.x arctan4- 3.=⎰2-4d xx ( A ).A.C x +2arcsinB.C x +arcsinC.Cx +2arccos D.C x +arccos二.判断题1.分部积分法u v uv v u d d ⎰-=⎰的关键是恰当的选择u 和v d ,使u v d ⎰应比v u d ⎰容易积分.( √ )2.若被积函数中含有22a x ±,则可利用三角函数代换法化原积分为三角函数的积分.( √ ) 三.填空题1.Cx dx x ++=+⎰1211.2.设)(x f 有一原函数⎰+-='Cx dx x f x xx cos )(,sin 则.3.C x x x xdx x +-=⎰2241ln 21ln .4.)3(arcsin 31912x d xdx =-.5.Cx x e dx e x x x ++-=⎰)22(22.6.⎰++-=C x x x xdx x 3sin 913cos 313sin .四.计算题1.求不定积分⎰-dx x x232. 解:原式=Cx x d x +--=---⎰2223231)32(321612.求不定积分⎰dxx e x 22. 解:原式=C x x e x ++-)21(2122 3.求不定积分⎰++dxx x 11. 解:C x x C t t dtt t t x +--+=+-=-=+⎰1)1(3232)22(132232原式4.求不定积分⎰+)1(x x dx. 解:cx C t dt t t x +=+=+=⎰arctan 2arctan 21222原式5.求不定积分⎰xdxx 2sin . 解:原式=C x x x ++-2sin 412cos 21 6.求不定积分⎰+dx e x x 5)2(. 解:原式=C x e x ++)59(515 7.求不定积分dxxex⎰-4. 解:原式C x ex++-=-)16141(4 8. 求不定积分⎰++dxx 111. 解:原式[]C x x +++-+=)11ln(129.求不定积分⎰+-dxx 1211. 解:原式[]C x x +-+++=112ln12- 10.求不定积分dxex⎰+11. 解:原式=C e e xx +++-+1111ln11.求不定积分⎰xdxxln 2. 解:原式C x x +-=)31(ln 313 12.求不定积分dx x x ⎰-1. 解:原式C x x +---=)1arctan 1(213.求不定积分⎰---dxx x 22112. 解:原式C x x +-=)(arcsin 214.求不定积分⎰dx a x x 2 )1,0(≠>a a . 解:原式C aa x a x a x++-=)ln 2ln 2ln (32215.求不定积分dxx⎰-2941. 解:原式C x +=23arcsin 31 16.求不定积分dxx ⎰sin . 解:原式C x x x ++=sin 2cos -217.求不定积分⎰xdx x 3cos . 解:原式C x x x ++=3cos 913sin 31 18.求不定积分dxx x ⎰+2. 解:原式C x x ++-+=2123)2(4)2(32五.应用题 (增加题)第六章 定积分一.单选题 1.)(240Ddx x =-⎰A.⎰⎰-+-4220)2()2(dxx dx x B.⎰⎰-+-422)2()2(dxx dx x C.⎰⎰-+-422)2()2(dxx dx x D.⎰⎰-+-422)2()2(dxx dx x2.=⎰a adx x f )(( C ) A.大于0 B.小于0 C.等于0 D.不能确定 3.⎰⎰--=+1111)()(dx x f dx x f ( C )A.大于0B.小于0C.等于0D.不能确定 4.定积分⎰badxx f )(是( D )A.一个原函数B.()x f 的一个原函数C.一个函数族D.一个常数 5.定积分⎰badxx f )(的值的大小取决于( C )A.)(x fB.区间 []b a ,C.)(x f 和[]b a ,D.都不正确 6.定积分⎰badxx f )(的值的大小取决于( C )A.)(x fB.区间 []b a ,C.)(x f 和[]b a , D.无法确定 7.⎰⎰=-3234)()(dx x f dx x f ( A )A.⎰42)(dxx f B.⎰24)(dxx f C.⎰43)(dxx f D.⎰32)(dxx f8.下列命题中正确的是( C )(其中)(),(x g x f 均为连续函数) A.在[]b a ,上若)()(x g x f ≠则dxx g dx x f ba ba⎰⎰≠)()( B.⎰⎰≠babadtt f dx x f )()( C.若)()(x g x f ≠,则⎰⎰≠dxx g dx x f )()( D.⎰=badxx f dx x f d )()(9.=⎰dx x f dx d ba)(( B ) A.)(x f B.0 C.)(x f ' D.)(x F 10. 若1)(=x f ,则⎰=ba dx x f )(( C )A.1B.b a -C. a b -D.0 11.定积分⎰badxx f )(是( B )A.任意的常数B.确定的常数C.)(x f 的一个原函数D.)(x f 的全体原函数 12.若⎰=+12)2(dx k x ,则=k ( B )A.-1B.1C.1/2D.0 13.=-⎰dx x 5042( C )A.11B.12C.13D.14 二.判断题1.函数在某区间上连续是该函数在该区间上可定积分的必要条件. ( × )2.a b dx ba -=⎰0 . ( × )3.⎰='badx x f 0))(( . ( × )4.x xdx dx d ba sin sin ⎰=. ( × )三.填空题1.设)(x f '在[]b a ,上连续,则)()()(a f b f dx x f b a-='⎰.2.C dx xxx +=⋅⎰6ln 6321. 3.4111022π-=+⎰dx x x .4.ee dx x e x-=⎰2121.5.设⎰⎰==52515)(,3)(dx x f dx x f ,则2)(21-=⎰dx x f .6..0113=⎰-dx x .7.若)(x f 在[]b a ,上连续,且⎰=ba dx x f 0)(,则[]ab dx x f ba-=+⎰1)(.8.由曲线22+=x y ,直线3,1=-=x x 及x 轴围成曲边梯形的面积352)2(312=+=⎰-dx x A .9..0sin 12=⎰dx xdx d .10.11ln4141=+-⎰-dx xx.11.1)1sin(212=⎰dx xx ππ. 12.32112=⎰-dx x .13.0cos 11⎰-=xdx x .14.利用定积分的几何意义填写定积分的值π41112=-⎰dx x .15.22sin sin x dt t dx d x⎰=.16..0sin 222=⎰-xdx x .17..0113=⎰-dx x .18. 的值为积分.21ln 1⎰edx x x 19.2)253(22224⎰⎰=++-dx dx x x .20.11-=⎰e dx e x . 21.431=⎰-dx .22.⎰1212ln xdxx 的值的符号为 负 .四.计算题 1.求定积分.⎰+411xdx 解:原式)32ln 1(2+=2.求定积分⎰-124x dx. 解:原式6arcsin 10π==x3.求定积分⎰-+-01)32)(1(dxx x . 解:原式21-= 4.求定积分dxx⎰--2121211 解:原式3arcsin 2121π==-x5.求定积分⎰-+12511x dx 解:原式=2ln 54)511ln(5112=⎥⎦⎤⎢⎣⎡+-x6.求定积分dx x ⎰+9411解:原式[])2ln 1(2)1ln(232+-=-+-=t t7.求定积分dxe x⎰-1. 解:原式eex1101-=-=- 8.求定积分dxx ⎰212 解:原式3712313==x9.求定积分θθπd ⎰402tan 解:原式[]4104tan ππθθ-=-=10.求定积分.dx xx ⎰+402sin 12sin π解:原式232ln 04)sin 1ln(=+=πx 11.求定积分dxx x ⎰-ππ23sin . 解:原式=012.求定积分()dxxx ⎰--2121221arcsin . 解:原式=324)(arcsin 31321213π=-x 13.求定积分dxx x ⎰+911. 解:原式2ln 213)1ln(2=+=x14.求定积分dxex x⎰12. 解:原式201)22(2-=+-=e x x e x15.求定积分⎰+104)1(x dx 解:原式24701)1(31-3=+=-x 16.求定积分dxxe x ⎰2. 解:原式102)1(2+=-=e x e x 17.求定积分⎰-1dxxe x . 解:原式ex e x2101)1(--=+=- 18.求定积分dx x ⎰⎪⎭⎫ ⎝⎛+πππ33sin . 解:原式0)3cos(3=+-=πππx19.已知⎩⎨⎧≤<-≤≤=31,210,)(2x x x x x f ,计算⎰20)(dx x f . 解:原式⎰⎰-=-+=2110261)2(dx x dx x 20.求定积分()d x x x +⎰194. 解:原式627149)2132(223=+=x x21.求定积分⎰1arctan xdxx . 解:原式=214)arctan arctan (21102-=⎥⎦⎤⎢⎣⎡+-πx x x x22.求定积分⎰10arcsin xdx . 解:原式1201)1arcsin (2-=-+=πx x x23.求定积分⎰262cos ππudu . 解: 原式836)2sin 21(2162-=+=πππu u24.求定积分()dx x x x ⎰+2sin π. 解: 原式18sin cos 21202+=⎥⎦⎤⎢⎣⎡+-=ππxx x x 25.求定积分dx x x ⎰-121221. 解: 原式[]41cot sin 24πππ-=--=t t t x26.求定积分dx x x1sin 1212⎰ππ. 解: 原式11cos12==ππx27.求定积分dxx ⎰+101210. 解: 原式10ln 4950110ln 21012==+x 28.求定积分xdxx ⎰23cos sin π解: 原式410cos 41-24==πx29.求定积分⎰1024dx xx . 解: 原式10ln 710ln 81=⎥⎦⎤⎢⎣⎡=x 30.求定积分dx x x e⎰-1ln 1. 解: 原式21ln 21ln 12=⎥⎦⎤⎢⎣⎡-=ex x31.求定积分dxx x ⎰+31)1(1. 解: 原式[]6arctan 2312π==t t x32.求定积分xdxx cos sin 23⎰π. 解: 原式410sin 4124==πx33.求定积分⎰--1321dx x . 解: 原式[]5ln 2ln -13=-=-x34.求定积分dx x x x ⎰++21222)1(12 解: 原式4212arctan 1arctan 21π-+=⎥⎦⎤⎢⎣⎡-=x x 35.求定积分⎰+21ln 1e x x dx. 解: 原式[])13(2ln 1221-=+=e x36.求定积分dxe x x ⎰22. 解: 原式)1(21214202-=⎥⎦⎤⎢⎣⎡=e e x37.求定积分dxx ⎰20sin π. 解: 原式10cos 2=-=πx38.求定积分⎰++10)32)(1(dx x x . 解: 原式211252132=⎥⎦⎤⎢⎣⎡++=x x x39.求定积分dttet ⎰-1022. 解: 原式212112---=⎥⎥⎦⎤⎢⎢⎣⎡-=e e t 40.求定积分dx x x ⎰+102212. 解: 原式[]22)arctan (210π-=-=x x41.求定积分⎰πsin xdxx . 解: 原式[]ππ=+-=0sin cos x x x42.求定积分dx x xe⎰12ln . 解: 原式311ln 313==e x43.求定积分⎰2cos sin 3πxdxx . 解: 原式230sin 2322==πx44.求定积分()⎰ωπωω20sin 为常数tdt t 解: 原式2022sin 1cos 12ωπωωωωωω-=⎥⎦⎤⎢⎣⎡+-=t t t45.求定积分dxx ⎰230cos π. 解: 原式[][]3sin sin 2322=-=πππx x 46.求定积分dxx ⎰--2221. 解:原式43131231213113123=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=---x x x x x x47.求定积分⎰+331211dx x. 解:原式[]6arctan 331π==x48.求定积分⎰+161 4x x dx . 解:原式23ln 2)1ln(2142124+=⎥⎦⎤⎢⎣⎡++-=t t t t x 五.应用题1.已知生产某产品x (百台)时,总收入R 的变化率x R -='8 (万元/百台),求产量从从1(百台)增加到3(百台)时,总收入的增加量. 解:由已知x R -='8得总收入的增加量为:12218)8(R 3131312=⎥⎦⎤⎢⎣⎡-=-='=⎰⎰x x dx x dx R2.试描画出定积分⎰ππ2cos xdx所表示的图形面积,并计算其面积.解:[]1sin cos 22=-=-=⎰ππππx xdx S . (图形略)3.试描画出定积分⎰ππ2sin xdx 所表示的面积图形,并计算其面积.解:[]1cos sin 22=-==⎰ππππx xdx S . (图形略)4.计算曲线3x y =,直线3,2=-=x x 及x 轴所围成的曲边梯形面积.解:49741413402433023=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-=--⎰⎰x x dx x dx x S .(图形略) 5.计算抛物线24x y -=与x 轴所围成的图形面积. 解: 24x y -=与x 轴的交点为(-2,0),(2,0)6.已知生产某产品x (百台)时,总成本C 的变化率为x C +='2(万元/百台),求产量从1(百台)增加到3(百台)时总成本的增加量.解:.8212)2(31312=⎥⎦⎤⎢⎣⎡+=+=⎰x x dx x C7.计算函数x y sin 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4cos 222sin 22020=-==⎰x xdxy8.计算函数x y cos 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4sin 222cos 2202===⎰x xdxy第七章 定积分的应用一.单选题1.变力使)(x f 物体由],[b a 内的任一闭区间]d ,[x x x +的左端点x 到右端点x x d +所做功的近似值为( C ).A.)(x df -B.)(dx fC.dx x f )(D.dx x f )(-2.一物体受连续的变力)(x F 作用, 沿力的方向作直线运动,则物体从a x =运动到b x =, 变力所做的功为( A ). A.⎰b a x x F d )( B.⎰a b x x F d )( C.⎰-ab x x F d )( D.⎰-ba x x F d )(3.将曲线2x y =与x 轴和直线2=x 所围成的平面图形绕y 轴旋转所得的旋转体的体积可表示为=y V ( C ).A.dx x ⎰204π B.⎰4ydyπ C.()dyy ⎰-44π D.()dyy ⎰+44π二.判断题 1.定积分⎰b adxx f )(反映在几何意义上是一块[a,b]上的面积. ( ╳ )2.已知边际利润求总利润函数可用定积分方法. ( √ ) 三.填空题1.计算曲线x y sin =与曲线2π=x 及0=y 所围成的平面图形的面积可用定积分表示为⎰=20sin πdxA .2.抛物线3x y =与x 轴和直线2=x 围成的图形面积为⎰23dxx .3.由曲线2x y =与直线1=x 及x 轴所围成的平面图形,绕x 轴旋转所的旋转体的体积可用定积分表示为⎰=14dxx V x π.四.计算题1.求抛物线3x y =与x 轴和直线3=x 围成的图形面积.2.把抛物线ax y 42=及直线)0(>=b b x 所围成的图形绕x 轴旋转,计算所得旋转体的体积. 3.一边长为a m 的正方形薄板垂直放入水中,使该薄板的上边距水面1m ,试求该薄板的一侧所受的水的压力(水的密度为33kg/m 10, g 取2m/s 10).4.计算抛物线2x y =与直线轴和x x x 3,1=-=所围成的平面图形绕x 轴旋转所得到的旋转体体积.5.由22x y x y ==和所围成的图形绕x 轴旋转而成的旋转体体积.6.求由曲线x y 1=与直线x y =及2=x 所围成的图形的面积.7.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积.8.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.9.用定积分求底圆半径为r ,高为h 的圆锥体的体积.10.计算曲线3x y =和x y =所围成的图形面积.11.计算抛物线24x y -=与x 轴所围成的图形面积.12.求曲线2x y =与x y =所围成的图形的面积。

重庆高等数学试题及答案

重庆高等数学试题及答案

重庆高等数学试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 4 \)的最小值是()。

A. 0B. 1C. 3D. 42. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值为()。

A. 0B. 1C. -1D. 23. 函数\( y = e^x \)的导数是()。

A. \( e^x \)B. \( -e^x \)C. \( \ln e^x \)D. \( \frac{1}{e^x} \)4. 曲线\( y = x^3 - 3x^2 + 2 \)的拐点坐标是()。

A. (0,2)B. (1,0)C. (2,-2)D. (3,6)5. 定积分\( \int_{0}^{1} x^2 dx \)的值为()。

A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{5} \)6. 微分方程\( y'' + 4y' + 4y = 0 \)的特征方程是()。

A. \( r^2 + 4r + 4 = 0 \)B. \( r^2 - 4r + 4 = 0 \)C. \( r^2 + 4r - 4 = 0 \)D. \( r^2 - 4r - 4 = 0 \)7. 函数\( f(x) = \ln(x+1) \)的不定积分是()。

A. \( x\ln(x+1) - x + C \)B. \( x\ln(x+1) + x + C \)C. \( x\ln(x+1) + \ln(x+1) + C \)D. \( x\ln(x+1) - \ln(x+1) + C \)8. 级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是()。

A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C. \( \frac{\pi^2}{3} \)D. \( \frac{\pi^2}{2} \)9. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是()。

重庆大学高等数学II2第3次

重庆大学高等数学II2第3次

第3次作业一、填空题〔本大题共40分,共10 小题,每题 4 分〕1. 写出级数的通项为:______。

2. 级数的敛散性为______。

3. 函数的定义域为______。

设平面通过点〔1,3,-2〕,且垂直于向量,求该平面的方程。

5. 由曲线绕y轴一周所得的旋转面方程为______。

6. 设,且函数f可微,那么______7.D由及x轴围成,那么______。

8.过点(3,0,-1)且与平面平行的平面方程为______。

9.一平面通过两点和且垂直于平面,求它的方程。

10.设,其中具有连续的二阶偏导数,____________。

二、计算题〔本大题共40分,共8小题,每题5分〕2. 1.判断级数的敛散性。

3.利用二重积分的性质估计(其中是矩形区域)的值。

3.求曲面在点(1,1,2)处的切平面和法线方程。

4.求两平面,的夹角。

5.三角形ABC的顶点是A(1,2,3),B(3,4,5),C(2,4,7),求三角形的面积。

6.求微分方程满足的特解。

7.求的所有二阶偏导数。

把对坐标的曲线积分化成对弧长的曲线积分,其中L为(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线从点(0,0)到点(1,1);(3)沿上半圆周从点(0,0)到点(1,1)。

三、证明题〔本大题共20分,共2小题,每题10分〕1.证明:假设数列收敛于a,那么级数。

2.设级数和收敛,证明级数收敛。

答案:一、填空题〔40分,共10题,每题4分〕1.参考答案:解题方案:评分标准:2.参考答案:发散解题方案:评分标准:3.参考答案:解题方案:评分标准:4.参考答案:解题方案:评分标准:5.参考答案:解题方案:评分标准:6.参考答案:解题方案:评分标准:7.参考答案:2解题方案:评分标准:8.参考答案:解题方案:评分标准:9.参考答案:解题方案:评分标准:10.参考答案:解题方案:评分标准:二、计算题〔40分,共8题,每题5分〕1.参考答案:该级数尽管是一个交错级数,但是容易验证,该级数的通项极限为1,根据级数收敛的必要条件可知,该级数是发散的。

重庆大学高等数学习题3-7

重庆大学高等数学习题3-7

A 组1.求下列函数图形的渐近线:(1)21x y x=+; (2)1(21)x y x e =-解析:考查渐近线的求解,已知渐近线有三类,包括垂直渐近线、水平渐近线和斜渐近线,求解这类题目需要按照渐近线的定义一个个去验证解:(1)因为函数在1x =-上没有定义,且21lim1x x x →-=∞+,则存在垂直渐近线1x =- 2lim 1x x x→∞=∞+,则没有水平渐近线 设斜渐近线z kx b =+,则limlim 11x x y x k x x→∞→∞===+ 2lim()lim()lim 111x x x x xb y kx x x x→∞→∞→∞-=-=-==-++则存在斜渐近线1z x =-(2)因为函数在0x =上没有定义,且110lim(21)lim xxx x x e e →→-=-,而10lim xx e +→-=-∞,1lim 0xx e -→-=,则存在垂直渐近线0x = 1101(2)(2)lim(21)lim lim 1x xx x x x e x e x x e xx→∞→∞→---===∞,则没有水平渐近线设存在斜渐近线z kx b =+,则121lim lim2x x x y x k e x x→∞→∞-=== 11001(2)2lim()lim[(21)2]lim1(2)2lim lim(1)1x x x x x x x x x e x b y kx x e x xx e x e x→∞→∞→∞→→--=-=--=--==-=则存在斜渐近线21z x =+ 2.描绘下列函数的图形:(1)321y x x x =--+; (2)2361(3)xy x =++; (3)21y x x=+; (4)32(1)x y x =-解析:考查图形的描绘,前面已经学过了函数单调性、凹凸性、拐点、驻点、渐近线等性质,利用这些性质就能简单的绘制出函数的图形解:(1)2321y x x '=--,62y x ''=-令0y '=,0y ''=,得驻点13x =-,1x =,拐点13x = 点13x =-,13x =,1x =,将定义域分为四个子区间 表3-1又因为32lim lim(1)x x y x x x →∞→∞=--+=∞,lim x x→∞=∞,则不存在渐近线 根据上述分析画出函数的图形如下 (2)2361(3)xy x =++; 24336(3)362(3)36(3)(3)(3)x x x x y x x +-⋅+-'==++,326436(3)36(3)3(3)72(6)(3)(3)x x x x y x x -+--⋅+--''==++令0y '=,0y ''=,得驻点3x =,拐点6x = 同时存在原函数、一阶和二阶导数都不存在的点3x =-点3x =-,3x =,6x =,将定义域分为四个子区间因为23336lim lim[1](3)x x x y x →-→-=+=-∞+,236lim[1]0(3)x xx →∞+=+ 则存在垂直渐近线3x =-,水平渐近线0x =又因为22361136(3)limlim[]0(3)x x xx x x x →∞→∞++=+=+,则不存在斜渐近线 根据上述分析画出函数的图形如下(3)21y x x=+,3221212x y x x x -'=-=,33322(1)2x y x x +''=+= 令0y '=,0y ''=,得驻点x =,拐点1x =- 同时存在原函数、一阶和二阶导数都不存在的点0x = 点1x =-,0x =,x =,将定义域分为四个子区间 表3-3因为200lim lim()x x y x x →→=+=∞,2lim()x x x →∞+=∞ 则存在垂直渐近线0x =,不存在水平渐近线又因为2211limlim()x x x x x x x →∞→∞+=+=∞,则不存在斜渐近线 根据上述分析画出函数的图形如下(4)32(1)x y x =-2232433(1)2(1)(3)(1)(1)x x x x x x y x x ----'==--,232264(36)(1)3(3)(1)6(1)(1)x x x x x x xy x x -----''==--令0y '=,0y ''=,得驻点0x =,3x =,拐点0x = 同时存在原函数、一阶和二阶导数都不存在的点1x =点0x =,1x =,3x =将定义域分为四个子区间表3-4因为3211lim lim(1)x x x y x →→==∞-,32lim (1)x x x →∞=∞- 则存在垂直渐近线1x =,不存在水平渐近线又因为3222(1)lim lim 1(1)x x x x x xx →∞→∞-==-,32222lim[]lim 2(1)(1)x x x x x x x x →∞→∞--==-- 则存在斜渐近线2y x =+ 根据上述分析画出函数的图形如下B 组1.求下列函数的渐近线:(1)1xy xe =; (2)254(1)y x =+-; (3)1ln()y x e x=+,其中0x >解析:考查函数渐近线的求解,按照渐近线的定义一一验证解:(1)因为函数在0x =上没有定义,且1100lim lim lim lim 1x xx xx x x x e e xe e x x→→→∞→∞===,而lim xx e →+∞=∞,lim 0x x e →-∞=,则存在垂直渐近线0x =110lim lim lim 1xxxx x x e e xe xx→∞→∞→===∞,则不存在水平渐近线 设存在斜渐近线z kx b =+,则1lim lim 1x x x yk e x →∞→∞===11011lim()lim()lim lim 11x xxx x x x e e b y kx xe x xx→∞→∞→∞→--=-=-===则存在斜渐近线1y x =+ (2)254(1)y x =+-; 因为函数在1x =上没有定义,且215lim[4](1)x x →+=+∞-,则存在垂直渐近线1x =25lim[4]4(1)x x →∞+=-,则存在水平渐近线4y = 设存在斜渐近线z kx b =+,则225445(1)limlim lim[]0(1)x x x yx k x x x x x →∞→∞→∞+-===+=- 则不存在斜渐近线(3)1ln()y x e x=+,其中0x > 因为函数在x =上没有定义,且001ln()1ln()1lim ln()limlim lim 01x x x x e e x x x e x xe x x →→→+∞→+∞+++====+,则不存在垂直渐近线 01ln()1ln()lim ln()limlim 1x x x e e x x x e x xx→∞→∞→+++===∞,则没有水平渐近线 设存在斜渐近线z kx b =+,则1lim limln()1x x y k e x x→∞→∞==+=001ln()11ln()111lim()lim[ln()]lim lim lim 1x x x x x e e x x b y kx x e x x x e x ex→∞→∞→∞→→+-+-=-=+-====+则存在斜渐近线1z x e=+2.讨论下列函数凹点和拐点,并描绘函数图像:(1)23y x x =-; (2)222a y a x =+;(3)23x y e -=; (4)3ln3xy x +=-解析:考查函数图像的描绘,和A 组解题思路一样,尽可能的求解出函数的性质解:(1)223(23)y x x x x '=-=-,26y x ''=-令0y '=,0y ''=,得驻点0x =,23x =,拐点13x = 点0x =,13x =,23x =将定义域分为四个子区间因为23lim[]x x x →∞-=∞,则不存在垂直渐近线,不存在水平渐近线又因为232limlim()x x x x x x x→∞→∞-=-=∞,则不存在斜渐近线 根据上述分析画出函数的图形如下(2)222a y a x=+,22222()a x y a x -'=+222222222222222242232232()2()2()22()()()()a a x a x a x a a x a x a x x a y a x a x a x -⋅++⋅+-⋅++⋅--+''===+++ 令0y '=,0y ''=,得驻点0x =当2140a -<,即12a <-或12a >时,不存在拐点,即0y ''<恒成立 当2140a -=,即12a =±时,存在一个拐点12x =当2140a ->,即1122x -<<时,存在两个拐点12x =01.当12a <-或12a >时,0y ''<,则函数恒为凸02.当12a =±时,0y ''≤,则函数也恒为凸3.当1122x -<<时,存在拐点x =0x =<设点1x =0x =,2x =将定义域分为四个子区间因为222lim 0x a a x →∞=+,则不存在垂直渐近线,存在水平渐近线0y = 又因为222222lim lim 0()x x a a a x x x a x →∞→∞+==+ 则不存在斜渐近线根据上述分析画出函数的图形如下(3)23x y e-=26x y xe -'=-,22(126)x y x e -''=-令0y '=,0y ''=,得驻点0x =,拐点x = 点2x =-,0x =,2x =将定义域分为四个子区间因为2lim 33x x e -→∞=,则存在水平渐近线3y =又因为23lim0xx e x-→∞= ,则不存在斜渐近线 根据上述分析画出函数的图形如下(4)3ln3x y x +=-,因为303xx +>-,则33x -<<2233(3)63(3)9x x x y x x x --++'=⋅=+--,22226(2)12(9)(9)x xy x x -⋅-''==--令0y '=,0y ''=,则不存在驻点,拐点0x =同时存在原函数不存在点3x =,一阶和二阶导数都不存在的点3x =,3x =- 点0x =将定义域分为两个子区间因为333lim lim ln 3x x y x --→→==+∞-,33lim lim ln 3x x y x ++→-→-==-∞-则存在垂直渐近线3x =,3x =-根据上述分析画出函数的图形如下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 组一、填空题: 1.函数lnsin y x =在5[,]66ππ上满足罗尔定理中的____ξ=解析:考查罗尔定理的应用,要求解ξ,即在区间5(,)66ππ内,求=0y '的解解:cos =sin x y x ',令=0y ',则2x π= 2.函数4()f x x =,2()F x x =在[1,2]上满足柯西中值定理中的____ξ=解析:考查柯西定理的应用,要求解ξ,即在区间(1,2)内,求(2)(1)()(2)(1)()F F F x f f f x '-='-的解解:已知(2)(1)1(2)(1)5F F f f -=-,()2F x x '=,3()4f x x =则即求32145x x =,解得2x =,2x =-(舍去)则ξ=3.设函数3x y e -=,[5,5]x ∈-,则该函数的最大值_____M =,最小值_____m =解析:考查函数最值的求解,由于函数中存在绝对值,则可以化为分段函数,然后在区间内的最值解:化为分段函数33,5335x x e x y e x --⎧≥>=⎨≥≥-⎩已知xe 和3x +都为恒增函数,则3x e -也为恒增函数即当53x ≥>时,最大值为25x y e ==,31x y==因为3x -为恒减函数,则3x e-也为恒减函数当35x ≥≥-时,最大值为85x ye =-=,31x y ==综上可知,最大值8M e =,最小值1m =4.曲线1ln()y x e x=+(0x >)的渐近线方程为_____解析:考查函数渐近线的求解,渐近线包括垂直渐近线、水平渐近线、斜渐近线,前面已经介绍过各类渐近线的定义,则只需一一验证各类渐近线是 否存在解:01ln()1ln()lim lim ln()limlim 1x x x x e e x x y x e x xx-→-∞→-∞→-∞→++=+===∞ 则不存在水平渐近线因为存在不可导点0x =,虽然0x =不再定义域内,但是还需验证又因为0001ln()1ln()1lim lim ln()limlim lim 01x x x x x e e x x y x e x xe x x+++→+∞→+∞→→→++=+====+ 则不存在垂直渐近线设存在斜渐近线y kx b =+,则1ln()1lim lim lim ln()1x x x x e y x k e x x x→+∞→+∞→+∞+===+= 001ln()11ln()1lim ()lim [ln()]lim lim111lim x x x x x e e x x b y kx x e x x x xe x e++→+∞→+∞→+∞→→+-+-=-=+-====+则存在斜渐近线1y x e=+5.记R 为曲率半径,s 为弧长。

已知2y x =(0x ≥),则曲率_____K =;_____dR ds = 解析:考查曲率的求解,本题已知的是直角坐标方程,则利用方程求解322[1()]y K y ''='+求解,而曲率半径对弧长的导数可以利用1dR dR dsds dx dx=⋅来求解 解:2y x '=,2y ''= 则3322222[1()](14)y K y x ''=='++由此可得曲率半径为322(14)2x R +=则138622dR x dx =⋅=dsdx ==则16dR dR x dsds dx dx=⋅=6函数2,0(),0x x x f x xe x ⎧≤=⎨>⎩在点_____x =处取得极小值解析:考查分段函数的极值,需要分段考虑,同时要判断分段点是否为极值,解题步骤为先求出分段函数的导数,然后求出驻点,最后利用极值的充分条件判断 解:当0x ≤时,()2f x x '=,得驻点0x =当0x >时,()(1)xf x x e '=+,令()0f x '=,得驻点1x =-(不在区间内,舍去)在0x =的去心领域(,)δδ-中,当0x >时,()0f x '>;当0x <时,()0f x '< 则在点0x =处取得极小值 二、选择题:1.若函数()f x 在区间(,)a b 内可导,1x 和2x 是区间(,)a b 内任意两点,且12x x <,则至少存在一点ξ,使()(A )()()()()f b f a f b a ξ'-=⋅-,其中a b ξ<< (B )11()()()()f b f x f b x ξ'-=⋅-,其中1x b ξ<< (C )2121()()()()f x f x f x x ξ'-=⋅-,其中12x x ξ<< (D )22()()()()f x f a f x a ξ'-=⋅-,其中2a x ξ<<解析:考查中值定理的应用,使用拉格朗日中值定理时,一定要满足三个条件解:本题中告诉函数()f x 在区间(,)a b 内可导,并没有告诉函数在[,]a b 内连续,则不知道()f a ,()f b 是否存在,自然不能在点x a =,x b =上使用拉格朗日中值定理,这样可以排除(A )(B )(D )选项至于(C )选项,因为函数()f x 在区间(,)a b 内可导,则函数()f x 在区间(,)a b 内连续,自然可得1()f x ,2()f x 存在 答案:C2.当0x >时,曲线1siny x x=()(A )有且仅有水平渐近线 (B )有且仅有垂直渐近线(C )既有水平渐近线,又有垂直渐近线 (D )既无水平渐近线,又无垂直渐近线解析:考查渐近线的求解,利用各类渐近线的定义一一判断即可解:01sin1sin lim sinlim lim 11x x x x x x x x x+→+∞→+∞→===,则存在水平渐近线1y = 01sin lim sin lim 0x x xx x x+→+∞→==,则不存在垂直渐近线 答案:A3.下列各式哪些是曲线322x y xy ++=的水平渐近线或垂直渐近线? (1)32x =-,(2)2x =-,有错误(3)1y =-,(4)3y = (A )都不是 (B )(1)(2) (C )(2)(3) (D )(2)(4) E )全是 解析:考查曲线的渐近线,曲线方程可以化为322x y x +=-,然后求出函数的水平渐近线和垂直渐近线 解:232lim2x x x →+=∞-,32lim 32x x x →∞+=-则存在垂直渐近线2x =,水平渐近线3y = 答案:D4.若lim ()x f x k →∞'=,则lim[()()]x f x a f x →∞+-=()(A )ka (B )k (C )a (D )不存在 解析:考查泰勒公式的应用解:根据泰勒展开式,()()()[()]()()f x a f x f x a x f x af ξξ''+=++-=+ 则()()()f x a f x af ξ'+-=,其中(,)x x a ξ∈+lim[()()]lim ()x x f x a f x af ξ→∞→∞'+-=因为当x →∞时,ξ→∞,则lim[()()]x f x a f x ka →∞+-=答案:A5.设函数()y f x =有二阶连续导数,且(0)0f '=,0()lim1x f x x→''=,则()(A )(0)f 是函数()y f x =的极大值 (B )(0)f 是函数()y f x =的极小值 (C )(0,(0))f 是曲线()y f x =的拐点(D )(0)f 不是函数()y f x =的极大值,(0,(0))f 也不是曲线()y f x =的拐点解析:考查函数的拐点和极值,已知在极值点处,()0f x '=,()0f x ''≠;在拐点处()0f x ''= 根据此来判断(0,(0))f 是不是极值点和拐点 解:因(0)0f '=为,则0x =为驻点,又因为0()lim10x f x x→''=>,根据极限的局部保号性,在0x =的某个去心领域(,)δδ-内,()0f x ''>,则lim ()(0)0lim ()x x f x f f x δδ→-→'''<=< 由此可得(0)f 是函数()y f x =的极小值函数()y f x =有二阶连续导数,则0()lim ()0x f x f x →''''==,但是在0x =的某个去心领域(,)δδ-内,()0f x ''>,则(0,(0))f 不是曲线()y f x =的拐点答案:B三、计算题: 1.求下列极限: (1)20cot 1limx x x x →-; (2)lim cos n n →∞ (3)011lim[]ln(1)x x x →-+; (4)lim a xx a x a x a x a →--; (5)210sin lim()x x x x→; (6)2lim (arctan )x x x π→+∞ 解析:考查极限的求解,本章主要学习的两种解极限的方法,一种是洛必达法则,一种是泰勒公式,洛必达主要针对00,∞∞型,或者可以化为这两种形式极限的求解;泰勒公式一般利用常用函数的麦克劳林公式替换,然后求解,下次结合具体的极限来说明 解:(1)先化简,再利用洛必达法则和等价无穷小求解2230002200cot 1cos sin cos sin lim=lim limsin cos sin cos sin 1lim lim 333x x x x x x x x x x x x xx x x x x x x x x x x x →→→→→---=---===-(2)1∞型极限的求解,可以利用lne 化简ln lim coslim n n nnn n ee→∞→∞→∞==20002n n n n n nπ→∞→→→→=====则22limcos nn e π→∞=(3)∞-∞型极限,先化为型极限,再利用洛必达法则求解2000001111ln(1)ln(1)111lim[]lim lim limlim ln(1)ln(1)22(1)2x x x x x x x x x x x x x x x x x →→→→→--+-++-=====+++(4)00型极限,直接利用洛必达法则求解1ln ln 1ln lim lim (ln 1)(ln 1)1ln a x a x a a x a x a x a x a x a ax a a a a a a x a x x a a a-→→----===-+++ (5)1∞型极限的求解,可以利用lne 化简2220sin sin lnln1lim00sin lim()lim x xx x x x xxx x x e ex→→→==22320000sin cos sin ln cos sin sin 1sin limlim lim lim 2266x x x x x x x x xx x x x x x x x x x x x →→→→-⋅--====- 21160sin lim()x x x e x-→= (6)1∞型极限的求解,可以利用lne 化简+2ln arctan lim21ln arctan +2lim (arctan )lim x xx xxxx x x eeπππ→∞→+∞→∞==因为222+++2121221lnarctan arctan 22limlim lim 111x x x x x xx x xx πππππ→∞→∞→∞⋅⋅+==-=-+- 则22lim (arctan )xx x e ππ-→+∞=2.在半径为R 的圆内作内接矩形,何时矩形面积最大?解析:考查最值的应用,解题步骤为设变量、列函数表达式、解函数、求最值 解:设矩形的长为x ,面积为S则面积()S x = 0x >22()S x '==令()0S x '=,解得驻点x =因为当)x ∈时,()0S x '>;当,)x ∈+∞时,()0S x '<则x ==时,矩形面积最大3.试求曲线32y ax bx cx d =+++中的a ,b ,c ,d ,使得在点2x =-处曲线有水平切线,点(1,10)-为拐点,且点(2,44)-在曲线上解析:考查曲线函数表达式的求解,已知需要求解四个未知数,则至少要列出四个方程式,然后解方程组即可解:232y ax bx c '=++,62y ax b ''=+因为点2x =-处曲线有水平切线,即20x y =-'=因为点(1,10)-和点(2,44)-都在曲线上,则110x y ==-,244x y=-=且点(1,10)-为拐点,则10x y =''=综上可列出方程组12401084244620a b c a b c d a b c d a b -+=⎧⎪+++=-⎪⎨-+-+=⎪⎪+=⎩,解得132416a b c d =⎧⎪=-⎪⎨=-⎪⎪=⎩4.求椭圆223x xy y -+=上纵坐标最大和最小的点解析:考查最值的求解,本题告诉的是隐函数,上诉方程所确定的函数()y y x =为某一闭区间上的连续函数,即求解y 的最大值和最小值,则最值点必是()y y x =的驻点 解:对方程两边同时对x 求导,得220x y xy yy ''--+= 即22x yy x y-'=-,令0y '=,得2y x =带入原方程得21x =,即1x =±当1x =-时,2y =-;当1x =时,2y =则纵坐标最大的点为(1,2),最小的点(1,2)-- 5.求数列的最大项解析:考查数列的最大值,可以转化为求解函数的最大值解:设函数()f x =(0x >,且x 为整数)21ln ()xf x x-'=,令()0f x '=,得x e = 当x e >时,()0f x '<;当x e <时,()0f x '>则函数()f x =x e =上取得极大值,本题中即为最大值因为 2.718e =1.414=1.442=数列6.求非零常数a ,b ,使得012arctan ln1limax xx x b x →+--=解析:考查函数的极限,求解函数中的未知量,首先分析一下极限的类型,然后根据一些限制条件列出方程,最后求解方程组(限制条件,例如当极限为0型且极限值为常数,则分子分母都会趋向于0)解:极限012arctan ln1limax xx x x →+--为00型,则可以直接利用洛必达法则化简,即222211410*********arctan ln 4411(1)1lim lim lim lim (1)a a a a x x x x x x x x x x x x x x x x ax ax x ax---→→→→--+++-⋅---++--===- 因为2104lim a x x b ax -→-=,124a b a -=⎧⎪⎨=-⎪⎩,解得343a b =⎧⎪⎨=-⎪⎩ 7.已知函数32(1)x y x =-,求: (1)函数的单调区间及极值; (2)函数图形的凹凸区间及拐点; (3)函数图形的渐近线解析:考查函数图形的一些性质,前面已经求解过这类题目,且在绘制函数图像时,这些性质是关键的依据 解:(1)原函数定义域为1x ≠2232324333(1)2(1)3(1)2(3)(1)(1)(1)x x x x x x x x x y x x x -+--+-'===---232222644(63)(1)3(3)(1)(63)(1)3(3)6(1)(1)(1)x x x x x x x x x x x xy x x x --+----+-''===--- 0y '=,0y ''=解得驻点0x =,3x =,拐点0x =同时存在原函数、一阶和二阶导数都不存在的点1x =点0x =,1x =,3x =,将定义域分为四个子区间,y ,y ',y ''的变化趋势如下表则函数的单调增区间为(,1)-∞,(1,3),单调减区间为(3,)+∞ 存在极大值3274x y==(2)函数的凹区间为(,0)-∞,凸区间为(0,1),(1,)+∞ 以及拐点(0,0)(3)因为3211lim lim(1)x x x y x →→==∞-,32lim (1)x x x →∞=∞- 则存在垂直渐近线1x =,不存在水平渐近线又因为3222(1)lim lim 1(1)x x x x x x x →∞→∞-==-,32222lim()lim[]lim 2(1)(1)x x x x x x y kx x x x →∞→∞→∞--=-==-- 则存在斜渐近线2y x =+ 四、证明题:1.设函数()f x ,()g x 在[,]a b 上可微,且()0g x '≠。

相关文档
最新文档